Fan orifice dispensing closure

Information

  • Patent Grant
  • 10940494
  • Patent Number
    10,940,494
  • Date Filed
    Friday, June 19, 2015
    9 years ago
  • Date Issued
    Tuesday, March 9, 2021
    3 years ago
Abstract
A dispensing closure for a squeeze-type container produces a fan-type spray in a low pressure environment. The dispensing closure includes a closure body having an upper deck and a skirt depending from the upper deck. The skirt is configured and arranged to attach to a product container, such as a squeeze-type container. A flow conduit extends from an interior of the closure body and through the upper deck to provide a flow path from an interior of the closure to an exterior of the closure. The flow conduit has an entrance orifice and an exit orifice. The flow conduit has an inner wall extending between the entrance orifice and the exit orifice. The flow conduit and the closure body are integrally formed. The flow conduit includes a tip portion with an exit orifice defining a shape to provide a fan-type spray in a low pressure environment.
Description
BACKGROUND OF THE INVENTION

The invention relates to container closures, and more particularly to squeeze-type container dispensing closures. This invention relates to a dispensing closure for dispensing liquid. More specifically, it relates to a dispensing closure defining an orifice in the closure to produce a fan-type discharge or spray in a low-pressure environment.


The prior art discloses numerous patents related to high pressure environments for producing various sprays. U.S. Pat. No. 2,755,137 discloses a liquid spray jet and has for its object the provision of a jet. The spray jet includes a jet member having a parallel slided slot. U.S. Pat. No. 4,175,704 discloses a non-aerosol type spray dispenser. The end of a tubular member mounts a spray nozzle built into a parabolic section which extends outwardly from the end of the actuator. U.S. Pat. No. 4,718,607 generally shows a spray orifice adapted for discharging a mixture of atomized liquid entrained within a gas stream for coating a surface with the liquid. U.S. Pat. No. 4,760,956 shows a spray gun that includes a mixing apparatus and an atomizer including a liquid nozzle.


Also, the prior art discloses the use of additional non-squeeze-type dispensing closures to produce various sprays in a high pressure environment. U.S. Pat. No. 4,971,256 shows a sprinkler having a nozzle head abutting the end wall and defining a vertical slot extending radially therethrough. U.S. Pat. No. 5,642,860 shows a slotted spray nozzle. U.S. Pat. No. 5,890,655 discloses a fan spray nozzle having elastomeric dome-shaped tips with a flow conduit outwardly extending from the upper deck. The '655 patent discloses the spray nozzle being made of an elastomeric material having a flexural modulus from about 1,000 psi to about 25,000 psi.


Based upon the prior art cited above, there remains a need for a dispensing closure having a dispensing orifice which allows for liquid discharges in the form of a fan-type spray in a low pressure environment produced by a squeeze-type container.


BRIEF SUMMARY OF THE INVENTION

The invention preserves the advantages of prior dispensing closures for squeeze-type containers. In addition, it provides new advantages not found in currently available dispensing closures for squeeze-type containers and overcomes many disadvantages of such currently available dispensing closures for squeeze-type containers.


The dispensing closure for a squeeze-type container produces a fan-type spray in a low pressure environment. The dispensing closure includes a closure body having an upper deck and a skirt depending from the upper deck. The skirt is configured and arranged to attach to a squeeze-type product container. A flow conduit extends from an interior of the closure body and through the upper deck to provide a flow path from an interior of the closure to an exterior of the closure. The flow conduit has an entrance orifice and an exit orifice. The flow conduit has an inner wall extending between the entrance orifice and the exit orifice.


The flow conduit is configured to produce a fan-type spray in a low pressure environment. A low pressure environment may be produced by a squeeze-type product container upon a force being applied to the product container by a user. In one embodiment, the fan-type spray is provided at less than 5 psi. Alternatively, the fan-type spray may be produced between 0.5 psi and 3 psi which is typically the result of a squeeze produced by an average person.


The flow conduit includes a tip portion for producing a fan-type spray. The tip portion including a raised non-planar surface having an interior volume to collect liquid before the liquid exits through the exit orifice in a low pressure environment. The tip portion defines a shape of the exit orifice which produces the fan-type spray. For example, the shape of the exit orifice may be rectangular, bowtie, half bowtie, oval, keyhole, dumbbell, curved rectangular, “J”, “T”, inverted “T”, inverted “J”, and other non-circular shapes. Also, it should be noted that to produce a continuous fan-type spray with desired dimension, the exit orifice may also define a uniform width, with regard to the rectangular shaped orifice, and the tip portion may have a relatively uniform thickness of material.


