The present invention relates to window coverings and, more particularly, to fabric window coverings provided with adjustable vanes for controlling the amount of light passing therethrough. The present invention also includes methods and apparatus for producing such a window covering.
Fabric window coverings are often preferred by consumers for a number of their features. The features most often considered desirable are the softer appearance relative to traditional Venetian blinds, the uniform appearance which they provide a window, and the insulating properties associated with cellular fabric shades.
Cellular fabric shades offering these features are known in the art. For example, U.S. Pat. No. 4,450,027 to Colson discloses cellular window coverings which may be made of fabric or film materials. In the process disclosed in the Colson patent, a flexible strip material is folded into a continuous longitudinal tube and the longitudinal folds thus created are permanently set by passing the tubing material around a heat setting wheel.
Adhesive is applied along one side of the flattened tubular material which is subsequently stacked by winding onto a rack having flat surfaces. The winding in this manner presses the adhesive to the next layer wound onto the rack to form a bonded unitary stack of closed tubular cells. When the ends are cut from the rack the stack may be expanded and the permanently set creases provide a neat and uniform outward appearance.
U.S. Pat. No. 4,732,630 to Schnebly discloses a modification to the Colson process described above. In the Schnebly patent a hot-melt adhesive is applied to one side of the tubular material. After the flat tubular strips have been stacked and cut, they are placed in an oven under pressure and the hot-melt adhesive is activated to bond the layers together.
Both of the above patents disclose window coverings which exhibit the desirable features discussed to this point. However, window coverings of that type lack one feature which is often desired by consumers. That feature is the ability to control the amount of light admitted through the window covering, similar to a traditional venetian blind. There have been some attempts to provide a fabric window covering with the ability to control the amount of light entering the room. However, these attempts have lacked one or more of the features discussed above and have been less than successful.
U.S. Pat. No. 3,384,519 to Froget discloses one such attempt. The window covering disclosed therein consists of two cloth layers spaced apart by movable parallel blades having each of their marginal edges heat-welded to one of the movable cloth layers. With this window covering, relative movement of the two cloth layers in a direction perpendicular to the blades changes the angle of the blade and thus controls the amount of light admitted through the article. A number of undesirable features of the Froget window covering derive from the fact that it is constructed utilizing a heat-welding process. First, this limits the fabrics which may be utilized to thermoplastic materials. Also, heat-welding necessarily requires a melting of at least some of the fibers of the materials bonded, thus providing an uneven outer appearance along the heat-welds and producing unwanted crimps or creases in the materials, which can result in fatigue failure. Further, heat-welding is a relatively slow process which may require six or more seconds to-create a bond over an extended length. This is too slow for application in high volume commercial production processes. Other drawbacks of the Froget window covering are that heat welds are limited in strength, especially at elevated temperatures experienced by an insulating type shade placed adjacent a sunlit window; and the difficulty in achieving uniformly straight heat welded joints over an extended length.
U.S. Pat. No. 2,865,446 to Cole discloses a window covering in which a long rectangular piece of fabric is doubled back upon itself and a plurality of pleated elements are placed between the folded over sheets. The pleated elements are an accordion-pleated fabric which extends when the two sides of the folded over fabric are moved relative to one another in ;a direction perpendicular to the accordion pleats. Such a window covering does not provide a uniform appearance because the accordion-pleated fabric located closer to the top of the window covering does not expand to the same extent as the fabric closer to the bottom of the window covering. Also, it is very difficult to ensure that such accordion-pleated fabric returns to its desired position after each expansion.
The construction of Cole inherently creates an undesirable feature if a woven type sheer fabric is used for the folded over, long rectangular piece of fabric. That undesirable feature is a moire effect or interference pattern which would result when light is viewed through the folded over fabric. The Froget window covering would also appear to have this drawback because the embodiment shown in
French Patent No. 1,309,194 discloses a curtain with variable opacity. In this curtain, screen or mesh parallel sides are provided with tiltable braids therebetween. The braids are said to be attached at their edges to the sides, however, no means for attachment is specified. The drawings appear to indicate a hinged type attachment and the specification ends by stating that the difficulties of construction are substantial.
It is, therefore, an object of the present invention to provide a fabric light control window covering comprising first and second parallel sheer fabric sides and a plurality of opaque or semi-opaque vanes extending between the sheer fabric sides with the vanes being angularly controllable by relative movement of-the sheer fabric sides.
Another object of the invention is to provide such a window covering which has a neat and uniform construction and outer appearance in all degrees of light control. In this respect a feature of the present invention is therefore adhesive bonding of the light control vanes to the sheer fabric utilizing linear application of the adhesive and, thus, a high degree of controllability of the adhesive application process and bonding of the vane. Such a feature provides advantages other than simply an improved outward appearance. The precisely uniform construction improves the operation of the blind by preventing warps or distortions from developing over the life of the blind.
Another object of the invention is to provide such a blind which operates with a high degree of repeatability, that is, always returns to the same appearance when closed. Thus, a feature of the present invention is attachment of the vanes to the sheer fabric sides such that the vanes tend to bias the window covering toward the minimum light admitting position. A further feature of the invention in this respect is a novel heat setting of the three layers together in order to provide a uniform and wrinkle-free shade at any temperature in subsequent use. These features allow the window covering to maintain its original shape and appearance even in the presence of temperature extremes encountered in a window environment.
