The instant invention relates generally to High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS), and more particularly to a FAIMS cell having an offset ion inlet orifice.
High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is a technology that is capable of separating gas-phase ions at atmospheric pressure. In FAIMS, the ions are introduced into an analytical gap across which a radio frequency (rf) waveform, the magnitude of which is referred to as dispersion voltage (DV), is applied such that the ions are alternately subjected to high and low electric fields. The waveform is asymmetric; the high field is applied for one time unit followed by an opposite-polarity low field of half the high field component that is applied for twice as long. The field-dependent change in the mobility of the ions causes the ions to drift toward the walls of the analytical gap. Since the dependence of ion mobility on electric field strength is compound specific, this leads to a separation of the different types of ions one from the other, and is referred to as the FAIMS separation or the FAIMS mechanism. In order to transmit an ion of interest through FAIMS, an appropriate direct current compensation voltage (CV) is applied to compensate for the drift of the ion of interest toward the analyzer wall. By varying the CV, different ions are selectably transmitted through the FAIMS device.
Different FAIMS electrode geometries are known in the art. One specific type of electrode geometry, which is referred to as the “side-to-side” FAIMS geometry, includes typically a set of overlapping inner and outer electrodes. In particular, the inner electrode often is provided in the form of a circularly cylindrical rod-shaped electrode, whilst the outer electrode has a similarly curved inner surface that is spaced-apart from and facing the inner electrode. The annular space between the inner electrode and outer electrode defines an analytical gap for separating different types of ions one from another, according to the above-mentioned FAIMS mechanism. Ions are produced at an ionization source, such as for instance an electrospray ionization (ESI) source, and are introduced into the analytical gap via one or more ion inlet orifices. Once inside the analytical gap, the ions travel circumferentially in both directions around the inner electrode toward an ion outlet orifice. Some types of ions do not have stable trajectories under the selected combination of CV and DV and are lost due to collisions with an electrode surface, whilst other types of ions are carried to the ion outlet orifice and then out of the analytical gap for subsequent analysis or collection.
A feature that is common to all current side-to-side FAIMS devices, as well as FAIMS devices that are based on some other common electrode geometries, is that at least one ion inlet orifice is defined through the outer electrode in such a way that ion introduction is opposed directly by the electrical field within the analytical gap during one portion of the asymmetric waveform cycle. In fact, the electrical field extends into the ion inlet orifice and accordingly the electrical field begins to influence ion motion even before the ions actually enter the analytical gap. The result is that within the ion inlet orifice, and immediately after the ions enter the analytical gap, the ion trajectories oscillate first directly toward the inner electrode during application of one portion of the asymmetric waveform and then directly away from the inner electrode during application of another portion of the asymmetric waveform. Thus, the ions tend to “jitter” in and out of the analytical gap during introduction, although the net motion is still toward the inner electrode since the ions are also entrained in a flow of a carrier gas. Once inside the analytical gap, the carrier gas flow splits and carries the ions in both directions around the inner electrode. The electrical field continues to induce the same oscillations in the ion trajectories, and only those ions for which the oscillations are compensated by the compensation voltage actually reach the ion outlet orifice.
The above-mentioned “jitter” motion that occurs during ion introduction has a tendency to increase the width of the ion injection window as well as to decrease the ion introduction efficiency. Since one of the advantages of the side-to-side FAIMS device is the short ion flow path length around the inner electrode, and consequently a relatively short ion transit time through the analytical gap, it will be apparent that a longer ion injection window has an adverse effect on the performance of a side-to-side FAIMS device. Accordingly ion inlet configurations, such as those described previously by Guevremont et al. in U.S. Pat. No. 6,753,522 and including three or more separate ion inlet orifices that are arranged in rows or other geometrical arrangements, tend not to result in optimal performance. In particular, each ion inlet configuration disclosed by Guevremont et al. includes at least one ion inlet orifice that is defined through the outer electrode in such a way that ion introduction is opposed directly by the electrical field within the analytical gap during one portion of the asymmetric waveform cycle. This is particularly problematic when the side-to-side FAIMS device is being used to separate or analyze ions on a very short time scale. One such example involves analysis of ions that are generated from samples that are eluting from a high-performance liquid chromatography (HPLC) apparatus, or from another similar chromatographic apparatus.