In one embodiment, the flow conduit, the closure body, and the tip portion are integrally formed to facilitate the fan-type spray in a low pressure environment. The flow conduit includes a first body portion of the flow conduit extending from the upper deck to the tip portion in a gradually decreasing diameter. The tip portion has a height less than the first body portion of the flow conduit. Note, a peripheral wall extends upwardly from the upper deck to surround the first body portion of the flow conduit to capture excess fluids.


In one embodiment including a closure lid, the dispensing closure includes a multiple sealing mechanisms to prevent liquid from exiting through the exit orifice. In one embodiment, the dispensing closure includes a closure lid, a hinge mechanism for connecting the lid to the body and a latching mechanism for securing the lid to the body. In a first sealing mechanism for a dispensing closure having a closure lid, a sealing wedge is positioned on an interior surface of the lid for sealing engagement through the exit orifice of the flow conduit when the lid is in a closed position to prevent the exit of liquid through the exit orifice.


In a second sealing mechanism for a dispensing closure having a closure lid, a sealing member portion of the flow conduit is positioned at upper portion of the flow conduit for engaging an interior of the closure lid when the lid is in a closed position. The interior of the closure lid includes a seal bead to frictionally engage the sealing member portion to prevent the flow of liquid out of the exit orifice. Alternatively, the sealing member portion includes a seal bead to frictionally engage the interior of the closure lid.


In a third sealing mechanism for a dispensing closure having a closure lid, the closure lid includes a mating surface corresponding to an exterior surface of the tip portion. When the lid is in a closed position, the mating surface seals against the tip portion to prevent the flow of liquid through said exit orifice of the flow conduit.


In another embodiment having an insert member, the dispensing closure includes multiple sealing mechanisms to prevent liquid from exiting through the exit orifice. The dispensing closure includes an insert member positioned within the exit aperture of the product container. The insert member includes an insert base for seating within the exit aperture of the product container. The insert member also includes a sealing tube portion extending upwardly from said insert base to occupy an interior volume of said flow conduit.


In a first sealing mechanism for a dispensing closure having an insert member, the sealing tube portion includes a mating surface corresponding to an interior surface of the tip portion to prevent flow of liquid through the exit orifice when the closure body is rotated into a closed position to contact the sealing tube portion.


In a second sealing mechanism for a dispensing closure having an insert member, a sealing member portion of the sealing tube portion is positioned at upper portion of the insert member. The sealing member portion engages an interior of the flow conduit when the closure is rotated into in a closed position to contact the sealing tube portion. The interior of the flow conduit includes a seal bead to frictionally engage the sealing member portion to prevent the flow of liquid out of the exit orifice. Alternatively, the sealing member portion includes the seal bead to frictionally engage the interior of the flow conduit.


In operation, the dispensing closure of the present invention provides a fan-type spray in a low pressure environment. The low pressure environment may be less than 5 psi. In one embodiment, the dispensing closure is attached to a squeeze-type product container. When the squeeze-type product container has a force applied by a user, the liquid within the container moves through the flow conduit, up through the tip portion, and discharges through the shaped exit orifice to produce a fan-type spray at less than 5 psi.


It is therefore an object of the present invention to provide a fan-type spray in a low pressure environment.


It is another object of the present invention to provide a sealing mechanism to prevent the flow of liquid through the exit orifice.


Another object of the present invention is to provide a one-piece or two-piece dispensing closure.


