The present invention has to do with a process designed to harvest straw or other fibrous material from the field and convert it to a structural insulating building material. There is a need for inexpensive building material for housing, erosion control structures and other structures that is not fully met by currently available building materials. Coincidentally, a great deal of agricultural material, such as straw and corn stalks, is essentially wasted.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
In a first separate aspect, the present invention is a method for creating a building material that makes use of a wheeled, moveable apparatus that moves through a field after the straw or other agricultural waste has been processed into tightly bound cables. Said cables are formed into woven mats, and said mats are bonded together to form flat or curved wall sections or panels.
In a second separate aspect, the present invention is an apparatus for producing a cemented product from a cable made from agricultural waste. It is comprised of a wheeled, moveable frame that includes a capturer adapted to capture strands of cable from the field, a cutter to cut them to length, a loom to weave them into a continuous mat, and a spool on which to store the mat.
In a third separate aspect, the present invention is a method for producing a structural wall system from cable made from agricultural waste so that the orientation of the cable and the bonding of said cable produces a structure that is capable of sustaining both compressive and dynamic sheer loads.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions.
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
Referring to
The cut lengths of cable 42 are then woven and/or sewn into a continuous mat held together by strands of twine, such as bailing twine (either sisal of polypropylene depending on the degree of non-organic material that is acceptable). In a preferred embodiment this is accomplished on a stack wagon 100, which is specialized for this task. The completed mat material 120 is wound on a drum 116 that is rotatably mounted on a truck or wagon as it moves through the field.
In the next phase, the mat material 120 is transferred from stack wagon 100 to a first layout wagon 210, which unrolls the material 120 on a level field, as it moves in the direction indicated by arrow 212. The length of this unrolled section is limited only by the length of the field. The mat section 214 so laid out is cut from the remainder of the mat on drum 216 and any twine ends are tied together to prevent unraveling. The mat is sprayed with a coating of matrix material adapted to bind additional material to mat section 214.
A second layer of mat is then added by a second layout wagon 310, moving in the direction indicated by arrow 312. In the second layer the cable segments are arranged in perpendicular manner to the cable segments of the first layer. The second layer is pressed firmly into the matrix material to form a good bond. A third or even fourth layer may be added, as desired, with time allowed between successive layers for moisture to evaporate to avoid entrapment of moisture in the center of the wall section. The cable segments of the top layer are arranged in parallel manner to the cable segments of the bottom layer.
Once the resulting panel has dried it is cut to the desired length. Panels may be made in any length desired, limited only by the ability to move the panels economically to the building site. In one preferred embodiment, the mat may be cut into panels that conform to traditional building methods accustomed to 4 ft. by 8 ft. modules.
In greater detail, referring to
As the tractor pulls the mobile straw harvester and beam fabricator 2 through a field of straw left after the harvesting of grain heads a cutter bar 12, or capturer, cuts and feeds the straw into the harvester. In an alternative embodiment the straw has already been cut and lies in the field in windrows. In such case only a pick-up belt would be needed instead of the cutter bar 12. Either way, both of these embodiments describe standard equipment for harvesting machines in the industry, which will be familiar to skilled persons.
When the feed stock (typically straw) is gathered into the harvester a hollow metal tube with a set of spray nozzles 14 sprays the straw with a matrix mixture that is held in, and pumped from, a reservoir 28 (
Regulating the moisture so that the feed stock can be more easily compressed into a compact cylinder without damaging the structure of the material is an important element of the present embodiment. As noted in the background section, the structural qualities of straw, in its natural undamaged form, provide significant compressive strength. Compressive strength is precisely the type of strength needed in building materials that are used to support heavy loads. This is one great advantage this process has over the prior art.
In addition to the moisturizing value, the mixture that is sprayed onto the feedstock through the hollow tube with multiple spray nozzles 14 also has a binding element. Hence various binders such as clay, boiled linseed or soybean oil, rosin, as well as synthetic and natural adhesives may be part of the mixture that is sprayed onto the feed stock after it is cut and harvested.
After the feed stock is sprayed with the moisturizing and binding elements of the matrix mixture it is carried by a meshed feed belt 16 into one of a set of four parallel compression sections 38. The feed belt is meshed to allow excess moisturizing and binding mixture to fall through to an over-spray tank (not shown) that catches the excess mixture for reuse.
A set of three movable vanes 18 separate the feed stock into four streams which enter into one of the four compression sections 38 by passing between a series of converging belts 20 that aligns, or arranges, the straw stems so that they are parallel to each other, and simultaneously compresses them so that they will feed into a set of compression rollers 40.
The compression sections 38 are preceded by a set of four first flow limiting cutters 21 and four sets of parallel belts 23. The first flow limiting cutters 21 and parallel belts 23 limit the swath of feed stock entering the compression sections 38 according to the density of the swath. Greater densities require smaller widths and lesser densities require larger widths.
In an alternative embodiment the parallel belts 23 compress the straw stems from the top and bottom as well as from the sides. On three sides of the feed stock the belts 23 are fixed, while on the fourth side (top, bottom, or either side) one of the belts 23 is free to move (in a horizontal or vertical direction) to accommodate for changes in the volume of the material entering the compression process. Rollers may be used in the place of belts 23, depending on the material being processed.
After passing through the set of parallel belts 23, but before entering the compression rollers 40, a second flow limiting cutter 22 (
Feed stock material next passes through the set of compression rollers 40, each of which has a transversely concave outer surface. The distance between the upper rollers 40 and the lower rollers 40 decreases progressively so that the feed stock is gradually compressed to the desired density and diameter.
