Fabrication method of high precision, thermally stable electromagnetic coil vanes

Information

  • Patent Grant
  • 6588090
  • Patent Number
    6,588,090
  • Date Filed
    Thursday, June 3, 1999
    25 years ago
  • Date Issued
    Tuesday, July 8, 2003
    21 years ago
Abstract
The present invention relates to a method and apparatus of fabricating electromagnetic coil vanes. The method involves placing a bonding composition on opposing surfaces of a substrate. First and second complementary coil patterns are formed, and are aligned and bonded to respective clamp plate fixtures. The first complementary coil pattern is bonded to one surface of the opposing surfaces of the substrate via the bonding composition, and the second complementary coil pattern is bonded to the other surface of the opposing surfaces of the substrate via the bonding composition. The bonding composition is cured, and the clamp plates are removed from the first and second complementary coil patterns.
Description




DESCRIPTION




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to a method and apparatus of fabricating electromagnetic coil vanes and, more particularly, to a method and apparatus for fabricating high precision, thermally stable electromagnetic coil vanes used with Charged Particle Beam Projection Systems.




2. Background Description




Yokes and electromagnetic lenses are widely used in electron beam tools, electron microscopes, and cathode ray tubes. Yokes and lenses employing toroidal magnetic deflection coils are commonly used in electron beam lithography systems for focusing an electron beam on to a substrate for submicron patterning of semiconductor devices.




U.S. Pat. No. 4,251,728 to Pfeiffer shows an example of a toroidal magnetic deflection yoke.

FIG. 1

shows a top view of a traditional toroidal yoke similar to that shown in Pfeiffer. The traditional yoke includes a plastic form having slots numbered from 1 to 20, and forms both X and Y coil axes.




Presently, electromagnetic coils are formed by winding wire into multiple radial grooves cut from a plastic form. Also, deflection yokes have been made from round wire, with bondable insulative coatings. The method used for winding the form to make the coils requires alternating between the X and the Y windings. As the number of radially cut grooves and the number of turns increases, so does the degree of difficulty and the time involved. Accordingly, current methods used for winding coils is difficult and time consuming, particularly when the number of offset grooves and turns increases.




SUMMARY OF THE INVENTION




It is therefore an object of the invention to provide a method and apparatus for fabricating high precision, thermally stable electromagnetic coil vanes.




According to the invention, a method and apparatus are provided to fabricate high current capacity, high accuracy, thermally stable deflection yokes used to generate off axis beam deflections.




In the preferred embodiment, electromagnetic coil vanes are fabricated having two complementary patterns of approximately 22-23 American Wire Gauge (AWG), uninsulated rectangular cross section wire to be accurately bonded to a thin substrate. Preferably, the coefficient of thermal expansion (CTE) of the thin substrate should be low. For example, quartz can be used, which has a CTE of approximately 0.56×10


−6


/° C. The two complementary copper coil patterns are connected by a through wire. The through wire provides an electrical connection between the two copper coil patterns. The gaps between adjacent copper wires must be as small as possible to maximize the copper density and thus the coil's effectiveness.




The method involves placing a bonding composition on opposing surfaces of a substrate. First and second complementary copper coil patterns are formed, aligned and bonded to respective clamp plate fixtures. The first complementary copper coil pattern is bonded to one surface of the opposing surfaces of the substrate via the bonding composition, and the second complementary copper coil pattern is bonded to the other surface of the opposing surfaces of the substrate via the bonding composition. The bonding composition is cured, and the clamp plates are removed from the first and second complementary copper coil patterns.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:





FIG. 1

shows a top view of a related art toroidal yoke;





FIG. 2

shows an electromagnetic coil vane of the present invention;





FIG. 3

shows assembly of a electromagnetic coil vane of the present invention;





FIG. 4

shows a coil taping fixture of the present invention;





FIG. 5

shows an assembly of coil vane clamping fixture components of the present invention; and





FIG. 6

shows a coil vane clamping fixture assembly of the present invention.





FIG. 7

shows a through wire that connects the two coil patterns through the substrate.





FIG. 8

shows three electromagnetic coil vanes of the present invention.





FIG. 9

shows a coil taping fixture used to tape three coil vanes of the present invention.