It is also another object of the present invention to provide a latching mechanism for securing the lid to the closure body.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features which are characteristic of the present invention are set forth in the appended claims. However, the invention's preferred embodiments, together with further objects and attendant advantages, will be best understood by reference to the following detailed description taken in connection with the accompanying drawings in which:



FIG. 1 is a perspective view of a one-piece dispensing closure with a closure lid in an closed position;



FIG. 2 is a perspective view of the dispensing closure of FIG. 1 in an open position;



FIG. 3 is a cross-sectional view of a dispensing closure with a closure lid in an open position showing in dotted lines the outline of a neck of a product container;



FIG. 4 is an elevated cross-sectional view of the dispensing closure of FIG. 3 with closure lid in a closed position;



FIG. 5 is a perspective view of a dispensing closure with a closure lid having an interior circular wall for closing the exit orifice;



FIG. 6 is a top view of a dispensing closure with a closure lid having a sealing wedge in an open position;



FIG. 7 is an elevated cross-sectional view of a dispensing closure with a closure lid having a sealing wedge in a closed position;



FIG. 8 is a cross-sectional view of the dispensing closure of FIG. 6 having a closure lid having a sealing wedge in a closed position;



FIG. 9 is a perspective view of a two-piece dispensing closure with an insert member;



FIG. 10 is a cross-sectional view of the dispensing closure of FIG. 9 in a closed position;



FIG. 11 is an elevated cross-sectional view of the dispensing closure of FIG. 9 in a closed position;



FIG. 12 is a cross-sectional view of the dispensing closure of FIG. 9 in an open position;



FIG. 13 is an elevated cross-sectional view of the dispensing closure of FIG. 9 in an open position;



FIG. 14 is a top view of the dispensing closure of FIG. 9 including an exit orifice having a bowtie shape;



FIG. 15 is a top view of the dispensing closure of FIG. 9 including an exit orifice having a curved rectangular shape;



FIG. 16 is a top view of the dispensing closure of FIG. 9 including an exit orifice having a dumbbell shape;



FIG. 17 is a top view of the dispensing closure of FIG. 9 including an exit orifice having a half bowtie shape;



FIG. 18 is a top view of the dispensing closure of FIG. 9 including an exit orifice having a fan keyhole shape;



FIG. 19 is a top view of the dispensing closure of FIG. 9 including an exit orifice having an oval shape;



FIG. 20 is a cross-sectional view of a dispensing closure illustrating a tip portion with width (A), depth (C), and radius of exit orifice (B); and



FIG. 21 is a side view of the dispensing closure of FIG. 5 attached to a squeeze-type product container with a partial perspective view of the dispensing closure of FIG. 5 in a cut-away.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the present invention, a dispensing closure for squeeze-type containers is disclosed. This invention relates to a dispensing closure for dispensing liquid. More specifically, it relates to a dispensing closure defining an exit orifice in the closure to produce a fan-type discharge or spray in a low-pressure environment.


As shown generally in FIGS. 1-21, the present invention is generally directed to a novel dispensing closure for squeeze-type containers. Most importantly, as shown in FIGS. 1-3, the dispensing closure 10 has an exit orifice 16 defined in a tip portion 18 of the flow conduit 20. The tip portion 18 includes a raised non-planar surface which allows for a collection of liquid before discharging liquid in a fan-type spray through the exit orifice 16 in a low pressure environment. As shown in FIG. 2, it should be noted that a raised spherical surface may be one type of non-planar surface used in the present invention but it is not limited to a raised spherical surface. Also, it should be further noted that the exit orifice 16 may have a shape other than rectangular depending upon the viscosity of the liquid and desired dimension of the fan-type spray.


A low pressure environment may be produced by a squeeze-type product container 900 (FIG. 21) upon a force being applied to the product container 900 by a user. In one embodiment, the fan-type spray is provided at less than 5 psi. Alternatively, the fan-type spray may be produced between 0.5 psi and 3 psi which is typically the result of an average squeeze produced by a person of average strength.


Referring to FIG. 2, the dispensing closure 10 for a squeeze-type container produces a fan-type spray in a low pressure environment. Generally, each of the embodiments includes a closure body 12 having an upper deck 24 and a skirt 22 depending from the upper deck 24 where the skirt 22 is configured and arranged to attach to a product container 900, such as squeeze-type product container 900 or inverted-type container (not shown). Referring to FIG. 3, the skirt 22 includes internal threads 22A for threaded mounting on an open end or neck of a product container (illustrated in dotted lines). However, it is to be understood that other skirt mounting arrangements are also contemplated within the scope of the invention, and the invention should not be limited to the inwardly threaded skirt as the singular means for mounting. Furthermore, the skirt 22 may be a singular or double walled skirt.