A further object of the present invention is to provide methods and apparatus capable of producing the above window covering. One of the features of the present invention is adhesive bonding by means of adhesive linearly applied on the vane material. Linear application ensures a high degree of accuracy and provides uniform and straight adhesive lines. Another feature of the invention is the unique heat setting process utilizing hot and cold rollers and tension belts or hot and cold flat plates and belts to uniformly press the sandwiched fabrics during reheat setting and thus guarantee a wrinkle-free structure.
It is also an object of the present invention to provide such methods and apparatus which are suitable for high volume commercial type production. Features of the present invention which assist in this respect are adhesive bonding techniques which allow almost instantaneous bonding of the vane material and apparatus which allow for material changes without complete re-setup.
Accordingly, a fabric light control window covering according to the present invention comprises a first sheer fabric sheet, a second sheet fabric sheet disposed parallel to the first sheet, and a plurality of relatively opaque fabric strips adhesively bonded transversely between the sheet fabrics. Each strip has an edge portion bonded to the first sheet and an opposite edge portion bonded to the second sheet in a manner tending to bias the first and second sheets together. The window covering according to the present invention is movable between a closed position and an open position. The closed position is characterized by a central portion of the fabric strips being substantially parallel to the first and second sheer fabric sheets with the strips themselves being substantially planar. The open position is characterized by the central portion of the fabric strips being substantially perpendicular to the first and second fabric sheets and to the bonded edge portions of the strips themselves. Also, characteristic of this position is that portions of the strips between the bonded edge portions and central portions form smoothly cutting surfaces which are free of creases or sharp fold. In an alternative embodiment, the central portions of the fabric strips are substantially flat and longitudinally extending hinge or flex points are provided parallel to the bonded edge portions.
According to a preferred embodiment of the invention the method for manufacturing such a window covering generally includes the following steps. A first line of hot-melt adhesive is applied to the narrow strip material adjacent one edge on one side. A second line of hot-melt adhesive is applied to the narrow strip material adjacent the opposite edge on the opposite side. The narrow strip material is then cut to lengths equal to the width of the wider sheer fabrics and the cut lengths are separated to provide a space between them sufficient to allow for a subsequent processing step. The first sheer fabric is fed at a constant rate longitudinally in a direction perpendicular to the longitudinal direction of the cut strips. The first sheer fabric is also fed over the cut strips in close proximity thereto. As the first sheer fabric is fed, a portion is preheated to a temperature sufficient to form a tact bond with the hot-melt adhesive. Then, while continuously feeding the first sheer fabric at a constant rate, a portion of the first sheer fabric is stopped directly over one of the cut strips so that the cut strip may be pressed and bonded to the first sheer fabric without smearing the adhesive. In order to move the bonded strips out of the way of the next strip, the stopped portion of the first sheer fabric is advanced at a speed greater than the constant feed rate, followed by a reversing of the direction of travel of the formerly stopped portion to position the first sheer fabric for application of the next cut strip in an overlaying relationship to the previously applied cut strip. The second sheer fabric is then fed into mating contact with the cut strips which have been bonded to the first sheer fabric, thereby forming a sandwich of three layers. Almost immediately after feeding the second sheer fabric, the sandwich is heated under uniform pressure and tension to melt and force the hot-melt adhesive into the sheer fabrics, and set the layers of the sandwich at a uniform temperature-size relationship. Finally, the fabric sandwich is cooled under uniform pressure and tension, thereby permanently bonding the sheer fabrics to the cut strips without creating warps or wrinkles. The final, permanently bonded fabric can then be cut to desired lateral widths and/or trimmed along the lateral edges thereof.
Apparatus according to the invention generally comprises means for performing the above described method. In particular, the apparatus includes an adhesive applicator means comprising a heating block for melting the hot-melt adhesive. The heating block contains a gear pump which provides melted adhesive to nozzles at a rate proportional to the speed of feeding of the strip material. The heating block also is designed to melt only a small portion of adhesive in order to prevent yellowing while maintaining an adequate adhesive flow.
Included in the present invention is a means for positioning the first sheer fabric in order to stop a portion for application of a cut strip and then reposition and stop the fabric before the application of the next cut strip while maintaining a constant feed rate for the first sheer fabric. This portion of the apparatus comprises two dancer rollers around which the first sheer fabric runs. The dancer rollers are mounted on shafts which form the pivot points of a linkage around its frame. The linkage causes the dancer rollers to act in concert and the timing of the rotation of the linkage is controlled by an appropriately shaped cam member.
A heat setting means is provided in which the sandwiched layers of the window covering pass between first and second adjacent endless belts. The belts each run across hot and cool surfaces to successively heat and cool the window covering. In one embodiment, the hot and cool surfaces are rollers and tension induced in the belts causes a pressure to be exerted on the sandwiched layers, thus maintaining the layers under constant and uniform pressure at a tension significantly less than the tension induced in the endless belts. In another embodiment, the hot and cool surfaces are flat plates disposed opposite air plenums and the pressure exerted on the sandwiched layers is due to the biasing of the belts toward the flat plates by pressurized air supplied to the air plenums. Alternatively, the hot and cool surfaces may be pairs of oppositely disposed flat plates biased against the belts. Heat setting in these manners allows the sandwiched layers to be set to a uniform temperature and size relationship to prevent distortions in subsequent use.
