Fabrics with high thermal conductivity coatings

Information

  • Patent Grant
  • 7837817
  • Patent Number
    7,837,817
  • Date Filed
    Monday, June 8, 2009
    15 years ago
  • Date Issued
    Tuesday, November 23, 2010
    13 years ago
Abstract
The present invention facilitates the thermal conductivity of fabrics by surface coating of the fabrics with high thermal conductivity materials 6. The fabrics may be surface coated when they are individual fibers or strands 4, bundles of strands, formed fabric or combinations therefore. A particular type of fibrous matrix used with the present invention is glass. Some fabrics may be a combination of more than one type of material, or may have different materials in alternating layers. HTC coatings of the present invention include diamond like coatings (DLC) and metal oxides, nitrides, carbides and mixed stoichiometric and non-stoichiometric combinations that can be applied to the host matrix.
Description
FIELD OF THE INVENTION

This invention relates to the increase in thermal conductivity of fabrics by applying high thermal conductivity surface coatings.


BACKGROUND OF THE INVENTION

With the use of any form of electrical appliance, there is a need to electrically insulate conductors. With the push to continuously reduce the size and to streamline all electrical and electronic systems there is a corresponding need to find better and more compact insulators and insulation systems.


Good electrical insulators, by their very nature, also tend to be good thermal insulators, which is undesirable. Thermal insulating behavior, particularly for air-cooled electrical equipment and components, reduces the efficiency and durability of the components as well as the equipment as a whole. It is desirable to produce electrical insulation systems having maximum electrical insulation and minimal thermal insulation characteristics.


Though many factors affect the art of electrical insulation, the field would benefit even more from the ability to transfer heat, without reducing other desired physical characteristics of the insulators. What is needed is improved electrical insulation materials that have thermal conductivity higher than that of conventional materials, but that do not compromise the electrical insulation and other performance factors including structural integrity.


Electrical insulation often appears in the form of tapes, which themselves have various layers. Common to these types of tapes is a fabric layer that is bonded at an interface to a paper layer, both layers tending to be impregnated with a resin. The paper layer will be composed of materials that are highly electrically insulating, such as mica. Improvements in the manufacture of enhanced dielectric strength insulation tapes are taught in U.S. Pat. No. 6,190,775. If the thermal conductivity of the fabric, independent from or in conjunction with its use in a tape, can be improved then the electrical system will see marked improvement.


Additional use of fabrics is in the pre-printed circuit board industry. The circuit board backings are fabrics in sheet form impregnated with resins then laminated. Since electronics are adversely affected by heat, even slight improvements in the thermal conductivity of circuit board backings will increase efficiency. Other problems with the prior art also exist, some of which will be apparent upon further reading.


SUMMARY OF THE INVENTION

With the foregoing in mind, methods and apparatuses consistent with the present invention, which inter alia facilitates the thermal conductivity of fabrics by surface coating of the fabrics with high thermal conductivity materials. The fabrics may be surface coated when they are individual fibers or strands, bundles of strands, formed fabric or combinations therefore.


A particular type of fibrous matrix used with the present invention is glass. Other types of fibers include propylene polymers, and olefin polymers. Some fabrics may be a combination of more than one type of material, or may have different materials in alternating layers. HTC coatings of the present invention include diamond like coatings (DLC) and metal oxides, nitrides, carbides and mixed stoichiometric and non-stoichiometric combinations that can be applied to the host matrix.


These and other objects, features, and advantages in accordance with the present invention are provided particular embodiments by a fabric with a high thermal conductivity that comprises a fibrous matrix with a high thermal conductivity coating disposed on or over its surface. The high thermal conductivity coating comprise at one or more of a diamond like coating, metal oxides, metal nitrides, and metal carbides, as well as some non-metal oxides, nitrides and carbides. Examples of these include Al2O3, AlN, MgO2, ZnO, BN, Si3N4, SiC and SiO2. The high thermal conductivity coating has mixed stoichiometric and non-stoichiometric combinations, and the fabric with the coating has a thermal conductivity of 50-500 W/mK.