A flow conduit 20 extends from an interior of the closure body 12 and through the upper deck 24 to provide a flow path from an interior of the closure 10 to an exterior of the closure 10. The flow conduit 20 has an entrance orifice 20A within the interior of the closure body 12 and an exit orifice 16 outside the exterior of the closure body 12. In one embodiment, the flow conduit 20 is raised in an elongated manner outside the exterior surface of the body closure 12. The flow conduit 20 has an inner wall 21 extending between the entrance orifice 20A and the exit orifice 16. The inner wall 21 is gradually inclined to funnel liquid from an interior of the closure body 12 to the tip portion 18. Note, a peripheral wall 26 extends upwardly from the upper deck 24 to surround a first body portion 22 of the flow conduit 20 to capture excess liquids.


The flow conduit 20 includes the tip portion 18 for facilitating the production of a fan-type spray through the exit orifice 16. The tip portion 18 includes the raised non-planar surface having an interior volume to collect liquid before the liquid exits through the exit orifice 16 under low pressure. The collection of liquid within an interior volume of the raised non-planar surface provides a continuous and even flow of liquid as it exits through the exit orifice 16.


The tip portion 18 defines a shape of the exit orifice 16 which facilitates the production of the fan-type spray. Referring back to FIG. 2, the dispensing orifice 16 is defined along a diameter of a non-planar surface of the flow conduit 20 and the orifice 16 has a substantially rectangular shape. The rectangular exit orifice 16 has a uniform width to provide a uniform thickness and width of the fan-type spray when it exits through the exit orifice 16. Also, it should be noted that to produce a continuous fan-type spray, the exit orifice 16 may also define a uniform width, especially for the rectangular shape, and the tip portion 18 may have a relatively uniform thickness of material.


It should be noted that the rectangular exit orifice 16 and tip portion 18 having the non-planar surface, disclosed in FIGS. 1-3, are an example and that it is contemplated that other dimensions of the width and depth of the tip portion 18 and a radius of the exit orifice 16 may be adjusted to accommodate varying viscosity of the liquid, desired dimensions of the fan-type spray, and intended purpose of the liquid.


The dispensing closure 10 can provide a fan-type discharge using multiple configurations of the dispensing orifice 16. Other shapes of the exit orifice 16 that may be used are, for example, a bowtie shape (FIG. 14), curved rectangular shape (FIG. 15), dumbbell shape (FIG. 16), half bowtie shape (FIG. 17), keyhole shape (FIG. 18), oval shape (FIG. 19), “J” shape, “T” shape, inverted “T” shape, inverted “J” shape, and other non-circular shapes.


The bowtie shape (FIG. 14) of the dispensing or exit orifice 16 provides a lighter stream of liquid from the middle of the dispensing orifice 16 and heavier stream of liquid at its ends. This may be particularly desirable for purposes of discharging a toilet blow cleaner inside an interior of a bowl where more liquid may be desirable in an upper lip area and towards the center of the bowl. In another embodiment, the dispensing orifice may be designed in the shape of a “T”, “J”, inverted “J”, and inverted “T”. These different configurations provide a lighter stream of liquid from the middle of the dispensing orifice with a heavier stream at a single end.


In another embodiment, the dispensing orifice 16 may also have a non-uniform width along the tip portion 18 of the flow conduit 20. For example, the “fan” orifice 16 may have an increased or decreased width of the dispensing orifice 16 depending upon the viscosity of the product and desired angular flow of the liquid.


Also, the dispensing orifice 16 may extend less than the entire radius or diameter of the non-planar surface area of the tip portion 18. The dispensing orifice 16 may be set off its normal orientation, by degrees, in order to provide a better or optimal angle for streaming liquid into a toilet bowl or other desirable environment. It should also be noted that the fan-type spray from the present invention may be adjusted by using different shapes, sizes, and/or configurations in accordance with those dispensing characteristics desired.


In one embodiment, the flow conduit 20, the closure body 12, and the tip portion 18 are integrally formed to facilitate the fan-type spray in a low pressure environment. The flow conduit 20 includes a first body portion 22 of the flow conduit 20 extending from the upper deck 24 to the tip portion 18 in a gradually decreasing diameter. The tip portion 18 has a height less than the first body portion 22 of the flow conduit 20 to funnel liquid from an interior of the closure body 12 to the tip portion 18.