Also, included in a preferred embodiment of the invention is a heat setting means wherein the first endless belt passes around a hot roller and the second endless belt passes around a cool roller. The location of the belts and rollers is arranged such that the second endless belt also passes around the hot roller outside of the first endless belt and the first endless belt passes around the cool roller for short distance outside of the second endless belt. With this arrangement the sandwiched layers of the window covering may be passed between the two belts, around the hot and cool rollers.
A hot knife cutting assembly is preferably provided to cut the final fabric to desired lateral widths and/or to trim the lateral edges, of the final fabric. The hot knife cutting assembly operates such that the three layer sandwich fabric is cut cleanly, without any heat sealing of the lateral edges of the individual fabric layers to one another.
The features and advantages of the present invention will be more readily apparent from the following detailed description of the preferred embodiments, illustrated in the drawing figures wherein:
Referring to the drawing and, in particular, first to
In assembly 20 vane material 10 first passes around alignment roller 22 which is provided with raised edges in order to ensure proper alignment of the material. Vane material 10 next passes around backup roller 23 over which nozzle 21 is disposed. Backup roller 23 is mounted on arm 24 and shaft 26 which pivots in bearing 25 to allow for adjustment of the spacing between the glue nozzle 21 and vane material 10 on backup roller 23. Preferably, the spacing is adjusted to provide a flat glue line as shown in
Driven roller 27 is provided to assist in feeding the vane material and is positioned to ensure that vane material 10 has sufficient contact with backup roller 23. By passing vane material 10 under stationary nozzle 21, the adhesive lines are applied due to the linear motion of the vane material 10 in its longitudinal direction. In this manner great precision can be achieved in the application of the adhesive lines.
As illustrated in
In a preferred embodiment of the present invention, the adhesive used is a copolyester hot-melt adhesive. This adhesive melts and flows at about 350.degree. F. and provides excellent strength over the temperature range to which the window covering will be exposed in use. It also provides a tack bond at slightly lower temperatures around 220.degree. F. which is useful in subsequent steps as described below.
This type of adhesive however does have the undesirable characteristic of yellowing when heated and maintained in a melted state for extended periods of time. In order to prevent yellowing, it is necessary to heat only a small amount of adhesive at a time. The present invention provides a novel system of adhesive application which eliminates this problem. Hot:-melt adhesive in the form of pellets is placed in hopper 30. The pellets drop into caulking cartridge 32 which is provided with a pneumatic piston 34 that forces the pellets into heating block 35. Electric heating elements 36 heat heating block 35 to melt a small amount of adhesive just before it is forced into a metering gear pump which pumps the adhesive into nozzles 21. With this arrangement as little as four ounces of adhesive is melted at one time.
A gear pump, preferably a positive displacement pump, is disposed within heating block 35 to pump the melted adhesive to nozzles 21. The gear pump is powered proportionally to the vane material 10 feed speed such that the amount of glue deposited on the vane material 10 remains constant at whatever speed the vane material is fed.
After leaving the adhesive applicator assembly 20 vane material 10, with applied adhesive lines 16a, 16b, passes around idler rollers 33 and 37. The vane material then travels around alignment roller 38 which has raised edges to align the vane material and a further idler roller 39. Vane material 10 then travels into cutter assembly 40.
Cutter assembly 40 is shown schematically in greater detail in
Cutting roller 49 is rotatably mounted on bracket 48 which pivots on shaft 51. After the desired length of fabric is fed around backup roller 42, pneumatic cylinder 46, mounted on bracket 47 and acting through linkage 45, causes bracket 48 to pivot to the left so that blade 50 contacts and cuts material 10 to form individual vane strips 10a. Linkage 45 comprises a clevis 52 attached to the end of the cylinder piston. Three connecting rods 53, 54 and 58 are joined at pivot point 56 and are pivotably connected at clevis 52, cutter assembly frame 57 and bracket 48, respectively. The downward motion exerted by cylinder 46 causes pivot point 56 to move down and thus pivots bracket 48 to the left around shaft 51.
Pneumatic cylinder 46 is controlled by a pneumatic valve (not shown) cooperating with the backup roller shaft. After the number of rotations of backup roller 42 corresponding to the desired length of vane material 10, the pneumatic valve opens to actuate pneumatic cylinder 46 and thus move blade 50 to the cutting position. Backup roller 42 and cutting roller 49 are both driven rollers traveling at the same speed in order to prevent a scraping action of blade 50 along backup roller 42.
In an alternate embodiment, nip roller 44 and biased arm 43 are eliminated. Instead, cutting roller 49 is surrounded by a squishable rubber liner having an outer diameter slightly greater than the radial extension of blade 50 and contacting backup roller 42. The contact between the cutting roller rubber liner and backup roller 42 creates a nip for pulling fabric through the apparatus.
When air cylinder 46 causes bracket 48 to move slightly to the left to cut the vane material, the rubber liner is compressed against backup roller 42 to expose cutting blade 50 and thus cut vane material 10.