In another embodiment the present invention provides for an electrically insulative tape that comprises a mica layer and a glass fabric layer. The glass fabric layer comprises a glass matrix with a high thermal conductivity coating disposed on the glass matrix and the high thermal conductivity coating has mixed stoichiometric and non-stoichiometric combinations. The overall thermal conductivity of the glass fabric is 50-500 W/mK.


The HTC layer can be a diamond like coating of 50-100 nm in thickness. Other types of HTC coatings include metal oxides, metal nitrides and metal carbides. In particular embodiment the overall thermal conductivity of the glass fabric is 200-500 W/mK.


In another embodiment the present invention provides for a method of forming a glass fabric with a high thermal conductivity coating that comprises surface coating pre-fabric glass fibers with a high thermal conductivity coating layer then forming the glass fibers into the glass fabric. The HTC layer comprises at least one of diamond like coating, metal oxides and combinations thereof and the glass fabric has a thermal conductivity of 50-500 W/mK.


In another method the present invention provides for forming a glass fabric with a high thermal conductivity that comprises forming pre-fabric glass fibers into the glass fabric then coating the glass fabric with a high thermal conductivity coating layer. The HTC layer comprises at least one of diamond like coating, metal oxides and combinations thereof and the glass fabric has a thermal conductivity of 50-500 W/mK.


Other embodiments of the present invention also exist, which will be apparent upon further reading of the detailed description.





BRIEF DESCRIPTION OF THE FIGURES

The invention is explained in more detail by way of example with reference to the following drawings:



FIG. 1 illustrates a fiber coated with a diamond like coating and containing a carbon interface.



FIG. 2 illustrates two fibers overlapped and coated both prior to and after being aggregated.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for a high thermal conductivity coating (HTC), such as a diamond like coating (DLC), onto a fibrous matrix. The term fibrous matrix generally refers to a fabric that is composed of fibers. As is discussed, the present invention may be applied to the fibrous matrix when it is an initial pre-fabric fiber, a finished fabric, at stages in-between and combinations thereof. The fibrous matrices are used in a variety of industries, such as backing for printed circuit boards or as a high tensile strength layer in insulating tapes.


The electrical systems that use the fibrous matrices, however, generate heat that tends to be insulated, rather than conducted away from the system, by the matrix. The accumulated heat then reduces the operating efficiency of most systems and limits the design due to insulating materials having relatively low operating temperatures. Therefore increasing the thermal conductivity of the fibrous matrix, while maintaining or even increasing tensile strength would be advantageous.


By adding the HTC coating, the fibrous matrix will conduct phonons at a greater rate. In thermal conductivity, phonon transport is enhanced and phonon scattering reduced by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport. Fabrics of the present invention have effective thermal conductivity of 50-500 Watts/mK.


A particular type of fibrous matrix used with the present invention is glass. Other types of fibers include poly-imides (Kevlar™), polyamides (nylon), poly-ethylene terephthalate (Dacron™), other polymeric microfibers, polypropylene polymers, and olefin polymers. Some fabrics may be a combination of more than one type of material, or may have different materials in alternating layers.


There are a number of HTC coatings that embody the present invention, such as diamond like coatings (DLC) and various oxides, nitrides, carbides and mixed stoichiometric and non-stoichiometric combinations that can be applied to the host matrix. Examples of the oxides, nitrides and carbide include Al2O3, AlN, MgO2, ZnO, BN, Si3N4, SiC and SiO2. Other HTC coatings may also be apparent to one of ordinary skill in the art, and additional types of HTC coatings will likely be developed as the technology continues to progress.