Now referring generally to FIGS. 1-3, in a one-piece dispensing closure 10 including a closure lid 14, the dispensing closure 10 includes multiple sealing mechanisms to prevent liquid from exiting through the exit orifice 16. In one embodiment, the dispensing closure 10 includes a closure lid 14, a hinge mechanism 28 for connecting the lid 14 to the body 12, and a latching mechanism 30 for securing the lid 14 to the body 12.


Referring to FIGS. 6-8, in a first sealing mechanism for a dispensing closure 40 having a closure lid 44, a sealing wedge 42 is positioned on an interior surface of the lid 44 for sealing engagement through the exit orifice 48 of the flow conduit 50 when the lid 44 is in a closed position to prevent the exit of liquid through the exit orifice 48.


Referring to FIGS. 3-4, in a second sealing mechanism for a dispensing closure 10B having a closure lid 14, a sealing member portion 52 of the flow conduit 20 is positioned at an upper portion of the flow conduit 20 for engaging an interior of the closure lid 14 when the lid 14 is in a closed position. The interior of the closure lid 14 includes a seal bead 23 to frictionally engage the sealing member portion 52 to prevent the flow of liquid out of the exit orifice 16. Alternatively, the sealing member portion 52 includes a seal bead to frictionally engage the interior of the closure lid 14.


In a third sealing mechanism for a dispensing closure 10B having a closure lid 14, the closure lid 14 includes a mating surface corresponding to an exterior non-planar surface of the tip portion 18. When the lid 14 is in a closed position, the mating surface seals against the tip portion 18 to prevent the flow of liquid through the exit orifice 16 of the flow conduit 20.


In a fourth sealing mechanism for a dispensing closure 60 having a closure lid 62, the closure lid 62 includes an inner circular wall 66 depending from a central region. Preferably, the inner circular wall 66 has a diameter to allow for a friction fit with the sealing member portion 68 of the flow conduit 70. When the closure lid 62 is in a closed position, the inner circular wall 66 snaps over the exit orifice 72 to prevent the exit of liquid therethrough.


Now referring generally to FIGS. 9-13, in a two-piece dispensing closure 80 having an insert member 84 and a closure body 82, the dispensing closure 80 includes multiple sealing mechanisms to prevent liquid from exiting through the exit orifice 86. The dispensing closure 80 includes an insert member 84 positioned within the open end of the product container 900. The insert member 84 includes an insert base 88 for seating within the open end of the product container 900. The insert member 88 also includes a sealing tube portion 90 extending upwardly from said insert base 88 to occupy an interior volume of the flow conduit 92.


Referring to FIG. 9-10, in a first sealing mechanism for a dispensing closure 80 having an insert member 84, the sealing tube portion 90 includes a mating surface corresponding to an interior surface of the tip portion 94. When the closure body 82 is rotated into a closed position to contact the sealing tube portion 90 with the interior surface of the tip portion 94, the liquid is prevented from discharging through the exit orifice 86.


Referring to FIG. 11, in a second sealing mechanism for a dispensing closure 80 having an insert member 84, a sealing member portion 96 of the sealing tube portion 90 is positioned at an upper area of the insert member 84. The sealing member portion 96 engages an interior of the flow conduit 92 when the closure body 82 is rotated into in a closed position to contact the sealing tube portion 90. The interior of the flow conduit 92 includes a seal bead 98 to frictionally engage the sealing member portion 96 to prevent the flow of liquid out of the exit orifice 86. Alternatively, the sealing member portion 96 includes the seal bead to frictionally engage the interior of the flow conduit 92. Referring to FIGS. 12-13, when the dispensing closure is rotated into an open position, the closure body 82 disengages from contact with the insert member 88 to allow the flow of liquid through the exit orifice 86.


Referring to FIGS. 14-19, the dispensing closure 80 can provide a fan-type discharge using multiple configurations of the dispensing orifice 86. Other shapes of the exit orifice 86 that may be used are, for example, a bowtie shape (FIG. 14), curved rectangular shape (FIG. 15), dumbbell shape (FIG. 16), half bowtie shape (FIG. 17), keyhole shape (FIG. 18), oval shape (FIG. 19), “J” shape, “T” shape, inverted “T” shape, inverted “J” shape, and other non-circular shapes


As shown generally in FIGS. 1-8, the dispensing closure 10A, 10B, 40, 60 may have a lid which is attached to the dispensing closure by a hinge mechanism, such as a living hinge. Also, referring to FIG. 3, the dispensing closure 10B may include a latching flange 100 near the hinge mechanism. When the lid 14 is pivoted about the hinge, the latching flange 100 extending from the closure lid 14 may engage a portion of the closure body 12 to facilitate an open position of the lid 14.


