The present invention relates generally to fall mitigation safety methods, including detection, behavior, and recovery, for a legged mobility device or “exoskeleton” device.
There are currently on the order of several hundred thousand spinal cord injured (SCI) individuals in the United States, with roughly 12,000 new injuries sustained each year at an average age of injury of 40.2 years. Of these, approximately 44% (approximately 5300 cases per year) result in paraplegia. One of the most significant impairments resulting from paraplegia is the loss of mobility, particularly given the relatively young age at which such injuries occur. Surveys of users with paraplegia indicate that mobility concerns are among the most prevalent, and that chief among mobility desires is the ability to walk and stand. In addition to impaired mobility, the inability to stand and walk entails severe physiological effects, including muscular atrophy, loss of bone mineral content, frequent skin breakdown problems, increased incidence of urinary tract infection, muscle spasticity, impaired lymphatic and vascular circulation, impaired digestive operation, and reduced respiratory and cardiovascular capacities.
In an effort to restore some degree of legged mobility to individuals with paraplegia, several lower limb orthoses have been developed. The simplest form of such devices is passive orthotics with long-leg braces that incorporate a pair of ankle-foot orthoses (AFOs) to provide support at the ankles, which are coupled with leg braces that lock the knee joints in full extension. The hips are typically stabilized by the tension in the ligaments and musculature on the anterior aspect of the pelvis. Since almost all energy for movement is provided by the upper body, these passive orthoses require considerable upper body strength and a high level of physical exertion, and provide very slow walking speeds.
The hip guidance orthosis (HGO), which is a variation on long-leg braces, incorporates hip joints that rigidly resist hip adduction and abduction, and rigid shoe plates that provide increased center of gravity elevation at toe-off, thus enabling a greater degree of forward progression per stride. Another variation on the long-leg orthosis, the reciprocating gait orthosis (RGO), incorporates a kinematic constraint that links hip flexion of one leg with hip extension of the other, typically by means of a push-pull cable assembly. As with other passive orthoses, the user leans forward against a stability aid (e.g., bracing crutches or a walker) while un-weighting the swing leg and utilizing gravity to provide hip extension of the stance leg. Since motion of the hip joints is reciprocally coupled through the reciprocating mechanism, the gravity-induced hip extension also provides contralateral hip flexion (of the swing leg), such that the stride length of gait is increased. One variation on the RGO incorporates a hydraulic-circuit-based variable coupling between the left and right hip joints. Experiments with this variation indicate improved hip kinematics with the modulated hydraulic coupling.
To decrease the high level of exertion associated with passive orthoses, the use of powered orthoses has been under development, which incorporate actuators and drive motors associated with a power supply to assist with locomotion. These powered orthoses have been shown to increase gait speed and decrease compensatory motions, relative to walking without powered assistance.
One issue with both passive or powered orthoses is that injuries can occur in the event of falling. Depending upon the direction or nature of a fall, the locked or released state of portions of the orthoses can be determinative of the nature or extent of injury. The use of powered orthoses presents an opportunity for electronic control of the orthoses. There now exists, however, no methods that can adequately detect the precise nature of a fall in progress, and adjust the orthoses by locking and/or releasing different portions of the orthoses as may be warranted by a given stage of a fall in progress to mitigate potential injuries from falling.
Examples of powered orthoses are known. WO/2010/044087, US 2010/0094188, and U.S. Pat. No. 8,096,965 disclose a powered exoskeleton bracing system/exoskeleton bracing system. These prior art devices, however, have been insufficient for full protection and control in the event of falling. The conventional methods associated with these devices in particular do not generate alerts in response to falling or changing stance, although these conditions may be indicated. Instead, the safety features generate alerts that tend to be in response to a defective nature or state of the exoskeleton device or its components. Alerts, for example, may be provided as to such conditions as sensor fault(s), detection of “high” temperature(s), detection of battery charger (High Severity Alerts accompanied by Solid Red LEDs), detection of “medium” temperature(s), detection of “critical” battery levels (Medium Severity Alerts accompanied by Flashing Red LEDs), detection of low temperature(s), and detection of “low” battery levels (Low Severity Alerts accompanied by Flashing Yellow LEDs). Detection of High Severity Alerts in particular may result in a control response whereby actuation of the exoskeleton device is halted. Halting actuation, however, can be undesirable in the context of falling depending upon the characteristics of the fall (e.g., the direction, type, or extent of the fall).