A particular application of the present invention is to surface coat glass fabric used in insulating tapes. Insulating tapes typically comprise two layers, a high tensile strength glass fabric layer and a weaker but highly electrically insulative mica layer. The two layers are bound together and impregnated with a resin. The glass may be coated prior to or after being joined to the mica layer, though maximum penetration of the coating will occur before the glass and mica layers are joined. To further enhance thermal conductivity, the glass fabric may also be impregnated with a resin. The resin itself may be intercalated with HTC materials, such as nanofiller and nanofillers with DLCs.


Circuit boards are primarily composed of glass fiber reinforced epoxy or polyimide laminates. The glass fibers may be a homogenous matrix or could be imbedded in other materials such as ceramics. The fibers may be individually coated, but since circuit board components are surface mounted, a surface coating of HTC materials will suffice for some embodiments.


To add the DLCs to the glass fabric, chemical vapour deposition and physical vapour deposition may be used in which the DLC is formed within a non-equilibrium radio frequency or microwave coupled vacuum or atmospheric plasma containing low molecular weight hydrocarbons such as methane, ethane and others with hydrogen. By controlling the gas mixture condition and the plasma operating conditions the thermal conductivity of the DLCs may be controlled by altering the hybridization state of the DLC which may be controlled by changing the balance of sp2 and sp3 electron orbital bonding states which may be measured using Raman spectroscopy and X-ray photoelectron spectroscopy. The case of vacuum plasma deposition batch processing may be achieved and in the case of atmospheric plasma deposition continuous processing may be used.


The surface coating may be added to the fibrous matrix before the fibers are formed into a fabric, afterwards, or at multiple stages. Various types of surface coatings may be applied at the various stages of fabric formation, and multiple surface coatings may be applied at specific stages. For example, a light DLC is applied to loose fibers of glass that only partially coat the fibers. These fibers are then formed into a fabric and again given a DLC which produces a completed coating on the glass fibers. The coating of the matrix is more easily accomplished when it is in a formed fabric, although there can advantages to coating the individual fibers, as discussed.


The thickness of the DLC on fibers can be varied depending on the application. Most embodiments, however, will use a 20-200 nm thickness, with a particular thickness of 50-100 nm thickness coating over the average surface of the matrix. The process of chemical vapor deposition will inherently deposit a thicker coating on exposed surfaces, and volumes of the matrix that are closer to the exposed surfaces. This may be adjusted for by one of ordinary skill in art.


When fibers, such as glass, are formed into a fabric they are first coated with a starch to maintain so that fibers slide over each other properly so that they do not break. The present invention uses the starch coating differently through various embodiments. For example, the starch coating may be omitted entirely if the DLC is put onto individualized fibers. The DLC acts to keep fibers in proper aggregation for formation into a fabric. Or the starch coating may still be added to the DLC coated fibers, but in lesser amounts. There are other types of coatings, including silane, an the term starch incorporates these variations.



FIG. 1 illustrates and example of a fiber 4 having a carbon interface 5 derived from a starch coating to which a DLC 6 is applied (which is enlarged for clairity). FIG. 2 illustrates two fibers 4 that overlap after a both fibers were partially coated with a first DLC 6 and then a second DLC 8 was applied after the fibers 4 are overlapped. In all types of applications, gaps in the DLC 10, as well as other types of HTC coatings, can be anticipated depending on the degree of application of the coating process. Reducing gaps 10 in the coating is preferred, however slightly less than 100% coverage should not significantly affect thermal conductivity and other features.


In other embodiments the starch coating is present on the fibers before the DLC or other type of HTC coating is added. In these embodiments the HTC coating may displace the starch. However, in certain embodiments the starch coating is first converted into another carbon form, referred to as an amorphous carbon layer, and acts as an intermediate layer between the matrix and the HTC coatings. This can improve the adhesion of the HTC coatings and will also reduce the strain between the HTC coating and the matrix. Strain conditions can also be controlled by the plasma reaction conditions.