As shown generally in FIGS. 1-8, the dispensing closure 10A, 10B, 40, 60 may also include various latching mechanisms for releasably securing the closure lid to the closure body. Referring to FIGS. 2 and 6, a dispensing closure is illustrated that includes a child-resistant latching mechanism. This latching mechanism features a double-walled skirt having diametrically opposing sides which are depressed, at a lower portion, before opening the closure lid hingedly connected to the closure. In operation, the dispensing closure disengages the lid from the closure body by pushing inwardly on the outer side wall of the skirt to move hook members on the closure body away from hook members on the closure lid and away from a central axis of the dispensing closure. Also, a single latching mechanism may also be used as shown in FIG. 5. It should be noted that FIGS. 1-8 show an example of one type of hinge mechanism and latching mechanism and that other types of lid configurations may be used in the present invention.


Now referring to FIG. 21, in operation, the dispensing closure 60 of provides a fan-type spray or stream of liquid that fans out in a low pressure environment when the product container is squeezed. Note, any of the embodiments of the dispensing closure may be attached to the product container and this is merely an example. The low pressure environment may be less than 5 psi. In one embodiment, the dispensing closure is attached to a squeeze-type product container. When the squeeze-type product container has a force applied by a user, the liquid within the container moves through the flow conduit, collects within the tip portion to decelerate the velocity of the liquid, and discharges through the fan-type shaped exit orifice in a fan-type spray at less than 5 psi. In operation, the dispensing closure provides a stream of liquid that fans out when the product container is squeezed. Note, the purpose of the fan-type discharge is to provide a person who is cleaning, for example, a toilet bowl a wide stream of liquid to cover the desired portions of the bowl.


The flow path and velocity of the liquid through the dispensing closure during operation provides a fan-type spray in a low-pressure environment. Upon applying pressure to product container full of liquid, the liquid moves from an interior of the product container and into an interior of the dispensing closure attached to the product container. The liquid then accelerates into the flow conduit. The flow conduit has a gradually decreasing diameter which funnels the liquid into the tip portion where it temporarily collects or pools in the interior volume of the raised non-planar surface. The purpose of the raised non-planar surface is to maintain a continuous flow of the liquid discharge while it exits through the shaped exit orifice in a fan-type discharge.


Referring to FIGS. 1-8, the dispensing closure with the closure lid, or one-piece molded closure, operates in the following manner. To open the dispensing closure, the user depresses the sides of the closure body to release the closure lid whereby the closure lid is moved into an open position. Next, the user squeezes the product container to provide a discharge of liquid through the exit orifice of the flow conduit in a fan-type spray. To close the dispensing closure, the user snappingly engages the lid over the closure body.


Referring to FIGS. 9-13, the dispensing closure with the insert member, or two-piece molded closure, operates in the following manner. To open the dispensing closure, a user rotates or turns the closure body relative to the stationary insert member to remove the sealing tube away from sealing engagement with the exit orifice. Next, the user squeezes the product container to discharge liquid through the exit orifice in a fan-type spray. To close the dispensing closure, the user rotates or turns the closure body relative to the stationary insert member to return the sealing tube in sealing engagement with the exit orifice.


It is to be noted that the dimensions and shape of the dispensing closure, flow conduit, tip portion, and exit orifice are adjustable depending upon the viscosity of the product stored within an interior of the product container. Referring to FIG. 20, an example of a tip portion is illustrated which defines a width (A), depth (C), and radius (B) of said exit orifice which are adjustable according to the viscosity of the liquid and desired dimension of the fan-type discharge. For example, for a low viscosity liquid, it may be desirable for a flow conduit with smaller dimension to achieve a lower flow volume. Conversely, it may be desirable for a flow conduit with large dimensions for a highly viscous product to achieve a higher flow volume.