There have been attempts to provide at least generalized detection and alerts in connection with falling. For example, U.S. Pat. No. 8,348,875 discloses a method of controlling an exoskeleton bracing system to walk forward comprising operating an alerting device to generate an alert in response to a sensed condition, wherein the sensed condition comprises falling. U.S. Pat. No. 8,905,955 B2 discloses a method of controlling an exoskeleton bracing system comprising halting actuation of the motorized joints when a signal that is received from a tilt sensor indicates falling. These methods are described entirely within the context of standing and sitting transitions. More generally, conventional detection and control methods have proven to be insufficient for full mitigation in response to a sensed fall. Different directions, types, extents, and related fall characteristics are not ascertained with precision by conventional methods, and the conventional methods thus do not provide control of the exoskeleton device for fall mitigation to reduce potential for injury as may occur for any given specific fall, nor enhance recovery from a fall.
The present invention provides exoskeleton control methods for fall mitigation for a legged mobility device or “exoskeleton” device, including detection/sensing and classifying a fall, and determining, effecting and controlling a corresponding mitigation and/or recovery behavior of the exoskeleton device. The safety methods described herein may halt actuation in response to High Severity Alerts as referenced above, but do not automatically halt actuation as a response to falling as done in conventional methods. Rather, the control methods of the present invention respond to falling as a staged process, wherein actuators of the exoskeleton or portions thereof are either actively seeking a nominal configuration or passively allowing motion to occur.
Furthermore, the control methods of the present invention control protective behavior that the exoskeleton will exhibit beyond a mere indication or alert should a fall occur in an attempt to prevent harm. Advantageously, the control methods described here apply generally to all states and do not need to rely on the use of force plate sensors as in the current state of the art. These control methods also facilitate the home use of the device by allowing the wearer to recover unassisted from a fall under various circumstances.
A method of controlling an exoskeleton device of a user performs fall mitigation operations. The control method may be performed by executing program code stored on a non-transitory computer readable medium. The control method may be applied generally to an orthotic device including a drive component that drives a joint component, and the control method may include detecting a fall state including a direction and extend of a fall, and controlling the drive component to selectively modulate the joint component to perform a fall mitigation operation.
In exemplary embodiments, the orthotic device is an exoskeleton device that is a powered legged mobility device including a plurality of drive components that drive joint components including at least knee joint components and hip joint components. The control method includes detecting a fall state including a direction and an extent of a fall; classifying the fall state based on the direction and the extent of the fall; and controlling the drive components of the exoskeleton device to selectively modulate the knee and hip joint components in accordance with the fall classification to perform a fall mitigation operation. Selectively modulating any given joint component or joint components may include applying torque, locking, releasing or otherwise effecting the position or movement of the joint component.
For example, falls may be classified based on direction, such as a forward or backward. Falls may also be classified based on extent, such as near, far, or terminal. Depending upon the fall classification based both on the direction and extent of a the fall, the drive components are controlled so as to selectively modulate the knee and hip joint components, the result being that the exoskeleton device is controlled to have different responses for different fall circumstances. In this manner, fall mitigation may be tailored to specific fall circumstances, thereby minimizing the potential for injury during a fall. The control method further may include controlling the drive components to perform a recovery operation to aid the user in returning to standing position after the fall.
These and further features of the present invention will be apparent with reference to the following description and attached drawings. In the description and drawings, particular embodiments of the invention have been disclosed in detail as being indicative of some of the ways in which the principles of the invention may be employed, but it is understood that the invention is not limited correspondingly in scope. Rather, the invention includes all changes, modifications and equivalents coming within the spirit and terms of the claims appended hereto. Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.
Embodiments of the present invention will now be described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. It will be understood that the figures are not necessarily to scale.
For context,
As show in
An exemplary legged mobbilty exoskeleton device is illustrated as a powered lower limb orthosis 100 in
As seen in the figures, the orthosis contains five assemblies or modules, although one or more of these modules may be omitted and further modules may be added (for example, arm modules), which are: two lower (right and left) leg assemblies (modules) 106R and 106L, two (left and right) thigh assemblies 108R and 108L, and one hip assembly 110. Each thigh assembly 108R and 108L includes a respective thigh assembly housing 109R and 109L, and link, connector, or coupler 112R and 112L extending from each of the knee joints 104R and 104L and configured for moving in accordance with the operation of the knee joints 104R and 104L to provide sagittal plane torque at the knee joints 104R and 104L.
The connectors 112R and 112L further may be configured for releasably mechanically coupling each of thigh assembly 108R and 108L to respective ones of the lower leg assemblies 106R and 106L. Furthermore, each thigh assembly 108R and 108L also includes a link, connector, or coupler 114R and 114L, respectively, extending from each of the hip joint components 102R and 102L and moving in accordance with the operation of the hip joint components 102R and 102L to provide sagittal plane torque at the knee joint components 104R and 104L. The connectors 114R and 114L further may be configured for releasably mechanically coupling each of thigh assemblies 108R and 108L to the hip assembly 110.