Glass fabrics and fibers are used in many applications to enhance the, mainly mechanical, properties of composites. Using the methods described above to enhance the thermal conductivity of the glass fabric or glass fiber, the thermal conductivity of the composite material which incorporates such glass layers or fibers can be enhanced. The physical properties of the fibrous matrix may be further enhanced by DLC and other types of surface coatings. For example, the tensile strength of a glass fiber may be increased depending on the quality of the surface coating. Thinner fabrics can therefore be created that posses similar physical properties to their thicker, non-surface coated counterparts. The reduced thickness of the fabric will then itself aid in thermal conductivity, in addition to the enhanced thermal conductivity of the surface coatings themselves.


Diamond-Like Carbon Coatings (DLC) have high hardness, low friction, chemical inertness, and can combine high electrical resistivity (˜1013 Ohm cm) for electrical insulation with high thermal conductivity (>1000 W/mK). There are several methods for producing a DLC, such as plasma assisted chemical vapor deposition (PACVD), physical vapor deposition(PVD), and ion beam deposition(IBD). In general, the DLC is less than one micron thick and is of amorphous carbon and hydrocarbons which results in mixed sp2 and sp3 bonds. The bond ratio can be varied by varying the process parameters, for example the ratio of gases, the plasma energy, and DC voltage, with resultant changes in properties. The bond ratio can be directly measured using, for example, Raman spectroscopy.


Relatively large areas can be coated quite quickly. For example using a PACVD low pressure non equilibrium process a 20-100 nm coating can be applied to a glass cloth surface approximately 1 sq ft in area in minutes. To control or optimize the coating parameters to reduce, for example, the stress in the coating the DLC can be applied to a bare substrate or substrates that have other coatings. Pores between fibers are advantageous, for example, in allowing for better bonding of an impregnated resin.


In one embodiment the present invention provides for a fabric with a high thermal conductivity that comprises a fibrous matrix with a high thermal conductivity coating disposed its surface. The high thermal conductivity coating comprise at one or more of a diamond like coating, metal oxides, metal nitrides, and metal carbides. The high thermal conductivity coating has mixed stoichiometric and non-stoichiometric combinations, and the fabric with the coating has a thermal conductivity of 50-500 W/mK.


In a related embodiment the fibrous matrix is glass fibers. This can be formed into a layer within an insulating tape, but can also be used for other applications such as circuit boards. In these and other applications, the fabric can be impregnated with a resin, which will further aid in thermal conductivity. Other types of fibrous matrices include polymeric microfibers propylene polymers, and olefin polymers.


In one embodiment the high thermal conductivity coating is disposed on the fibrous matrix by chemical vapour deposition and in another embodiment by physical vapour deposition. The high thermal conductivity coating has an average thickness of 50-100 nm on the fibrous matrix.


In another embodiment the present invention provides for an electrically insulative tape that comprises a mica layer and a glass fabric layer. The glass fabric layer comprises a glass matrix with a high thermal conductivity coating disposed on the glass matrix and the high thermal conductivity coating has mixed stoichiometric and non-stoichiometric combinations. The overall thermal conductivity of the glass fabric is 50-500 W/mK.


The HTC layer can be a diamond like coating of 50-100 nm in thickness. Other types of HTC coatings include metal oxides, metal nitrides and metal carbides. In particular embodiment the overall thermal conductivity of the glass fabric is 200-500 W/mK.


In another embodiment the present invention provides for a method of forming a glass fabric with a high thermal conductivity coating that comprises surface coating pre-fabric glass fibers with a high thermal conductivity coating layer then forming the glass fibers into the glass fabric. The HTC layer comprises at least one of diamond like coating, metal oxides and combinations thereof and the glass fabric has a thermal conductivity of 50-500 W/mK.


In a particular method the pre-fabric glass fibers are dusted with a starch compound prior to the surface coating. The starch compound forms an amorphous carbon interlayer between the HTC layer and the glass fibers. However, in an alternate embodiment, the starch compound is displaced by the high thermal conductivity coating layer in the surface coating process.


