The invention relates generally to solid oxide fuel cells. More particularly, the invention relates to increased effective surface area density for solid oxide fuel cells.
Fuel cells are known as a clean and efficient energy transformation device. They transform chemical energy into electrical energy with water as the major product.
A Solid Oxide Fuel Cell (SOFC) is one of the major types of fuel cells, where the electrolyte is a solid-state material that generates oxygen vacancies. SOFC's utilize a range of ceramic electrolyte materials, with yttria stabilized zirconia (YSZ) being one of the more prevalent electrolyte materials, which is zirconia doped with yittria. YSZ is an oxygen ion conductor, where oxygen ions “hop” from one vacancy site to another to conduct charge thru the electrolyte from the cathode side to the anode side. The cathode and anode electrodes are made porous for gas delivery.
Due to the low oxygen ionic conductivity of solid electrolyte, traditional SOFCs need to operate at relatively high temperature (800-1000° C.). This limits the application of SOFCs to large scale, stationary applications. Operating SOFCs at low temperatures decreases the electrolyte ionic conductivity, and the power density of fuels cell is consequently sacrificed. One effective way to lower the operating temperature is to reduce the electrolyte thickness, which decreases the Ohmic loss.
A SOFC has three major losses within the fuel cell system, including the activation loss, which is the electrochemical reaction barrier, the ohmic loss due to the cell's resistance from electrode and electrolyte, and the concentration loss, which is the mass transport limit.
The overall cell voltage can be written as the thermodynamic voltage minus the above three over potentials. Among these, the ohmic loss is one major reason for the SOFC's high operating temperature. When oxygen ions hop from one vacancy site to another, high operating temperatures are needed to provide enough energy to the oxygen ion, so as to increase the ionic conductivity of the electrolyte. Thus, to lower the operating temperature of a SOFC, the resistance of the electrolyte needs to be reduced. Thinning the electrolyte to sub-micrometer thickness has been an effective way of achieving low operating temperature. The dimension of the sub-micrometer thick electrolyte is usually limited by the mechanical stability, therefore the surface area density is low and the absolute power generated is insignificant.
Accordingly, there is a need to develop a silicon-based solid oxide fuel cell (SOFC) with high surface area density in a limited volume to increase the absolute electrochemically active area.
To address the need for a silicon-based solid oxide fuel cell (SOFC) with high surface area density in a limited volume, a SOFC electrolyte-electrode assembly is provided. The SOFC electrolyte-electrode assembly includes a substrate having a first substrate surface parallel to a second substrate surface, at least one substrate cavity that includes a substrate cavity wall, a substrate cavity base feature and a substrate cavity bottom, where the substrate cavity is disposed in the second substrate surface, a plurality of through-holes, where the through-holes are perpendicular to the substrate surfaces and span from the first substrate surface to at least the substrate cavity bottom. The SOFC electrolyte-electrode assembly further includes an electrolyte layer having a first electrolyte layer surface and a second electrolyte layer surface, where the second electrolyte layer surface is disposed on the first substrate surface and along walls of the through holes, and at least into the substrate cavity. The electrolyte layer first surface has electrolyte cavities disposed in the through-holes and at least to the substrate cavity bottom. A first electrode layer is deposited on the electrolyte first surface, where the first electrolyte layer conforms to the electrolyte cavities, and a second electrode layer is deposited on the substrate cavity walls and on the substrate cavity bottom and on the electrolyte second surface that is at least within the substrate cavity.
According to one embodiment, the first substrate surface is doped with boron. In one aspect of this embodiment, the boron doping is done by diffusion doping, where the boron doping can have a thickness up to a depth of the electrolyte cavity.
In one aspect of the invention, the substrate cavity bottom and the first electrolyte surface form a corrugated surface.
In another aspect of the invention, the substrate is silicon wafer that includes a (100) double-side silicon wafer polished to a thickness in a range from 300 μm to 1 mm.
According to another embodiment of the invention, the electrolyte cavities are arranged in a pattern of close-packed shapes. In one aspect of the current embodiment, the close-packed shapes can be circles, rectangles, squares, triangles or polygons. In one aspect of the current embodiment, the circles have diameters sizes in a range of 10 μm to 65 μm.
In a further aspect of the invention, the electrode layer can include a porous-platinum layer, a metal layer or a cermet layer.