In some embodiments, the various components of device 100 can be dimensioned for the user. However, in other embodiments the components can be configured to accommodate a variety of users. For example, in some embodiments one or more extension elements can be disposed between the lower leg assemblies 106R and 106L and the thigh assemblies 108R and 108L to accommodate users with longer limbs. In other configurations, the lengths of the two lower leg assemblies 106R and 106L, two thigh assemblies 108R and 108L, and one hip assembly 110 can be adjustable. That is, thigh assembly housings 109R, 109L, the lower leg assembly housings 107R and 107L for the lower leg assemblies 106R, 106L, respectively, and the hip assembly housing 113 for the hip assembly 110 can be configured to allow the user or medical professional to adjust the length of these components in the field. For example, these components can consist of slidable or movable sections that can be held in one or more positions using screws, clips, or any other types of fasteners. In view of the foregoing, the two lower leg assemblies 106R and 106L, two thigh assemblies 108R and 108L, and one hip assembly 110 can form a modular system allowing for one or more of the components of the orthosis 100 to be selectively replaced and for allowing an orthosis to be created for a user without requiring customized components. Such modularity can also greatly facilitate the procedure for donning and doffing the device.
In orthosis 100, each thigh assembly housing 109R, 109L may include substantially all the drive components for operating and driving corresponding ones of the knee joint components 104R, 104L and the hip joint components 102R, 102L. In particular, each of thigh assembly housings 109R, 109L may include drive components configured as two motive devices (e.g., electric motors) which are used to drive the hip and knee joint component articulations. However, the various embodiments are not limited in this regard, and some drive components can be located in the hip assembly 110 and/or the lower leg assemblies 106R, 106L.
A battery 111 for providing power to the orthosis can be located within hip assembly housing 113 and connectors 114R and 114L can also provide means for connecting the battery 111 to any drive components within either of thigh assemblies 108R and 108L. For example, the connectors 114R and 114L can include wires, contacts, or any other types of electrical elements for electrically connecting battery 111 to electrically powered components in thigh assemblies 108R and 108L. In the various embodiments, the placement of battery 111 is not limited to being within hip assembly housing 113. Rather, the battery can be one or more batteries located within any of the assemblies of orthosis 100.
The referenced drive components may incorporate suitable sensors and related electronic controller or control devices for use in embodiments of the present invention. Embodiments of the present invention involve detecting a direction and an extent of falls through, for example, the use of accelerometers, gyroscopes, inertial measurement, and other sensors to detect and observe the upper leg orientation or angle and angular velocity, and to classify the fall according to direction and extent of the fall. The electronic control device may then selectively control the drive components to modulate the joint components, and particularly the knee and hip joint components, to apply torque, implement locked or released states, or otherwise effect positioning or movement of the joint components for fall mitigation so as to reduce potential for injury as a result of a fall. The electronic control device further may exercise control of the drive components to modulate the joint components for fall recovery to return the user to a desirable position, and particularly standing, following a fall.
To implement the features of the present invention, the electronic control device may include one or processor devices that are configured to execute program code stored on a non-transitory computer readable medium embodying the control methods associated with the present invention. It will be apparent to a person having ordinary skill in the art of computer programming of electronic devices how to program the electronic control device to operate and carry out logical functions associated with present invention. Accordingly, details as to specific programming code have been left out for the sake of brevity. Also, controller functionality could be carried out via dedicated hardware, firmware, software, or any combinations thereof, without departing from the scope of the invention. As will be understood by one of ordinary skill in the art, therefore, the electronic control device may have various implementations. For example, the electronic control device may be configured as any suitable processor device, such as a programmable circuit, integrated circuit, memory and I/O circuits, an application specific integrated circuit, microcontroller, complex programmable logic device, other programmable circuits, or the like. The electronic control device may also include a non-transitory computer readable medium, such as random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), or any other suitable medium. Instructions for performing the methods described below may be stored in the non-transitory computer readable medium and executed by the processor device.