In another method the present invention provides for forming a glass fabric with a high thermal conductivity that comprises forming pre-fabric glass fibers glass fibers into the glass fabric then coating the glass fabric with a high thermal conductivity coating layer. The HTC layer comprises at least one of diamond like coating, metal oxides and combinations thereof and the glass fabric has a thermal conductivity of 50-500 W/mK.


Although the present invention has been discussed primarily in use with electrical generation industries, the invention is equally applicable in other areas. Industries that need to increase heat transference would equally benefit from the present invention. Other focuses of the present invention include power transmission, power electronics, printed circuit boards, conventional electronics, and integrated circuits where the increasing requirement for enhanced density of components leads to the need to remove heat efficiently in local and large areas.


While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the inventions which, is to be given the full breadth of the claims appended and any and all equivalents thereof.

Claims
  • 1. A method of forming a woven glass fabric having a high thermal conductivity coating comprising: surface coating pre-fabric glass fibers with a high thermal conductivity (HTC) coating layer having an average thickness of 50-100 nm; andforming said pre-fabric glass fibers into said woven glass fabric;wherein said HTC coating layer comprises at least one of a diamond like coating, metal oxides, or combinations thereof;wherein said HTC coating layer has mixed stoichiometric and non-stoichiometric combinations;wherein said woven glass fabric has a thermal conductivity of 50-500 W/mK; andwherein said coating is within said woven glass fabric.
  • 2. The method of claim 1, wherein said pre-fabric glass fibers are dusted with a starch compound prior to said surface coating.
  • 3. The method of claim 2, further comprising forming said starch compound into an amorphous carbon interlayer between said HTC coating layer and said pre-fabric glass fibers.
  • 4. The method of claim 2, wherein said starch compound is displaced by said high thermal conductivity coating layer during said surface coating.
  • 5. The method of claim 1, wherein said HTC coating layer comprises a diamond like coating.
  • 6. The method of claim 1, further comprising, after said forming, applying a second HTC coating layer to the formed woven glass fabric.
  • 7. The method of claim 6, wherein said surface coating comprises partially surface coating said pre-fabric glass fibers with said HTC coating layer, and further comprising, after said forming, applying a second HTC coating layer to the formed woven glass fabric.
  • 8. A method of forming a woven glass fabric having a high thermal conductivity coating comprising: forming pre-fabric glass fibers into said woven glass fabric; andcoating said woven glass fabric with a high thermal conductivity (HTC) coating layer having an average thickness of 50-100 nm;wherein said HTC coating layer comprises at least one of a diamond like coating, metal oxides, or combinations thereof;wherein said HTC coating layer has mixed stoichiometric and non-stoichiometric combinations;wherein said coating is within said woven glass fabric; andwherein said woven glass fabric has a thermal conductivity of 50-500 W/mK.
  • 9. The method of claim 8, further comprising coating said woven glass fabric with a starch compound.
  • 10. The method of claim 9, further comprising forming said starch compound into an amorphous carbon interlayer between said HTC coating layer and said woven glass fabric.
  • 11. The method of claim 8, wherein said HTC coating layer comprises a diamond like coating.
  • 12. The method of claim 8, further comprising, prior to said forming of said pre-fabric glass fibers into said fabric, coating said pre-fabric glass fibers with an initial HTC coating layer.
  • 13. The method of claim 8, further comprising, prior to said forming of said pre-fabric glass fibers into said woven glass fabric, partially surface coating said pre-fabric glass fibers with an initial HTC coating layer, wherein said initial HTC coating layer comprises a diamond like coating.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional application of U.S. patent application Ser. No. 11/106,847, filed Apr. 15, 2005, now U.S. Pat. No. 7,553,781. This application claims priority to U.S. provisional app 60/580,023, filed Jun. 15, 2004, by Smith, et al., which is incorporated herein by reference. This application is further related to U.S. patent application “Insulation Paper with High Thermal Conductivity Materials,” by Smith, et al., filed herewith, which is also incorporated herein by reference.