Of course, the same “jitter” motion also occurs when ions are introduced into FAIMS devices that are based on other electrode geometries. Of particular note is the so-called domed-FAIMS (d-FAIMS) electrode geometry. In a d-FAIMS device, ions enter into an analytical gap between two concentric cylindrical electrodes and spread out in a ring-shaped cloud of finite thickness at a particular radial distance between the two electrodes. The ions travel along the length of the device and are directed radially inward around a domed surface terminus of the inner electrode prior to being extracted via an ion outlet orifice. Since the ions are introduced via an ion inlet in such a way that ion introduction is opposed directly by the electrical field within the analytical gap during one portion of the asymmetric waveform cycle, the d-FAIMS device is expected to show behavior similar to that which has been described above.
Accordingly, there exists a need for a FAIMS cell that overcomes at least some of the above-mentioned limitations.
According to an aspect of the instant invention there is provided a FAIMS cell, comprising: an elongated inner electrode having a longitudinal axis extending along a first direction, the inner electrode having a curved outer surface that defines a circle when viewed in a cross section that is taken in a plane normal to the longitudinal axis, the longitudinal axis passing through the center of the circle so defined; and, an outer electrode having an inner surface that is disposed in a spaced-apart facing relationship relative to the outer surface of the inner electrode so as to define an analytical gap therebetween, there being a first ion inlet orifice defined through a first portion of the outer electrode for supporting introduction of a flow of ions into the analytical gap, and there being an ion outlet orifice defined through a second portion of the outer electrode for supporting extraction of some ions of the flow of ions from the analytical gap, the first ion inlet orifice having a first ion injection axis that does not pass through the center of the circle so defined, wherein the second electrode does not have defined through any portion thereof an ion inlet orifice having an ion injection axis that passes through the center of the circle so defined
According to another aspect of the instant invention, provided is a FAIMS cell, comprising: a generally cylindrically-shaped inner electrode having an outer surface; and, an outer electrode having an inner surface that is disposed in a spaced-apart overlapping relationship relative to the outer surface of the inner electrode so as to define an analytical gap therebetween, there being a first ion inlet orifice defined through a first portion of the outer electrode for supporting introduction of a flow of ions into the analytical gap, the first ion inlet orifice being open at opposite ends thereof and having a first ion injection axis that passes through the center of each one of the opposite ends, the first ion injection axis not being normal to the outer surface of the inner electrode at the point of intersection, wherein the outer electrode does not have defined through any portion thereof an ion inlet orifice having an ion injection axis that is normal to the outer surface of the inner electrode at the point of intersection.
According to still another aspect of the instant invention, provided is a FAIMS cell, comprising: a generally cylindrically-shaped inner electrode having an outer surface; and, an outer electrode having an inner surface that is disposed in a spaced-apart overlapping relationship relative to the outer surface of the inner electrode so as to define an analytical gap therebetween, there being a first ion inlet orifice defined through a first portion of the outer electrode for supporting introduction of a flow of ions into the analytical gap, the first ion inlet orifice being open at opposite ends thereof and having a first ion injection axis that passes through the center of each one of the opposite ends of the first ion inlet, the first ion injection axis being substantially tangential to the outer surface of the inner electrode.