During compression, the feed stock is held in place by a fixed roller die 54 made from a hard polymer resin (
The resulting cylinder of feed stock is fed into the first wrapper, or binder, section 24 diagramed in
The result of the foregoing continuous process are four straw cables 42, one from each of the four first wrapper sections 24, each of equal diameter, which depending on the embodiment and setting may range from 1″ to 9″. Each cable 42 is bound together with a spiral wrapping of yarn, twine or wire. A twine made out of polyester yarn would work well with the preferred embodiment.
As the operation continues, the cables in the hopper 112 are released individually onto a shuttle conveyer 114, which moves segments 110 toward a loom mechanism 118. Mechanism 118 contains spools of twine (not shown) arranged in pairs which constitute the warp of the mat. The technology of making a loom is well developed and will not be discussed here. As the pairs of warp twines are separated by the loom mechanism 118, a segment of cable is inserted from the shuttle conveyer 114. The warp threads are separated in the opposite direction, and the next cable segment 110 is inserted. The resulting mat material 120 of cable segments 110 is wound on a drum 116 and stored for the next phase of the operation.
The process of producing a wall panel from material 120 begins when a first layer 214 of material 120 is unrolled from the carriage 210 onto the ground or onto support blocks (not shown). The carriage 210 is then turned around and straddling the first layer 214 makes a second pass over the existing mat. Spray nozzles 222 coat the top of layer 214 with a matrix material supplied by a pump 224 from a storage tank 226. Binding agents may be added to the matrix material or sprayed on layer 214 to improve adhesion between the matrix material and the straw.
Contemporaneously, drum 216, which travels directly behind nozzles 222 deposits an additional layer of material 230 onto the coated first layer 214 and is pressed in place by roller 218. Additional passes may be made to build up the wall panel to the desired thickness.
For the purpose of weaving the mat material 314 carried by second carriage 310, the loom 118 is adjusted to weave a mat 314 as shown in
The complete the lamination process, two or more additional layers of mat are laid down, oriented in the same direction as the first layers. The completion of the wall section is described above and may include pins or other ties to strengthen the bond between layers, and cutting the panel to the desired size.
In an alternative embodiment, individual cable segments would be fed from the hopper into a channelized bed which would hold each cable individually in a parallel array. Rollers or other feed mechanisms move each cable segment along at the same speed as the machine is moving over the ground so that the cable segments are deposited on the panel assembly in a single layer parallel to the longitudinal axis of the panel with no space between the cables. The ends of the cable segments are staggered to avoid a weak zone. The final layers would again be added parallel to the first layers, thereby forming a continuous panel multiple layers of cable segments, the segments in the outer layers being at right angles to the orientation of the mat, and those in the middle being parallel to the orientation of the mat. In an alternative embodiment, cable segments may be arranged in diagonal patterns.
In the final stage of producing the panel material, pins or staples made of bamboo or other metallic or non-metallic material would be inserted at regular intervals through all layers of the mat to add additional strength to the wall structure by allowing the internal sheer loading between layers to be distributed evenly through the entire thickness of wall structure.
In an alternative embodiment the tasks of carriages 210 and 310 would be performed in a large structure, preferably equipped with a conveyer belt, for unrolling mat material 120 and mat material 314 and building up a complete panel. This system permits the method of producing panels to be performed in the rain, as well as on sunny days.
Once the resulting panel has dried it is cut to the desired length. In one embodiment, this procedure is performed by a saw mounted on a traveling cart so that it can be positioned to cut either parallel to the axis of the mat or perpendicular to it. Panels may be made in any length desired, limited only by the ability to move the panels economically to the building site. In the preferred embodiment, the panels are cut to the length of the wall of the proposed building. Windows are cut in the wall in the field. A header and mudsill may be attached at this time and held in place with pins and with wire of plastic mesh attached to the header or sill and extending part way down both surfaces of the wall section. The entire structure can then be lifted by a crane onto a truck. It is then carried in a vertical position to the building site where it is set in place by another crane.
In an alternative embodiment, the mat may be cut into smaller panels to conform to traditional building methods accustomed to 4 ft. by 8 ft. modules.
Curved structures may be produce by placing supports of varying thickness under a section of wall during the lay-up process to form a curved wall section.
While a number of exemplary aspects and embodiments have been discussed above, those possessed of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
This application claims priority from provisional application Ser. No. 60/789,671 filed Apr. 6, 2006.
Number | Name | Date | Kind |
---|---|---|---|
1048687 | Goodrick | Dec 1912 | A |
2627714 | Freeman, Jr. et al. | Feb 1953 | A |
3464881 | Miller et al. | Sep 1969 | A |
4109448 | Kline | Aug 1978 | A |
4399745 | Jorgensen et al. | Aug 1983 | A |
4451322 | Dvorak | May 1984 | A |
5322738 | Breidenbach | Jun 1994 | A |
5456964 | Tamura et al. | Oct 1995 | A |
5498469 | Howard et al. | Mar 1996 | A |
5729936 | Maxwell | Mar 1998 | A |
5730830 | Hall | Mar 1998 | A |
5932038 | Bach et al. | Aug 1999 | A |
5945132 | Sullivan et al. | Aug 1999 | A |
6209284 | Porter | Apr 2001 | B1 |
6596209 | Uhland et al. | Jul 2003 | B2 |
Number | Date | Country |
---|---|---|
2312657 | Dec 2000 | CA |
Number | Date | Country | |
---|---|---|---|
20070235894 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60789671 | Apr 2006 | US |