US Referenced Citations (115)
Number Name Date Kind
3246271 Ford Apr 1966 A
3866316 Takechi et al. Feb 1975 A
3974302 Croop et al. Aug 1976 A
4001616 Lonseth et al. Jan 1977 A
4160926 Cope et al. Jul 1979 A
4335367 Mitsui et al. Jun 1982 A
4361661 Jackson Nov 1982 A
4400226 Horrigan Aug 1983 A
4427740 Stackhouse et al. Jan 1984 A
4491618 Kuwajima et al. Jan 1985 A
4634911 Studniarz et al. Jan 1987 A
4694064 Tomalia et al. Sep 1987 A
4704322 Roberts Nov 1987 A
4760296 Johnston et al. Jul 1988 A
4806806 Hjortsberg et al. Feb 1989 A
5011872 Latham et al. Apr 1991 A
5037876 Birkle et al. Aug 1991 A
5126192 Chellis et al. Jun 1992 A
5281388 Palmer et al. Jan 1994 A
5409968 Clatanoff et al. Apr 1995 A
5466431 Dorfman et al. Nov 1995 A
5510174 Litman Apr 1996 A
5540969 Schuler Jul 1996 A
5578901 Blanchet-Fincher et al. Nov 1996 A
5688382 Besen et al. Nov 1997 A
5723920 Markovitz et al. Mar 1998 A
5780119 Dearnaley et al. Jul 1998 A
5801334 Theodorides Sep 1998 A
5878620 Gilbert et al. Mar 1999 A
5904984 Smith et al. May 1999 A
5938934 Balogh et al. Aug 1999 A
5982056 Koyama et al. Nov 1999 A
6015597 David Jan 2000 A
6048919 McCullough Apr 2000 A
6103382 Smith et al. Aug 2000 A
6130495 Schulten et al. Oct 2000 A
6130496 Takigawa et al. Oct 2000 A
6140590 Baumann et al. Oct 2000 A
6160042 Ishida Dec 2000 A
6190775 Smith et al. Feb 2001 B1
6238790 Smith et al. May 2001 B1
6251978 McCullough Jun 2001 B1
6255738 Distefano et al. Jul 2001 B1
6261424 Goncharenko et al. Jul 2001 B1
6261481 Akatsuka et al. Jul 2001 B1
6265068 David et al. Jul 2001 B1
6288341 Tsunoda et al. Sep 2001 B1
6344271 Yadav et al. Feb 2002 B1
6359232 Markovitz et al. Mar 2002 B1
6393642 Pollman et al. May 2002 B1
6396864 O'Brien et al. May 2002 B1
6426578 Mori et al. Jul 2002 B1
6432537 Devlin et al. Aug 2002 B1
6504102 Tsunoda et al. Jan 2003 B2
6506331 Meguriya Jan 2003 B2
6509063 McCarthy et al. Jan 2003 B1
6510059 Mitani et al. Jan 2003 B2
6548172 David et al. Apr 2003 B2
6572937 Hakovirta et al. Jun 2003 B2
6632561 Bauer et al. Oct 2003 B1
6635720 Tomalia et al. Oct 2003 B1
6746758 Tsunoda et al. Jun 2004 B2
6821672 Zguris Nov 2004 B2
6882094 Dimitrijevic et al. Apr 2005 B2
6905655 Gabriel et al. Jun 2005 B2
6974627 Morita et al. Dec 2005 B2
7033670 Smith Apr 2006 B2
7042346 Paulsen May 2006 B2
7120993 Yamamoto et al. Oct 2006 B2
7180409 Brey Feb 2007 B2
7189778 Tobita et al. Mar 2007 B2
7425366 Okamoto et al. Sep 2008 B2
7547847 Miller Jun 2009 B2
20020058140 Dana et al. May 2002 A1
20020070621 Mori et al. Jun 2002 A1
20020098285 Hakovirta et al. Jul 2002 A1
20020146562 Morita et al. Oct 2002 A1