In another aspect of the invention, the electrode layer can be fabricated by methods such as DC magnetron sputtering, evaporation, atomic layer deposition or pulse laser deposition.
In yet another aspect, the electrolyte layer is deposited using methods that can include DC magnetron sputtering, chemical vapor deposition, atomic layer deposition, or pulse laser deposition.
In a further aspect of the invention, the electrolyte layer can be yttria stabilized zirchoia, gadolinia doped ceria or any oxygen ion conductor.
According to one aspect of the invention, the electrolyte layer has a thickness in a range of 1 nm to 10 μm.
In another aspect of the invention, the substrate cavity has a width size in a range of 1 mm to 100 mm.
In one aspect, the substrate cavity has a depth in a range of 5 μm to 300 μm.
In a further aspect, the substrate cavity wall has a length size in a range of 50 μm to 250 μm.
According to yet another aspect of the invention, the substrate cavity base feature has a vertical length in a range of 10 μm to 250 μm.
In another aspect, the substrate cavity is adjacent to at least one other substrate cavity, wherein a separation distance between the substrate cavities is in a range of 50 μm to 500 μm.
In a further aspect, the substrate cavity is fabricated by a deep reactive ionic etching process and a potassium hydroxide or Tetramethylammonium hydroxide (TMAH) etching process.
According to another embodiment, the invention includes a method of making a solid oxide fuel cell electrolyte-electrode assembly. The method includes providing a silicon wafer substrate having a first surface and a second surface, growing a silicon dioxide mask on the substrate first surface, doping the substrate first surface with boron using diffusion doping, depositing a photoresist layer on the substrate first surface, removing the silicon dioxide mask, provide photolithography to make a mask of a pattern of close-packed shapes on the substrate first surface, providing direct reactive ionic etching (DRIE) in the close-packed shapes to form close-packed shaped cavities, depositing low-stress silicon nitride on the substrate first surface and on the substrate second surface using low pressure chemical vapor deposition, providing photolithography to make a silicon nitride mask of a pattern of substrate windows on the substrate second surface, providing photolithography to provide a mask-pattern on the silicon nitride mask, using DRIE to provide substrate window cavities in the substrate second surface, removing the silicon nitride layer from the substrate first surface using piranha solution, using atomic layer deposition to provide an electrolyte layer on the first substrate surface, where the electrolyte layer conforms to features of the close-packed circular cavities, providing potassium hydroxide etching on the substrate second surface and in the substrate window cavities, removing the silicon nitride layer from the substrate second surface using plasma etching, whereby exposing a bottom surface of the electrolyte layer with in the substrate window cavity, and depositing an electrode layer on the substrate first surface and an electrode layer on the substrate second surface, where the electrolyte layer is disposed between the electrolyte layers.
The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawing, in which:
a-1g show the steps of a successfully fabricated nano thin film SOFC with a silicon microfabrication process.
a-2d show schematic drawings of resultant window spacing from the inventor's earlier fabrication techniques the techniques according to the present invention.
a-3c show schematic drawings of the silicon-based SOFC structure with high surface area density in a limited volume according to the present invention.
a-5o show the two-stage through hole fabrication process according to the present invention.
a-6c show the fabricated SOFC according to the present invention.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will readily appreciate that many variations and alterations to the following exemplary details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
Solid oxide fuel cells (SOFCs) utilize a range of ceramic electrolyte materials, with yttria stabilized zirconia (YSZ) being the most common choice. Due to the low oxygen ionic conductivity of solid electrolyte, traditional SOFCs need to operate at relatively high temperature (800-1000° C.). This limits the application of SOFCs to large scale, stationary applications. Operating SOFCs at low temperature decreases the electrolyte ionic conductivity, and consequently, the power density of fuels cell is sacrificed. One effective way to lower the operating temperature is by reducing the electrolyte thickness to decrease the Ohmic loss. This can be achieved by deposition of submicron thickness electrolyte with thin film deposition techniques, such as sputtering or atomic layer deposition (ALD). These thin film deposition techniques also facilitate employing MEMS processes to fabricate micro scale SOFC structures.