In the various embodiments, to maintain a low weight for orthosis and a reduced profile for the various components, the drive components may include a substantially planar drive system that is used to drive the hip and knee articulations of the joint components. For example, each motor can respectively drive an associated joint component through a speed-reduction transmission using an arrangement of sprocket gears and chains substantially parallel to the plane of sagittal motion. Referring to
In the illustrated embodiment of the drive components, the motor is integrated onto a common baseplate along with sprockets that control the motion of a joint link. Bearings and chains, with and/or without tensioners provide smooth and efficient transfer of motion from the motor to the joint angle. Integrating the motor into the cassette allows for a thinner overall package configuration and provides consistent alignment among parts. Moreover, integrating the motor also creates a larger surface area to transfer and emit heat generated by the motor. In the instance of a mobility assistance device, these cassettes may pertain to a specific joint or set of joints on the device. Each may have a unique actuation unit or share an actuation unit. They may include actuators, with or without a power source, and/or a method of transmitting movement. The illustrated embodiment includes a brushless DC motor with chains and sprockets to create and transmit motion, although other embodiments may utilize electric motors, linear actuators, piezoelectric actuators, belts, ball screws, harmonic drive, gear drive (bevel or planetary), or any combination thereof. The cassettes may also house the electronic control device, and further may contain the referenced sensor elements such as the accelerometers, gyroscopes, inertial measurement, and other sensors to detect and observe the upper leg orientation or angle and angular velocity. The self-contained cassette units can be preassembled to aid in manufacturing the broader device. This allows for quick servicing of the device since individual cassettes can be swapped out and serviced.
Therefore, a removable, self-contained, ovular actuator cassette 500 may be receivable in a receptacle of a wearable robotic device. The cassette 500 may include a first circular portion 520 housing a motive device (e.g., an electric motor) 502. A second circular portion 522 may be longitudinally offset and longitudinally overlapping the first circular portion and may house a first portion of a drivetrain 514, 516 operatively coupled to and driven by the motive device 502. A third circular portion 524 may be longitudinally offset from the first and second circular portions and longitudinally overlapping the second circular portion and may house a second portion of the drivetrain 504. These three overlapping circular portions make an ovular shape, which may include the referenced sensors and electronic control devices. Therefore, an ovular housing 530 may support the motive device 502 and drivetrain 502, 514, 516. Long sides of the ovular housing are straight and parallel with each other and tangentially terminate as curved end surfaces of the ovular housing.
Referring to
The knee joint component 104R may be actuated via operation of a motor 502, as discussed above. The motor 502 can be an electric motor that drives the knee joint 104R (i.e., joint sprocket gear 504) using a two-stage chain drive transmission. For example, as shown in
Each stage of the chain drive transmission can include tensioners, which can remove slack from a chain and mitigate shock loading. Such tensioners can be adjustable or spring loaded. In addition, a brake 570 can be provided for motor 502. For example, a solenoid brake may be provided which engages a brake pad against the rotor 524 of the motor 502 in one state, and disengages the brake pad in another state. However, the various embodiments are not limited to this particular brake arrangement and any other methods for providing a brake for motor 502 can be used without limitation.
The configuration illustrated in
In the various embodiments of the drive components, a motor for each of the hip and knee joint components 102R, 102L, 104R, 104L can be configured to provide a baseline amount of continuous torque and a higher amount of torque for shorter periods of time. For example, in one configuration, at least 10 Nm of continuous torque and at least 25 Nm of torque for shorter (i.e., 2-sec) durations are provided. In another example, up to 12 Nm of continuous torque and 40 Nm of torque for shorter (i.e., 2-sec) durations. As a safety measure, both knee joints 104R and 104L can include normally locked brakes, as discussed above, in order to preclude knee buckling in the event of a power failure.
The described exoskeleton device can be controlled in a manner that provides (1) fall mitigation by staged fall progression, and (2) fall recovery. In embodiments of the present invention, detected falls are classified by direction and extent. While conventional configurations have suggested fall detection through observation of force or tilt sensors, classification of the fall according to direction and/or extent has not been employed in connection with fall detection and recovery. Control methods are described for controlling joints and various components of an exoskeleton device based on fall detection and classification for a fall mitigation operation, and further for controlling components of the exoskeleton device to execute a fall recovery operation. Although the exemplary control methods are described below as a specific order of executing functional logic steps, the order of executing the steps may be changed relative to the order described. Also, two or more steps described in succession may be executed concurrently or with partial concurrence. It is understood that all such variations are within the scope of the present invention.