In view of the foregoing, a dispensing closure is provided related to container closures, and more particularly to squeeze-type container dispensing closures. This invention relates to a dispensing closure for dispensing liquid with varying degrees of viscosity. More specifically, it relates to a dispensing closure defining an orifice in the closure to produce a fan-type discharge or spray in a low-pressure environment.


It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be within the scope of the present invention.

Claims
  • 1. A dispensing closure, comprising: a closure body;a closure lid; anda hinge connecting said closure lid to said closure body,said closure body includingan upper deck,an inner skirt depending from the upper deck, said inner skirt being configured and arranged to attach to a squeezable product container, anda flow conduit extending upwardly from said upper deck to provide a flow path from an interior of said closure to an exterior of said closure,said flow conduit and said closure body being integrally formed,said flow conduit including an exit orifice,said exit orifice being configured and arranged to produce a fan-shaped discharge when a force of 0.3 psi to 5 psi is applied to said squeezable product container, wherein a shape of said exit orifice is selected from a group consisting of rectangular, bowtie, half bowtie, oval, keyhole, dumbbell, and curved rectangular,said flow conduit including a tip portion, said tip portion having a semi-spherical surface having an interior volume to collect liquid before said liquid exits through said exit orifice, wherein said semi-spherical surface is an integral raised convex surface of said flow conduit, wherein said exit orifice extends through, and along, said semi-spherical surface of said tip portion along an arc,said dispensing closure further comprising a sealing structure cooperating with exit orifice to prevent liquid from exiting therethrough, wherein said sealing structure comprises a sealing wedge on said closure lid, said sealing wedge extending along a semi-spherical arc, said sealing wedge being received within said exit orifice when said closure lid is in a closed position.
  • 2. The dispensing closure of claim 1, further comprising a latch mechanism releasably latching said lid to said body.
  • 3. The dispensing closure of claim 1, wherein the tip portion defines a width (A), depth (C), and radius (B) of said exit orifice which are adjustable according to the viscosity of the liquid and desired dimension of the fan-shaped discharge.
  • 4. A dispensing closure, comprising: a closure body;a closure lid; anda hinge connecting said closure lid to said closure body,said closure body including a deck, an inner skirt depending from the deck, said inner skirt being configured and arranged to attach to a squeezable product container,an outer skirt depending from said deck, said outer skirt concentrically spaced from and surrounding said inner skirt,a flow conduit extending upwardly from said deck to provide a flow path from an interior of said closure to an exterior of said closure,said flow conduit and said closure body being integrally formed,said flow conduit including an exit orifice,said exit orifice being configured and arranged to produce a fan-shaped discharge when a force of 0.3 psi to 5 psi is applied to said squeezable product container, wherein a shape of said exit orifice is selected from a group consisting of rectangular, bowtie, half bowtie, oval, keyhole, dumbbell, and curved rectangular,said flow conduit including a tip portion, said tip portion having a semi-spherical surface having an interior volume to collect liquid before said liquid exits through said exit orifice, wherein said semi-spherical surface is an integral raised convex surface of said flow conduit, wherein said exit orifice extends through, and along, said semi-spherical surface of said tip portion along an arc,said dispensing closure further comprising a sealing structure cooperating with exit orifice to prevent liquid from exiting therethrough, wherein said sealing structure comprises a sealing wedge on said closure lid, said sealing wedge extending along a semi-spherical arc, said sealing wedge being received within said exit orifice when said closure lid is in a closed position,said dispensing closure further comprising a child-resistant latch mechanism releasably latching said closure lid to said closure body, said latch mechanism comprising diametrically opposed hook members on said closure lid, diametrically opposed hook arms extending upwardly from said deck of said closure body, said hook arms engaging with said hook members when said closure lid is in said closed position, said hook arms disengaging from said hook members when diametrically opposed sides of said outer skirt, beneath said hook arms, are squeezed inwardly, thereby moving said hook arms outwardly.
  • 5. The dispensing closure of claim 4, wherein the tip portion defines a width (A), depth (C), and radius (B) of said exit orifice which are adjustable according to the viscosity of the liquid and desired dimension of the fan-shaped discharge.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/865,763, filed Apr. 18, 2013, which is a continuation of U.S. patent application Ser. No. 12/487,583 filed Jun. 18, 2009, now U.S. Pat. No. 8,469,241, issued Jun. 25, 2013, which is a non-provisional of U.S. Provisional Application Ser. No. 61/073,616, filed Jun. 18, 2008, the entire contents of which are incorporated herein by reference.