FIG. 10

shows a coil vane clamping fixture assembly of the present invention.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION




Referring now to the drawings, and specifically to

FIGS. 2 and 3

, an electromagnetic coil vane is shown. In a preferred embodiment, the electromagnetic coil vane requires two complimentary copper coil patterns


201


and


202


of preferably approximately 22-23 AWG, uninsulated rectangular cross section wire. The complementary coil patterns


201


and


202


are then accurately bonded to opposing sides of a thin substrate


203


. The substrate preferably has a low coefficient of thermal expansion (CTE). Other wires and substrates may also equally be used with the present invention, depending on the particular application. For example, Zerodur®, produced by Schott Glaswerke (Mainz, Germany) may also be used as a substrate. The two complementary copper coil patterns


201


and


202


are connected by a through wire


204


. The through wire extends through substrate


203


and is connected to coils


201


and


202


to provide an electrical connection between them. The gaps between adjacent copper wires for patterns


201


and


202


must be as small as possible to maximize the copper density and thus the effectiveness of the coil. The termination wire


205


is a terminal portion of the coil wire where electric current is applied to the electromagnetic coil vane.




The electromagnetic coil vane, with complementary copper coil patterns


201


and


202


, preferably are made from thin sheets of copper, via wire electrical discharge machining (EDM). Wire EDM enables many coils (preferably 50 or more) to be cut from stacked copper sheets, clamped together. The wire cross-section produced by this technique is rectangular with vertical sidewalls. The gaps between the adjacent wires are preferably small, with a preferred ratio of wire width to gap of approximately 2.5:1, or higher.




A bonding composition


303


such as a heat curable epoxy film is placed on the top and bottom surfaces of substrate


203


. Other bonding compositions such as transfer adhesive films, two part room temperature epoxies, cyanoacrylates, and acrylic adhesives may also be used to practice the invention. The bonding composition


303


provides a thin, uniform bond line. Copper coil patterns


201


and


202


are then accurately aligned and bonded to the substrate


203


to form the electromagnetic coil vane.





FIG. 4

shows an assembly of a coil vane taping fixture of the present invention. Following EDM fabrication, the individual copper coil patterns


201


and


202


are delicate and weak with little or no internal strength to maintain wire alignment. Accordingly, a coil taping fixture


403


provides a means to accurately align these copper coil patterns in preferred embodiments. The coil vane taping fixture has a“nest” on which either copper coil pattern


201


or


202


rests. Coil nest fingers


404


, preferably made from thin sheet material, fit in the gaps between adjacent coil wires. The nest fingers do not rise up through the entire thickness of the copper coil. This enables copper tape


406


to be placed on the top surface of the copper coil. Nest spacers


405


set the spacing of the coil nest fingers


404


and provide the surface which supports the coil pattern.




Once copper coil pattern


201


or


202


is positioned in the coil taping fixture


403


, copper tape


406


is placed on copper coil pattern


201


or


202


. The CTE of copper tape


406


preferably matches the CTE of copper coil pattern


201


or


202


. The copper tape


406


adheres to and maintains the alignment of the copper coil pattern


201


and


202


during and after coil pattern transfer to the clamping plate


407


.




The transfer occurs as follows. An adhesive, preferably several drops of cyanoacrylate, is placed upon the copper tape


406


which is adhered to copper coil pattern


201


or


202


. A clamp plate


407


with plate alignment notch


408


and alignment flat


409


is placed upon the adhesive. The plate alignment notch


408


positions the clamp plate in the horizontal plane, and plate alignment flat


409


positions clamp plate


409


with respect to an angular position within the horizontal plane. The plate alignment notch


408


and plate alignment flat


409


thus enable the clamp plate


407


to be accurately positioned with respect to clamp block alignment pins


410


on the coil taping fixture


403


. These alignment features cause the copper coil pattern


201


or


202


to be accurately transferred to and positioned with respect to the clamp plate


407


. This process is repeated so that both copper coil pattern


201


and its complementary copper coil pattern


202


are positioned on identical, individual clamp plates


407


.