Exemplary embodiments of the invention will now be described in conjunction with the following drawings, in which similar reference numerals designate similar items:
a is a cross sectional end-view of a side-to-side FAIMS cell according to an embodiment of the instant invention;
b is a cross sectional top-view of a side-to-side FAIMS cell according to an embodiment of the instant invention;
a is an enlarged cross sectional view of the ion inlet orifice of the side-to-side FAIMS cell that is shown in
b is an enlarged cross sectional view of an ion inlet orifice of a prior art side-to-side FAIMS cell;
a is a cross sectional end-view of a side-to-side FAIMS cell according to an embodiment of the instant invention;
b is an enlarged cross sectional view of the ion inlet orifice of the side-to-side FAIMS cell that is shown in
The following description is presented to enable a person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and the scope of the invention. Thus, the present invention is not intended to be limited to the embodiments disclosed, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
The elements of the various embodiments of the instant invention have been described specifically with reference to only the side-to-side FAIMS electrode geometry. However, it is to be clearly understood that the same elements may equally be incorporated into FAIMS devices that are based on other electrode geometries, such as for instance the domed-FAIMS (d-FAIMS) geometry. In fact, the ion inlet regions of the two types of FAIMS devices are substantially identical. Accordingly, while the drawings are intended to show a side-to-side FAIMS cell, they nevertheless are also quite illustrative of a d-FAIMS cell.
Referring to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 106 via two ion inlet orifices 108a and 108b. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS, it is desirable to remove residual liquid solvent prior to introducing the ion stream into the analytical gap 106. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions. Optionally, separate ionization sources are provided including a first not illustrated ion source that is in fluid communication with ion inlet orifice 108a and a second ionization source that is in fluid communication with ion inlet orifice 108b.
Referring still to
The ion injection axis 110a is substantially tangential to the outer surface along one side of inner electrode 102, and the ion injection axis 110b is substantially tangential to the outer surface along the opposite side of inner electrode 102. Accordingly, FAIMS cell 100 does not have any ion inlet orifices with an ion injection axis that passes through the center of inner electrode 102. Another way of stating this is to say that FAIMS cell 100 does not have any ion inlet orifices with an ion injection axis that is normal to the outer surface of the inner electrode 102 at the point of intersection.
Referring now to
Referring now to
Referring now to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 306 via two ion inlet orifices 308a and 308b. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS, it is desirable to remove residual solvent prior to introducing the ion stream into the analytical gap 306. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions. Optionally, separate ionization sources are provided including a first not illustrated ion source that is in fluid communication with ion inlet orifice 308a and a second ionization source that is in fluid communication with ion inlet orifice 308b.
Referring still to
The ion injection axis 310a is substantially tangential to the outer surface along one side of inner electrode 302, and the ion injection axis 310b is substantially tangential to the outer surface along the opposite side of inner electrode 302. Accordingly, FAIMS cell 300 does not have any ion inlet orifices with an ion injection axis that passes through the center of inner electrode 302. Another way of stating this is to say that FAIMS cell 300 does not have any ion inlet orifices with an ion injection axis that is normal to the outer surface of the inner electrode 302 at the point of intersection.
Now referring also to
Referring now to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 406 via ion inlet orifice 408. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS, it is desirable to remove residual liquid solvent prior to introducing the ion stream into the analytical gap 406. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions.
Referring still to
Referring now to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 506 via ion inlet orifice 508. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS the ions must be desolvated prior to being introduced into the analytical gap 506. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions.
Referring still to
Referring now to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 606 via two ion inlet orifices 608a and 608b. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS, it is desirable to remove residual liquid solvent prior to introducing the ion stream into the analytical gap 606. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions. Optionally, separate ionization sources are provided including a first not illustrated ion source that is in fluid communication with ion inlet orifice 608a and a second ionization source that is in fluid communication with ion inlet orifice 608b.
Referring still to
The ion injection axis 610a passes through a portion of one side of inner electrode 602, and the ion injection axis 610b passes through a portion of the opposite side of inner electrode 602. Unlike the embodiments described supra the ion injection axes 610a and 610b are not tangential to the outer surface of the inner electrode. However, FAIMS cell 600 still does not have any ion inlet orifices with an ion injection axis that passes through the center of inner electrode 602. Rather, each ion injection axis 610a and 610b passes through inner electrode 602 off the center thereof. Another way of stating this is to say that FAIMS cell 600 does not have any ion inlet orifices with an ion injection axis is normal to the outer surface of the inner electrode 602 at the point of intersection.