After vane material 10 passes around backup roller 42 it falls onto vacuum belt 62 which is part of vacuum separator assembly 60. In
Vacuum belt 62 is provided with holes which are best seen in
In order to provide the spacing between the cut strips 10a of vane material, vacuum belt 62 travels approximately twice as fast as the linear feed speed of vane material 10. Thus, as the uncut vane material 10 passes backup roller 42, it is pulled against vacuum belt 62 by the suction action. However, because it is moving at a slower speed, uncut vane material 10 slides along vacuum belt 62. As soon as vane material 10 is cut by blade 50, it is separated from the uncut vane material 10 due to the increased speed of the vacuum belt 62. Nip roller 65 presses against vacuum belt 62 and is located a distance from the point of contact between blade 50 and backup roller 42 slightly less than the desired length of individual cut strips 10a. Pneumatic cylinder 66 acts on arm 68 on which nip roller 65 is mounted in order to press nip roller 65 against Vacuum belt 62. The actuation of air cylinder 65 is timed to correspond to that of pneumatic cylinder 46 such that at the precise moment vane material 10 is cut, nip roller 65 presses cut strip 10a against vacuum belt 62 to ensure its separation from the uncut vane material. Vacuum belt 62 moves the cut vane strips 10a to a position directly under first sheer fabric 72.
The cutting assembly 40 and separator assembly 60 allow for successful handling of relatively soft fabrics for the vanes 10a. This is a significant advantage over the prior art because soft fabrics provide a more pleasing appearance in the final product.
Referring to
First sheer fabric 72 is fed with its longitudinal direction perpendicular to the longitudinal direction of the vane 10a. The width of first sheer fabric 72 corresponds substantially to the cut length of vane 10a.
When vane 10a reaches alignment with the opposite edge of first sheer fabric 72, photo eye 80 senses the end of vane 10a and activates kicker bar 82. Kicker bar 82 is located on one side of vacuum belt 62 and directly below adhesive line 16a. Kicker bar 82 pushes the front edge of vane 10a upwards and presses adhesive line 16a between vane 10a and the preheated first sheer fabric 72. The combination of heat and pressure creates a tack bond between vane 10a and first sheer fabric 72, thus holding vane 10a in place on first sheer fabric 72. Kicker bar 82 then retracts downwards and out of the way of the next vane. Kicker bar 82 is mounted on a number of pneumatic cylinders 83 which provide the pressing force and accomplish the tack bond cycle within a span of about one-tenth of a second. First sheer fabric 72 with tack bonded vanes 10a, as shown in
In the window covering according to the present invention it is preferred to have the vanes slightly overlapping in the closed position in order to fully block the passage of light. This overlap requirement somewhat complicates the production of the window covering in order to prevent the subsequently attached vane from being adhered to the previous vane instead of the sheer fabric. In the present invention, dancer rollers 76 and 84 continuously reposition first sheer fabric 72 to solve this problem. The sheer fabric in the present invention is fed at a continuous rate and pulled through the apparatus by the heat setting assembly 100. In order to facilitate understanding of the method and apparatus for positioning first sheer fabric 72, the description is made with reference to a two inch wide vane material 10. It should be readily appreciated that this is intended to in no way limit the present invention. Other vane material widths may be used with simple adjustments, apparent to those skilled in the art based on the disclosure contained herein.
With a two inch vane material, the overlap of the vanes is preferably about ¼ inch. Therefore, the first sheer fabric 72 is advanced a total of 1¾ inches for each vane 10a applied. In order to control and position first sheer fabric 72, the first sheer fabric 72 runs around dancer rollers 76 and 84. After a vane 10a has been applied, dancer roller 76 moves downward and dancer roller 84 moves to the left as shown in
As the backward motion occurs, air jets 79 blow a jet of air through first sheer fabric 72 on to applied vane 10a to force it out of the way of kicker bar 82. A number of air jets 79 may be positioned along the width of first sheer fabric 72 just after kicker bar 82. Air jets 79 may provide a continuing airflow or may be timed to blow only during the backward motion of the dancers.
In order to maintain first sheer fabric 72 in a stationary position while the next vane 10a is applied, dancer rollers 84 and 76 continue to move back slowly so as to exactly counter the effect of the forward pull of heat setting assembly 100. Thus, first sheer fabric 72 between dancer rollers 76 and 84 remains briefly stationary. This prevents adhesive line 16a from being smeared when vane 10a is applied to first sheer fabric 72 and also allows first sheer fabric 72 to become sufficiently preheated by remaining stationary on the preheat shoe 78. Once kicker bar 82 tack bonds the next vane 10a to first sheer fabric 72 the positioning process repeats.