FIG. 5

shows the coil vane clamping fixture of the present invention. The coil vane clamping system of the present invention includes a clamp base


501


having three precision alignment pins


502


,


503


and


504


. Two of the pins, preferably


502


,


503


, are used to align the clamp plates


511


,


512


to one another, and to align one edge of substrate


203


having bonding composition


303


on its top and bottom surfaces. The third pin


504


is preferably used to align a second edge of substrate


203


.




In a preferred embodiment, copper coil pattern


201


is adhesively attached to a clamp plate


512


, and copper coil pattern


202


is adhesively attached to a second clamp plate


511


. The clamp plate


512


is placed and aligned to the clamp base


501


. Next, substrate


203


having bonding composition


303


on its top and bottom surfaces is placed on top of copper coil pattern


201


and banked against the three pins


503


,


504


and


505


. It is preferred that the bonding composition


303


is applied to substrate


203


via a fixture (not shown) that facilitates positioning of. the bonding composition


303


onto the substrate


203


. The clamp plate


511


(with coil pattern


202


) is then placed on top of the substrate


203


and aligned to the clamp base


501


. The assembly is held together by two shoulder screws


508


, two compression springs


509


, and spacers


510


. The compression springs


509


provide a substantially uniform clamp pressure across clamp plates


512


and


511


and the substrate


203


.




Once together, the clamp fixture assembly appears as shown in FIG.


6


. The clamp assembly


601


is then placed in an oven to enable the bonding composition


303


to cure and bond copper coil patterns


201


and


202


to the substrate


203


. After curing, the shoulder screws


508


are removed from clamp fixture


601


. Clamp plates


511


and


512


are removed from substrate


203


, and the copper tape


406


is peeled off the coils


201


and


202


.




As shown in

FIG. 7

, through wire


204


is placed in a pre-drilled hole of the substrate


203


. The through wire


204


electrically connects coil pattern


201


and coil pattern


202


. Solder


701


is used to secure and electrically connect the through wire


204


to coil pattern


201


and coil pattern


202


. The completed electromagnetic coil vane as shown in

FIG. 2

is thus provided.




In view of the foregoing, it is seen that the invention provides a method and apparatus for fabricating high precision, thermally stable electromagnetic coil vanes. This meritorious effect of the invention will also be produced in variations of the invention. For example, as shown in

FIG. 8

, the invention can also be practiced by providing a plurality of coil patterns


201


and


202


on each side of substrate


203


. Reference edges


800


are used for mounting the substrate to the taping fixture and clamping fixture shown in

FIGS. 9 and 10

, respectively.





FIG. 9

shows an embodiment of a coil taping fixture for three coil vanes on substrate


203


. As such, the taping fixture is similar to the taping fixture shown in FIG.


4


. Coil taping fixture


901


utilizes a pre-aligner


900


for aligning substrate


203


with respect to alignment pins


410


.





FIG. 10

shows a coil vane clamping fixture assembly for three coil vanes on substrate


203


. Similar to the clamping fixture shown in

FIG. 5

, the clamping fixture shown in

FIG. 10

includes a clamp plate


1001


with coil patterns


201


on the top surface thereof, clamp plate


1002


with coil pattern


202


on the bottom surface thereof, and means for aligning clamp plates


1001


and


1002


with respect to the clamp base assembly


1003


. Spring plate assembly


1000


is used to apply pressure to clamp plates


1001


and


1002


.




While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.