Earlier teachings by the inventors, which are incorporated by reference, include fabrication of a nano thin film SOFC using a silicon microfabrication process. A silicon wafer is used as a substrate and deposited silicon nitride provides masking layers. Thin film YSZ is deposited on the wafer's flat surface using thin film deposition techniques such as sputtering or atomic layer deposition (ALD). To obtain the thin film YSZ, the silicon is etched away with KOH solution and the silicon nitride is etched with plasma etching. On both sides of this YSZ thin film, porous Pt is deposited as electrode/catalyst.
a-1g show the steps of a successfully fabricated nano thin film SOFC with a silicon microfabrication process 100.
The fuel cell's low operating temperature has reported power densities as high as 400 mW/cm2 at 400 degrees centigrade. Although such power densities from a single MEMS fuel cell at low temperatures are high, the absolute power output is too low for practical use, where one of the shortcomings of this structure is that there is a very limited effective area density
The planar micro SOFC gives high power density, though the absolute power delivered by this device is too small. The reason for the small power delivery of this SOFC is the low surface area density. After the KOH etching process as shown in the transition from
a-2d show schematic drawings of resultant window spacing 200 from the inventor's earlier fabrication techniques and according to the current invention, where
As will be shown below, to effectively increase the surface area density in a limited volume, the current invention provides a solid oxide fuel cell electrolyte-electrode assembly, which includes a corrugated nano thin film YSZ membrane structure. According to one embodiment, the YSZ is deposited by atomic layer deposition (ALD) on a 4″ silicon substrate that is pre-patterned with 10-40 μm deep circular trenches. The YSZ replicates the pre-patterned surface profile and forms a corrugated electrolyte membrane after removal of the silicon substrate. The deeper the trench is, the higher the resulting surface area density. Based on the corrugated thin film SOFC developed, two new fabrication methods are provided to reinforce the corrugated electrolyte membrane and to further increase the usable wafer surface area. One is based on a heavy boron-doped silicon-supporting layer, and the other comprises a two-stage wafer through hole.
When silicon is doped with boron concentrations higher than 1019/cm3, the etching rate in KOH of silicon decreases significantly. One aspect of the current invention uses boron doping in silicon wafers as an etch stop in KOH etching. By utilizing this boron etch stop technique, a few micrometer thick of silicon can be left after KOH etching to act as a supporting layer for the freestanding corrugated YSZ membrane when fabricated by the methods of the current invention. This provides a mechanical reinforcement of the corrugated thin film YSZ membrane and allows deeper corrugation.
The two-stage wafer though hole enables the fabrication of a through wafer hole comprising two different sizes. The purpose of this method is to increase the usable wafer surface area while keep the freestanding membrane small. In a through-wafer etching with KOH solution, the crystallinity of (100) silicon wafer inevitably limits the opening on the top surface. The two-stage wafer through hole etching process combines a direct reactive ionic etching (DRIE) and a KOH etching. The anisotropic DRIE etching first etches through a portion of the wafer thickness before reaching the pattern on the other side. The DRIE etching creates a stage II window 202. The wafer through hole is then completed by KOH etching of (100) surfaces. The enhancement in surface area of the two-stage wafer though hole method, relative to KOH etching, is illustrated in
a-3c show schematic drawings of the silicon-based SOFC structure 300 with high surface area density in a limited volume. Here,
a-5o show the two-stage through-hole fabrication process 500.
a-6c show the fabricated SOFC 600, where
The nano thin film SOFCs is fabricated by using MEMS fabrication methods, including boron-etch stop technique and two-stage wafer through hole. The boron-etch stop provides a stable support for the YSZ thin film electrolyte and allows 3 mm×3 mm to 6 mm×3 mm of free-standing membranes hanging over the through-wafer window. The two-stage wafer through-hole technique reduces the spacing between etch window and increases the usable wafer surface area.
The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art. For example the doped boron supportive layer can be grown by growing epitaxial silicon with in-situ boron doping. Further, the shapes of the through-holes are not limited to circular, rectangular, squares, triangles or polygons.
All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.
This application is cross-referenced to and claims the benefit from U.S. Provisional Patent Application 60/966420 filed Aug. 27, 2007, which is hereby incorporated by reference. This application is a continuation-in-part application of the inventor's prior U.S. application Ser. No. 11/65546 filed Jan. 18, 2007, for Membrane Electrode Assembly In Solid Oxide Fuel Cells, which claims the benefit of U.S. Provisional Patent Application 60/760998 filed on Jan. 19, 2006, which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60966420 | Aug 2007 | US |