In a preferred embodiment of the present invention a single motor drive system is utilized to power adhesive applicator assembly 20, cutter assembly 40, vacuum separator assembly 60 and heat setting assembly 100. Dancer rollers 84 and 76 are also powered by this drive system. Dancer roller 76 is mounted on arms 89 which in turn are mounted on shaft 88. Similarly, dancer roller 84 is mounted on arms 85 which in turn are mounted on shaft 87. Shafts 87 and 88 extend through frame 14 as shown in
As can be seen in
Referring again to
In addition to providing an almost instant bond of high strength, the heat setting assembly provides a second function of equal importance. By running the three layers together around heating roller 102 at a temperature of 350.degree. F., the sheer fabrics and vane material are actually heat set to their new size and configuration at a uniform temperature-size relationship. The fabrics will thus hold this new size relationship with respect to one another unless subjected again to a temperature of 350.degree. F. or greater. The temperatures which normally would be experienced by this type of window covering in use generally do not exceed a 180.degree. F. Thus, the window covering according to the present invention will remain wrinkle-free at any normal use temperatures.
Additionally, the heat setting procedure allows for the use of fabrics which have not previously been heat set. Most fabrics are run through a heat setting process which sets the fibers and locks them to size in order to prevent shrinkage when subjected to heat in their normal applications. The heat setting apparatus of the present invention allows this preheat setting of individual fabrics to be eliminated, thus saving time and money in the fabric processing.
The present invention provides a further novel feature in order to ensure that a wrinkle-free final product emerges from heat setting assembly 100. This feature is the use of endless tension belts 106 and 108, respectively. First belt 106 travels around heating roller 102 and idler 110 mounted on shaft 111. Second belt 108 travels around cooling roller 104, idler 112, mounted on shaft 114, and idler 101. Second belt 108 also travels around heating roller 102 outside of first belt 106. Similarly, first belt 106 travels for a short distance around cooling roller 104 outside of second belt 108. The three-layer fabric sandwich is pressed between the first and second belts 106, 108 as it passes around heating and cooling rollers 102, 104. The first and second belts 106, 108 are maintained at a much greater tension than the sandwich of sheer fabrics 72, 96 and vanes 10a as it passes therebetween. The tension in the belts has the effect of pressing together the belts around heating and cooling rollers 102, 104. This uniformly presses the finished fabric 103 as it is heat set and cooled, thus further eliminating the possibility for a wrinkled or warped final product. In a preferred embodiment, first and second belts 106, 108 are polytetrafluoroethylene (TEFLON) coated fiberglass belts which have the required strength and exhibit the release characteristics of polytetrafluoroethylene.
Referring to
The rotation of heating and cooling rollers 102, 104 is linked together by geared wheels 132 and 134 which are in turn driven by gears 136 and 138 linked to the drive system. Heating roller 102 may be heated by electric heating elements disposed around the internal diameter of the roller which is preferably formed as a hollow aluminum cylinder. Cooling roller 104, also preferably formed as a hollow aluminum cylinder, may be cooled by forced air convection or in larger rollers by liquid cooling passages formed in the roller.
In the embodiment of
In the embodiment of
Air is supplied to air plenum 188 and air chamber 180 of the hot plate 102a by hot air blower 192. More particularly, hot air blower 192 supplies air at a pressure of about 3 to 4 psi and a temperature of about 350 to 400.degree. F. to air plenum 188 through conduit 193 and to air chamber 180 through conduit 194. Hot plate 102c is also heated to a temperature of about 350.degree. by suitable means. Air is supplied to air plenum 190 and air chamber 184 of cool plate 104c by cool air blower 195. Air at a pressure of about 3 to 4 psi and ambient temperature is supplied by cool air blower 195 through conduit 196 to air chamber 184 and through conduit 197 to air plenum 190. Cool plate 104c is cooled to a temperature of about 120.degree. F. or lower, by suitable means such as water cooling.
The air pressure in the air plenums 188, 190 pushes or biases the belts 106a, 108a, and the fabric sandwich 103 therebetween, toward the hot plate 102c and the cool plate 104c. In contrast: to the embodiments of
The 3 to 4 psi of air introduced into the air plenums 188, 190 pushes the belts 106a, 108a and the fabric sandwich 103 against the hot plate 102c and the cool plate 104c, respectively. This uniformly presses the finished fabric 103 as it is heat set and cooled. Pressurized air flowing through the air bleed holes provided in the hot plate 102c and the cool plate 104c lifts the belt 108a off the hot and cool plates, preferably a few thousandths of an inch, to minimize friction between the belt 108a and the plates to ensure uniform heating and cooling of the fabric sandwich 103.
After the finished fabric 103 exits the apparatus as shown in
The hot knife cutting assembly 300 may be employed to cut to the finished fabric 103 immediately after the finished fabric 103 has been produced, and prior to winding the finished fabric 103 into a roll for storage. Alternatively, the finished fabric 103 may be wound for storage and then, at a subsequent time or a different physical location, the finished fabric 103 from the storage roll can be cut using the hot knife cutting assembly 300.
To avoid the undesirable moire effect when the first and second sheer fabrics of woven or knit material are viewed in overlaying relation in the window covering of the present invention, the first and second sheer fabrics must have different appearances when the sheer panels are viewed along an axis perpendicular to the plane of the first sheer fabric 72 and perpendicular to the plane of the second sheer fabric 96. The required difference in appearance between the first sheer fabric 72 and the second sheer fabric 96 can be achieved in several different ways.