20030035960 Tsunoda et al. Feb 2003 A1
20030040563 Sagal et al. Feb 2003 A1
20030139510 Sagal et al. Jul 2003 A1
20040094325 Yoshida et al. May 2004 A1
20040102597 Tobita et al. May 2004 A1
20040122153 Guo et al. Jun 2004 A1
20040152829 Tobita et al. Aug 2004 A1
20040241439 Morita et al. Dec 2004 A1
20050097726 Yamamoto et al. May 2005 A1
20050116336 Chopra et al. Jun 2005 A1
20050161210 Zhong et al. Jul 2005 A1
20050208301 Okamoto et al. Sep 2005 A1
20050236606 Toas et al. Oct 2005 A1
20050245644 Smith et al. Nov 2005 A1
20050274450 Smith et al. Dec 2005 A1
20050274540 Smith et al. Dec 2005 A1
20050274774 Smith et al. Dec 2005 A1
20050277349 Smith et al. Dec 2005 A1
20050277350 Smith et al. Dec 2005 A1
20050277351 Smith et al. Dec 2005 A1
20050277721 Smith et al. Dec 2005 A1
20060034787 Bujard Feb 2006 A1
20060142471 Shindo Jun 2006 A1
20060231201 Smith et al. Oct 2006 A1
20060234027 Huusken Oct 2006 A1
20060234576 Smith et al. Oct 2006 A1
20060258791 Okamoto et al. Nov 2006 A1
20060280873 Smith et al. Dec 2006 A1
20060281380 Smith et al. Dec 2006 A1
20060281833 Smith et al. Dec 2006 A1
20070026221 Stevens et al. Feb 2007 A1
20070114704 Stevens et al. May 2007 A1
20070141324 Stevens et al. Jun 2007 A1
20070222307 Sawa et al. Sep 2007 A1
20080050580 Stevens et al. Feb 2008 A1
20080066942 Miller Mar 2008 A1
20080262128 Stevens et al. Oct 2008 A1
20090238959 Smith et al. Sep 2009 A1
Foreign Referenced Citations (40)
Number Date Country
4244298 Jun 1994 DE
0 157 936 Oct 1985 EP
0 266 602 May 1988 EP
0 394 767 Oct 1990 EP
0604804 Jul 1994 EP
1 220 240 Jul 2002 EP
1 300 439 Apr 2003 EP
1 383 226 Jan 2004 EP
1 384 567 Jan 2004 EP
1 486 997 Dec 2004 EP
1 530 223 May 2005 EP
881036 Nov 1961 GB
56029305 Mar 1981 JP
03205443 Sep 1991 JP
06076624 Mar 1994 JP
06313267 Nov 1994 JP
08-020673 Jan 1996 JP
10-088201 Apr 1998 JP
10-211659 Aug 1998 JP
2002212422 Jul 2002 JP
2002322243 Nov 2002 JP
200506389 Jan 2005 JP
2005-199562 Jul 2005 JP
WO 9502504 Jan 1995 WO
9628073 Sep 1996 WO
WO 9841993 Sep 1998 WO
WO 9926286 May 1999 WO
WO 200056127 Sep 2000 WO
0168749 Sep 2001 WO
WO 200184659 Nov 2001 WO
WO 2003040445 May 2003 WO
2004006271 Jan 2004 WO
WO 2004052999 Jun 2004 WO
WO 2004067606 Aug 2004 WO
WO 2005069312 Jul 2005 WO
WO 2005106089 Nov 2005 WO
WO 2005123825 Dec 2005 WO
WO 2005124790 Dec 2005 WO
WO 2006002014 Jan 2006 WO
WO 2006007385 Jan 2006 WO
Related Publications (1)
Number Date Country
20090238959 A1 Sep 2009 US
Provisional Applications (1)
Number Date Country
60580023 Jun 2004 US
Divisions (1)
Number Date Country
Parent 11106847 Apr 2005 US
Child 12480190 US