Referring now to
During use, ions are produced at a not illustrated ionization source and enter the analytical gap 706 via two ion inlet orifices 708a and 708b. One non-limiting example of a suitable ionization source is an electrospray ionization (ESI) source. However, when an ESI source is used with FAIMS, it is desirable to remove residual liquid solvent prior to introducing the ion stream into the analytical gap 706. To this end, typically a separate desolvation chamber (not shown) is provided between the ionization source and the FAIMS cell. Of course, any other suitable ionization source may be utilized to produce ions. Optionally, separate ionization sources are provided including a first not illustrated ion source that is in fluid communication with ion inlet orifice 708a and a second ionization source that is in fluid communication with ion inlet orifice 708b.
Referring still to
The ion injection axis 710a passes through a portion of one side of inner electrode 702, and the ion injection axis 710b passes through a portion of the opposite side of inner electrode 702. Unlike most of the embodiments described supra the ion injection axes 710a and 710b are not tangential to the outer surface of the inner electrode. However, FAIMS cell 700 still does not have any ion inlet orifices with an ion injection axis that passes through the center of inner electrode 702. Rather, each ion injection axis 710a and 710b passes through inner electrode 702 off the center thereof. Another way of stating this is to say that FAIMS cell 700 does not have any ion inlet orifices with an ion injection axis that is normal to the outer surface of the inner electrode 702 at the point of intersection.
Although the preceding description is presented in the context of side-to-side FAIMS cells having an inner electrode defining a portion of a right-circular cylinder, it is also envisaged that other electrode shapes may be used with the instant invention. For instance, optionally the inner electrode is substantially elliptical in shape in cross-sectional end view. Further optionally, the inner electrode has a shape that is formed by two intersecting arcs in cross-sectional end view. Optionally, the two arcs are either uniform or non-uniform. For any given inner electrode shape, it is important that no ion inlets are defined such that an ion injection axis thereof is normal to the outer surface of the inner electrode at the point of intersection.
For absolute clarity, the inventive features that are described in the preceding paragraphs may equally be incorporated into a FAIMS cell that is based on the d-FAIMS electrode geometry. In this case, the ions distribute around the inner electrode to form a ring-shaped band of ions, and the ions flow along the length of the inner electrode and around a domed terminus thereof prior to being extracted via an ion outlet. Typically, the ion outlet is spaced-apart from and aligned with the center of the dome on the end of the inner electrode. Optionally, only a single ion inlet is provided, such that an ion injection axis thereof does not pass through the center of the inner electrode. Optionally, the ion injection axis is tangential to the outer surface of the inner electrode. Further optionally, plural ion inlets are provided, none of the plural ion inlets having an ion injection axis that passes through the center of the inner electrode. While in most cases it is desirable to position each one of the plural ion inlets at a same distance from the ion outlet, it is also possible that some of the ion inlets are disposed closer to the ion outlet than other of the ion inlets.
Numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5420424 | Carnahan et al. | May 1995 | A |
6504149 | Guevremont et al. | Jan 2003 | B2 |
6753522 | Guevremont et al. | Jun 2004 | B2 |
6770875 | Guevremont et al. | Aug 2004 | B1 |
6806466 | Guevremont et al. | Oct 2004 | B2 |
6995365 | Farnsworth | Feb 2006 | B2 |
7005633 | Guevremont et al. | Feb 2006 | B2 |
7034286 | Guevremont et al. | Apr 2006 | B2 |
7186972 | Farnsworth | Mar 2007 | B2 |
7189972 | Ertel et al. | Mar 2007 | B2 |
7378651 | Guevremont | May 2008 | B2 |
7397027 | Li | Jul 2008 | B2 |
Number | Date | Country |
---|---|---|
WO 2004029603 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080315085 A1 | Dec 2008 | US |