The first sheer fabric 72 can be a woven or knit fabric having interstices of one shape and the second sheer fabric can be a woven or knit material having interstices of a second shape. In one such embodiment shown in
In another embodiment, the first sheer fabric 72 can be a woven or knit fabric having interstices of one shape and size and the second sheer fabric 96 can be a woven or knit fabric having interstices of the same shape as the first sheer fabric but of a different size. In this second embodiment, shown in
It is also possible to use the same woven fabric for both the first and second sheer fabrics 72, 96, provided that the woven fabric is oriented differently in the two sheer fabrics 72, 96 in order to provide the required difference in appearance. For example, with reference to
It is also possible to avoid the moire effect and provide the required difference in appearance by using a non-woven sheer material, such as a plastic material, for one of the sheer fabrics and a woven sheer material for the other of the sheer fabrics of the window covering. Alternatively, non-woven sheer materials, such as the same or different plastic materials, can be used for both the first and second sheer fabrics. A transparent plastic material can also be used as the first and/or second fabric. The use of a transparent material as at least one of the first and second fabrics also avoids the moire effect.
In another embodiment of the present invention, the second sheer fabric 96 is replaced by a series of sheer fabric strips 156 (
To achieve the gently curved structure of the vanes 10a shown in
A simple and effective physical test has been devised to determine whether a particular fabric is suitable for vanes having a specific vane width. The fabric being tested is allowed to hang over the edge of a table such that the distance from the edge of the fabric to the table top equals the desired vane width. If this length of fabric hangs substantially vertically, then it has sufficient softness for a vane of that vane width. For example, if a fabric is being tested for use as a 2″ wide vane, the edge of the fabric is extended 2″ beyond the edge of the table. If the extended 2″ of the fabric hangs substantially vertically from the table edge, it is suitable for use as a 2″ wide vane material in the structure shown in
Stiffer fabrics, i.e., those which do not hang substantially vertically over a table edge at the length of the desired vane width, can also be used as the vane material. However, if a stiffer fabric is used for the vanes, longitudinally extending hinge or flex points must be provided along the edges of the vanes. The use of a stiffer fabric provided with hinge points produces a window covering having a somewhat different appearance that the window covering shown in
A structure similar to that shown in
According to another embodiment of the present invention, the vanes are formed of a black-out laminate material to maximize the room darkening effect of the window covering when the vanes are oriented in the closed position. A suitable black-out laminate material is a three ply laminate comprising a polyester film such as MYLAR sandwiched between two layers of a spun bonded or spun laced polyester non-woven material. Black-out laminates of this type are generally known in the art and have previously been used in other types of window coverings. Such a three ply laminate has, by virtue of its construction, a greater stiffness than most single ply materials. Accordingly, score-compressed hinge points, such as those shown in
Alternatively, to produce a window covering of the present invention having a maximized room darkening effect, only a stiffened central portion of the vanes is formed from a black-out laminate material. The longitudinal edges of the vanes are left free of the black-out laminate to provide the required hinge points and flexibility along the edges of the vanes. When the blackout laminate is provided only on the central portion of the vanes, it is desirable to space the vanes closer together than described above in order to ensure that the black-out laminated central portions overlap when the window covering is closed, for maximum room darkening effect. For example, for a 25 inch wide vane with a 1½ inch wide black-out laminated central portion, the overlap of the vanes is preferably about 1¼ inch.
Another possible vane material is vinyl or a laminate of a non-woven material and a vinyl material. Generally, vinyl materials and laminates of non-woven material and a vinyl material provide an increased room darkening effect but are soft enough that score-compressed hinge points are not required. Of course, score-compressed hinge points could be provided if necessary.
As discussed with respect to the first and second sheer fabrics of the window covering, when two woven fabrics are viewed in an overlaying relationship, an interference pattern or moire effect can result. When a non-woven fabric is used for the vane material, the problem of a moire effect in the window covering when it is closed is avoided. In some instances, however, it may be desirable to use a woven or knit material for the vane material. A basic woven material will give a moire effect because this type of material has a very ordered orthogonal surface structure. To avoid a moire effect when the window covering having a woven or knit vane material is in the closed position, a crepe woven material can be used as the vane material because crepe woven materials have a much more randomly oriented surface structure. Alternatively, the surface of the woven or knit material can be altered to randomize the surface fibers, for example, by sanding, napping or calendarizing.
Window coverings having first and second sheer fabrics and vanes of various colors, and combinations of colors are contemplated within the scope of the present invention. For example, to provide a more transparent window covering in the open position, dark sheer material can be used for the first and second sheer fabrics because dark colors reflect less light than lighter colors. Similarly, white or light colored sheer materials provide a more translucent effect when the window covering is open.
The vanes may be the same color or a different color than the first and second sheer fabrics. A problem of glue line show-through has been experienced, however, when the vane material is a dark color and the first and second sheer fabrics are of a considerably lighter color or white. To overcome the problem of a dark glue line showing through a light colored sheer material when the vane is adhesively bonded to the first or second sheer fabric of the inventive window covering, a small amount of whitener, about 0.5 to 1.0% by weight, is added to the adhesive before it is applied to the vane material. A particularly suitable whitener is titanium dioxide. The addition of this whitening pigment to the adhesive eliminates the problem of dark colored glue lines being visible in a window covering wherein a dark colored vane is adhesively bonded to a lighter colored sheer fabric.