Claims
  • 1. A method for fabricating high-precision, thermally stable electromagnetic coil vanes, comprising the steps of:forming first and second coil pattern elements of substantially the same size and shape; and aligning and bonding the first and second coil pattern elements to respective first and second surfaces, of a substrate having a low coefficient of thermal expansion using a bonding composition contacting the substrate and a surface of each of said first and second coil pattern elements facing said substrate wherein the first and second coil pattern elements are positioned at substantially corresponding locations with respect to each other on the first and second surfaces of the substrate.
  • 2. The method as recited in claim 1, wherein the first and second coil pattern elements have a ratio of wire width to gap of at least 2.5:1.
  • 3. The method as recited in claim 1, wherein the substrate has the coefficient of thermal expansion of approximately 0.56×10−6/° C.
  • 4. The method as recited in claim 1, wherein the substrate is quartz.
  • 5. The method as recited in claim 1, wherein the bonding composition is thermagon, a heat curable bonding composition that cures without thermal deformation.
  • 6. The method for fabricating high precision, thermally stable electromagnetic coil vanes, according to claim 1, further comprising the steps of:forming third, fourth, fifth and sixth complementary coil pattern elements; aligning and bonding the third, fourth, fifth and sixth complementary coil pattern elements to the substrate, wherein the third and fourth, and fifth and sixth coil pattern elements are positioned at substantially the same locations with respect to each other on the one the one surface and the other surface of the substrate, respectively; and curing the bonding composition on the opposing surfaces of the substrate to each coil pattern element.
  • 7. The method as recited in claim 1, wherein the steps of aligning and bonding the first and second coil pattern elements comprises the steps of:extending a material into gaps of the first and second coil pattern elements to maintain a substantially uniform spacing of wires of the first and second coil pattern elements; placing a tape upon the first and second coil pattern elements to enable the spacing of the first and second coil pattern elements to be adhesively maintained; adhering the first coil pattern element to the first surface of the substrate, wherein the tape is affixed to the first coil pattern element; adhering the second coil pattern element relative to the second surface of the substrate, wherein the tape is affixed to the second coil pattern element, and wherein the first and second coil pattern elements are positioned at substantially the same locations with respect to each other on the first and second surfaces of the substrate, respectively; and clamping the first and second coil pattern elements and the substrate.
  • 8. The method as recited in claim 7, further comprising the step of heating the first and second coil pattern elements and the substrate to enable the bonding composition to cure and bond the first and second coil pattern elements to the substrate.
  • 9. The method as recited in claim 7, wherein the material is sheet metal.
  • 10. The method as recited in claim 7, wherein the at least one of the aligning steps comprises the step of aligning a clamp plate with respect to a coil taping fixture.
  • 11. The method as recited in claim 1, further comprising the step of removing the tape from the first and second coil pattern elements subsequent to said clamping step.
  • 12. The method as recited in claim 5, wherein the tape is copper tape.
  • 13. The method as recited in claim 12, wherein at least one of the aligning steps comprises the step of aligning the clamp plate to a clamp base.
  • 14. The method as recited in claim 13, wherein at least one of the aligning steps further comprises the step of securing the clamp plate to the clamp base by a plurality of shoulder screws.
  • 15. The method as recited in claim 14, wherein at least one of the aligning and bonding steps further comprises the step of positioning a spring between the shoulder screws and the clamp plate.
  • 16. The method as recited in claim 15, herein the end spaces of each spring contact a spacer.
CROSS-REFERENCE TO RELATED APPLICATION

This application is related to U.S. patent application Ser. No. 09/324,899, filed Jun. 3, 1999, now U.S. Pat. No. 6,153,885 issued Nov. 28, 2000 by Rodney, Kendall for“Torroidal Charged particle Deflector With High Mechanical Stability and Accuracy” and assigned to a common assignee herewith. U.S. Pat. No. 6,153,885 is incorporated herein by reference.

US Referenced Citations (21)
Number Name Date Kind
3557983 Hayes Jan 1971 A
3643190 Puetz et al. Feb 1972 A
4342143 Jennings Aug 1982 A
4369557 Vandebult Jan 1983 A
4626816 Blumkin et al. Dec 1986 A
5012571 Fujita et al. May 1991 A
5237165 Tingley, III Aug 1993 A
5341555 Warden et al. Aug 1994 A
5363081 Bando et al. Nov 1994 A
5402098 Ohta et al. Mar 1995 A
5499442 Nakamura et al. Mar 1996 A
5621287 Dossot et al. Apr 1997 A
5652561 Inoh et al. Jul 1997 A
5801521 Mizoguchi et al. Sep 1998 A
5892668 Okamoto et al. Apr 1999 A
5945902 Lipkes et al. Aug 1999 A
5982284 Baldwin et al. Nov 1999 A
6000128 Umeno et al. Dec 1999 A
6144269 Okamoto et al. Nov 2000 A
6153885 Kendall Nov 2000 A
6189200 Takeuchi et al. Feb 2001 B1
Foreign Referenced Citations (3)
Number Date Country
403211804 Sep 1991 JP
5-198449 Aug 1993 JP
09330816 Jun 1996 JP