An aspect of the present invention includes fall mitigation control methods to generate staged falling control of the joint components, related drive components, and motors of the exoskeleton device, which provide fall mitigation in an attempt to protect the user as the user falls, and/or allow the user to come to an intermediate or terminal position from which the user can recover. In general, the staged falling control methods for fall mitigation may include the steps of: (1) detecting a fall state including a direction and extent of a fall; (2) classifying the fall state based on a direction and an extent of the fall; and (3) controlling the exoskeleton device to selectively modulate exoskeleton components in accordance with the fall classification. The control method may be applied to an exoskeleton device generally including a drive component that drives a joint component, and the control method may include detecting a fall state including a direction and extend of a fall, and controlling the drive component to modulate the joint component to perform a fall mitigation operation. Accordingly, the methods of the present invention may be employed on a relatively simple orthotic device including only one joint component (e.g., a singular knee orthotic), or more complex exoskeleton devices that include a plurality of joint components, such as a legged mobility device having left and right knee and hip joint components such as the exoskeleton device described above. As used throughout, modulating any given joint component or joint components may include applying torque, locking, releasing or otherwise effecting the position or movement of the joint component. In general, the staged falling methods enable the user's torso to remain upright as the user falls. With such control, the user's head is less exposed to the environment because the head will be led to the ground by following either the buttocks or the knees, and thus the head will travel at lower speeds particularly because the upper body is not rotating and other portions of the body absorb initial impacts. This in turn reduces the likelihood and severity of head injury should a fall occur.
The present invention, therefore, provides a method of controlling an orthotic device of a user for fall mitigation. In exemplary embodiments, the orthotic device is an exoskeleton device that is a powered legged mobility device comprising a plurality of drive components that drive joint components including at least knee joint components and hip joint components. The control method may include the steps of: detecting with one or more sensors a fall state including a direction and an extent of a fall; classifying with an electronic control device the fall state based on the direction and the extent of the fall; and controlling the drive components of the exoskeleton device with the electronic control device to selectively modulate the knee and hip joint components in accordance with the fall classification to perform a fall mitigation operation. Additional features of the control methods are described in detail below. Although the exemplary methods may be described below as a specific order of executing functional logic steps, the order of executing the steps may be changed relative to the order described. Also, two or more steps described in succession may be executed concurrently or with partial concurrence. It is understood that all such variations are within the scope of the present invention. The various control methods may be performed by the electronic control device executing program code stored on a non-transitory computer readable medium.
The staged falling control method steps of detection and classification of falling based on direction and extent are continuously operative. Accordingly, in the event forward falling continues, as shown in
Again, the staged falling control method steps of detection and classification of falling based on direction and extent are continuously operative. It may occur that a user is unable to stabilize himself to a kneeling position, and the forward fall continues. Accordingly, in the event forward falling continues, as shown in
A fall mitigation control method may be performed comparably for a backward wall as performed for a forward fall.
Again, the staged falling control method steps of detection and classification of falling based on direction and extent are continuously operative. Accordingly, in the event backward falling continues, as shown in
Again, the staged falling control method steps of detection and classification of falling based on direction and extent are continuously operative. As the backward falling continues, as shown in
The present invention improves over conventional systems, which largely have operated to fully halt actuation in response to detecting a fall. In contrast, in the present invention the exoskeleton components are controlled distinctly at each stage of the fall as detected and classified based on the direction and extent of the fall. In this manner, the exoskeleton motors and related drive components provide active flexion/extension, passive support, or are completely free according to the direction and extent of a fall. The present invention, therefore, provides enhanced opportunity for recovery during or from a fall, and otherwise substantially reduces the potential for injury, as compared to conventional configurations which do not provide for a staged control and fall mitigation based on both direction and extent of a fall.
Enhanced control of recovery after such a staged fall is now described. Should a terminal fall occur, the staged fall control methods described above allow for fall recovery, such that the user may return to a standing position either independently using a stability aid, and/or with the aid of another person. At the outset, recovery control methods are essentially the same in the cases of both a staged forward fall and a staged backward fall, as the different recovery methods would begin from a forward prone position. Accordingly, in the event of a staged backward terminal fall, the first step simply would be for a user to roll over from a sitting or full backward position to a forward prone position. For the initial rollover, the joint components may be driven to release the knee and hip joint components, thereby permitting the user to turn over to the prone position. Once the user has moved to the forward prone position, recovery control follows in a common manner regardless of whether the user initially fell forward or backward.
In exemplary embodiments, the exoskeleton joint components may be controlled to perform a rollover assist operation. For example, the drive components may be controlled to drive the hip and knee joint components to straighten one leg on the side or in the direction of the desired rollover, and optionally further to bend the knee joint component of the other leg. Such leg positioning may provide for an easier rollover by the user.
As referenced above, there is potential during the staged forward fall for the user coming to the knees during the fall itself, as seen in the third portion of
In an alternative embodiment of a fall recovery control method, a user may attempt to recover without going to an intermediate kneeling position.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This application claims the benefit of U.S. Provisional Application No. 62/255,549 filed Nov. 16, 2015, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/016319 | 2/3/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62255549 | Nov 2015 | US |