The description of the preferred embodiments contained herein is intended in no way to limit the scope of the invention. As will be apparent to a person skilled in the art, modifications and adaptations of the structure, method and apparatus of the above-described invention will become readily apparent without departure from the spirit and scope of the invention, the scope of which is defined in the appended claims.
This application is a continuation of application Ser. No. 09/892,150, filed Jun. 26, 2001, abandoned, which is a continuation of application Ser. No. 09/608,492, filed Jun. 30, 2000, abandoned, which is a continuation of application Ser. No. 09/020,736, filed Feb. 9, 1998, U.S. Pat. No. 6,112,797, which is a continuation of application Ser. No. 08/485,051, filed Jun. 7, 1995, U.S. Pat. No. 5,718,799, which is a division of application Ser. No. 08/243,000, filed May 16, 1994, U.S. Pat. No. 6,001,199, which is a continuation of application Ser. No. 07/867,476, filed Apr. 13, 1992, abandoned, which is a division of application Ser. No. 07/701,165, filed May 17, 1991, U.S. Pat. No. 5,313,999, which is a continuation-in-part of application Ser. No. 07/602,998, filed Oct. 24, 1990, abandoned. Each of the above-identified patent applications or patents is hereby incorporated by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
286027 | Lobdell | Oct 1883 | A |
718992 | Emery | Jan 1903 | A |
1121898 | Davis | Dec 1914 | A |
1764789 | Heald | Jun 1930 | A |
1937342 | Higbie | Nov 1933 | A |
1958695 | Claus | May 1934 | A |
2929675 | Schlamp | Feb 1936 | A |
2056823 | Brown | Oct 1936 | A |
2110145 | Loehr | Mar 1938 | A |
2140049 | Grauel | Dec 1938 | A |
2267869 | Loehr | Dec 1941 | A |
2571372 | Martin | Oct 1951 | A |
2620850 | Janowski | Dec 1952 | A |
2620869 | Friedman | Dec 1952 | A |
2688356 | Conti | Sep 1954 | A |
2822840 | Reynolds et al. | Feb 1958 | A |
2834412 | Velke | May 1958 | A |
2856324 | Janowski | Oct 1958 | A |
2865446 | Cole | Dec 1958 | A |
2914122 | Pinto | Nov 1959 | A |
2994370 | Pinto | Aug 1961 | A |
3032099 | Croxen | May 1962 | A |
3111163 | Nelson | Nov 1963 | A |
3125154 | Woodle | Mar 1964 | A |
3141497 | Griesser | Jul 1964 | A |
3170505 | Lorentzen et al. | Feb 1965 | A |
3299943 | Poe | Jan 1967 | A |
3371702 | Keegan et al. | Mar 1968 | A |
3384519 | Froget | May 1968 | A |
3386489 | Denton et al. | Jun 1968 | A |
3421276 | LaBarge | Jan 1969 | A |
3509934 | Smart | May 1970 | A |
3540975 | Wright et al. | Nov 1970 | A |
3661665 | Froget | May 1972 | A |
3682752 | Hunter et al. | Aug 1972 | A |
3701376 | Froget | Oct 1972 | A |
3708009 | Viol | Jan 1973 | A |
3783931 | Assael | Jan 1974 | A |
3844330 | Hyman | Oct 1974 | A |
3851699 | Shapiro | Dec 1974 | A |
3860056 | Bruneau | Jan 1975 | A |
3916973 | Schuppler et al. | Nov 1975 | A |
3946789 | Ronkholz-Tolle, nee Tolle | Mar 1976 | A |
3999590 | Koch | Dec 1976 | A |
4009626 | Gressman | Mar 1977 | A |
4019554 | Rasmussen | Apr 1977 | A |
4039019 | Hopper | Aug 1977 | A |
4052521 | Ferrari | Oct 1977 | A |
4137111 | Hansen | Jan 1979 | A |
4182088 | Ball | Jan 1980 | A |
4194550 | Hopper | Mar 1980 | A |
RE30254 | Rasmussen | Apr 1980 | E |
4202395 | Heck et al. | May 1980 | A |
4236567 | Frentzel | Dec 1980 | A |
4309472 | Gotting et al. | Jan 1982 | A |
4332288 | Frentzel et al. | Jun 1982 | A |
4335775 | Frentzel et al. | Jun 1982 | A |
4344474 | Berman | Aug 1982 | A |
4377431 | Chodosh | Mar 1983 | A |
4386454 | Hopper | Jun 1983 | A |
4397704 | Frick | Aug 1983 | A |
4434834 | Ennes | Mar 1984 | A |
4450027 | Colson | May 1984 | A |
4473101 | Langeler | Sep 1984 | A |
4475579 | Bassett | Oct 1984 | A |
4519434 | Forquer | May 1985 | A |
4535828 | Brockhaus | Aug 1985 | A |
4623012 | Rude et al. | Nov 1986 | A |
4631217 | Anderson | Dec 1986 | A |
4647488 | Schnebly | Mar 1987 | A |
4673018 | Judkins | Jun 1987 | A |
4685986 | Anderson | Aug 1987 | A |
4687038 | Clemente | Aug 1987 | A |
4694543 | Conley | Sep 1987 | A |
4732630 | Schnebly | Mar 1988 | A |
4799299 | Campbell | Jan 1989 | A |
4815581 | Deutschlander | Mar 1989 | A |
4826555 | Long | May 1989 | A |
4858668 | Toti | Aug 1989 | A |
4862941 | Colson | Sep 1989 | A |
4884612 | Schnebly et al. | Dec 1989 | A |
4885190 | Schnebly | Dec 1989 | A |
4895611 | Bryniarski et al. | Jan 1990 | A |
4909870 | Gould et al. | Mar 1990 | A |
4912900 | Yeamans | Apr 1990 | A |
4915153 | Toti | Apr 1990 | A |
4928369 | Schnebly et al. | May 1990 | A |
4948445 | Hees | Aug 1990 | A |
4984617 | Corey | Jan 1991 | A |
5002628 | Schnebly | Mar 1991 | A |
5012552 | Wulf | May 1991 | A |
5070924 | Bateman | Dec 1991 | A |
5106444 | Corey et al. | Apr 1992 | A |
5193601 | Corey et al. | Mar 1993 | A |
5228936 | Goodhue | Jul 1993 | A |
5287908 | Hoffmann et al. | Feb 1994 | A |
5301733 | Toti | Apr 1994 | A |
5313999 | Colson et al. | May 1994 | A |
5320154 | Colson et al. | Jun 1994 | A |
5339882 | Judkins | Aug 1994 | A |
5339883 | Colson et al. | Aug 1994 | A |
5394922 | Colson et al. | Mar 1995 | A |
5454414 | Colson et al. | Oct 1995 | A |
5490553 | Colson et al. | Feb 1996 | A |
5558925 | Fritzman | Sep 1996 | A |
5603369 | Colson et al. | Feb 1997 | A |
5638880 | Colson et al. | Jun 1997 | A |
5664613 | Jelic | Sep 1997 | A |
5714034 | Goodhue | Feb 1998 | A |
5718799 | Colson et al. | Feb 1998 | A |
5787951 | Tonomura et al. | Aug 1998 | A |
5854690 | Bornhorst, Jr. et al. | Dec 1998 | A |
5855235 | Colson et al. | Jan 1999 | A |
5897731 | Colson et al. | Apr 1999 | A |
6001199 | Colson et al. | Dec 1999 | A |
6112797 | Colson et al. | Sep 2000 | A |
D456196 | Colson et al. | Apr 2002 | S |
6688369 | Colson et al. | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
249985 | May 1961 | AU |
672993 | Mar 1966 | BE |
2090046 | Feb 1993 | CA |
331432 | Sep 1958 | CH |
423207 | Apr 1967 | CH |
476482 | Sep 1969 | CH |
494338 | Sep 1970 | CH |
122088 | Apr 1900 | DE |
382758 | Oct 1923 | DE |
684202 | Nov 1939 | DE |
1241361 | Jul 1964 | DE |
1942674 | Mar 1970 | DE |
1965360 | Aug 1970 | DE |
7008554 | Oct 1971 | DE |
2735654 | Feb 1979 | DE |
2923233 | Dec 1980 | DE |
2936811 | Apr 1981 | DE |
3041983 | Sep 1982 | DE |
3525515 | Jan 1987 | DE |
8906284 | Sep 1989 | DE |
029442 | Nov 1984 | EP |
220074 | Apr 1987 | EP |
482793 | Apr 1992 | EP |
688935 | Dec 1995 | EP |
319458 | Nov 1902 | FR |
847779 | Oct 1939 | FR |
1166398 | Nov 1958 | FR |
1309194 | Oct 1962 | FR |
1321456 | Feb 1963 | FR |
1364674 | May 1964 | FR |
1373515 | Aug 1964 | FR |
1381472 | Nov 1964 | FR |
1465261 | Nov 1966 | FR |
1480262 | Apr 1967 | FR |
1521488 | Mar 1968 | FR |
1526507 | Apr 1968 | FR |
1585159 | Jan 1970 | FR |
2095034 | Feb 1972 | FR |
2180260 | Nov 1973 | FR |
2362264 | Mar 1978 | FR |
2398170 | Feb 1979 | FR |
951484 | Mar 1964 | GB |
1036126 | Jul 1966 | GB |
1116934 | Jun 1968 | GB |
1228677 | Apr 1971 | GB |
1494842 | Dec 1977 | GB |
1506438 | Feb 1978 | GB |
51-136344 | Nov 1976 | JP |
6508988 | Jan 1967 | NL |
7805464 | Oct 1978 | NL |
8002712 | Dec 1980 | WO |
9106237 | May 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20040084158 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08243000 | May 1994 | US |
Child | 08485051 | US | |
Parent | 07701165 | May 1991 | US |
Child | 07867476 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09892150 | Jun 2001 | US |
Child | 10694930 | US | |
Parent | 09608492 | Jun 2000 | US |
Child | 09892150 | US | |
Parent | 09020736 | Feb 1998 | US |
Child | 09608492 | US | |
Parent | 08485051 | Jun 1995 | US |
Child | 09020736 | US | |
Parent | 07867476 | Apr 1992 | US |
Child | 08243000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 07602998 | Oct 1990 | US |
Child | 07701165 | US |