US Referenced Citations (80)
Number Name Date Kind
2755137 Hughf Jul 1956 A
2759643 Dahlin Aug 1956 A
3877598 Hazard Apr 1975 A
4022352 Pehr May 1977 A
4109869 Brockelsby et al. Aug 1978 A
4175704 Cohen Nov 1979 A
4196819 Fontanaud Apr 1980 A
4377247 Hazard Mar 1983 A
4420100 Mueller Dec 1983 A
4718607 Levine Jan 1988 A
4739906 LoTurco Apr 1988 A
4760956 Mansfield Aug 1988 A
4971256 Malcolm Nov 1990 A
5005737 Rohr Apr 1991 A
5033647 Smith Jul 1991 A
5033655 Brown Jul 1991 A
5040950 Dalquist, III et al. Aug 1991 A
5158233 Foster Oct 1992 A
5246145 Leoncavallo Sep 1993 A
5328058 Leoncavallo Jul 1994 A
5353970 Stull Oct 1994 A
5492253 Proshan Feb 1996 A
5547091 Neveras Aug 1996 A
5632420 Lohrman May 1997 A
5639025 Bush Jun 1997 A
5642860 Bush et al. Jul 1997 A
5664732 Smolen, Jr. et al. Sep 1997 A
5692682 Soule et al. Dec 1997 A
5762216 Takeuchi Jun 1998 A
5765705 Deubel Jun 1998 A
5782388 De Nervo Jul 1998 A
5868323 Cantor Feb 1999 A
5878959 Smolen, Jr. et al. Mar 1999 A
5890655 Collias et al. Apr 1999 A
5924605 Baudin Jul 1999 A
5927566 Mueller Jul 1999 A
5967377 Glynn Oct 1999 A
5967384 Mengeu Oct 1999 A
6056142 Elliott May 2000 A
6152324 Baudin Nov 2000 A
6176399 Schantz et al. Jan 2001 B1
6234363 Stradella May 2001 B1
6257431 Baudin Jul 2001 B1
6257457 Oechsel Jul 2001 B1
6478184 Berge Nov 2002 B2
6659369 Foster et al. Dec 2003 B1
6698605 Clodfelter Mar 2004 B2
6840409 Dambricourt Jan 2005 B2
6877681 Hartle et al. Apr 2005 B2
6991139 Garcia et al. Jan 2006 B2
7051905 Hierzer May 2006 B2
7077296 Brown Jul 2006 B2
7124962 Fryan et al. Oct 2006 B1
7152763 Stull Dec 2006 B2
7419069 Naesje Sep 2008 B2
7594595 Gueret Sep 2009 B2
7644843 Bush Jan 2010 B1
7762438 Skillin Jul 2010 B2
7798348 Sawyer Sep 2010 B2
7980432 Brannon Jul 2011 B2
8469241 Romanov et al. Jun 2013 B2
9045263 Fox Jun 2015 B2
20050061765 Skillin Mar 2005 A1
20050133475 Goto Jun 2005 A1
20050205607 Hierzer Sep 2005 A1
20050211271 Brumlik Sep 2005 A1
20050279776 Decottignies et al. Dec 2005 A1
20060011667 Skillin Jan 2006 A1
20060273195 Junkel Dec 2006 A1
20070029352 Norris Feb 2007 A1
20070181522 Davidson Aug 2007 A1
20070241075 Skillin Oct 2007 A1
20070295763 Brunner Dec 2007 A1
20070295764 Socier Dec 2007 A1
20080110933 Goncalves May 2008 A1
20090314856 Romanov Dec 2009 A1
20120000944 Romanov Jan 2012 A1
20130240564 Albaum Sep 2013 A1
20150306607 Romanov Oct 2015 A1
20160288147 Hofmann Oct 2016 A1
Foreign Referenced Citations (6)
Number Date Country
0405472 Jan 1991 EP
0439109 Jul 1991 EP
0905052 Mar 1999 EP
0911616 Apr 1999 EP
9702896 Jan 1997 WO
2004043820 May 2004 WO
Non-Patent Literature Citations (1)
Entry
In Re: Application 09767769.4-2425 PCT?US2009/047857 in the name of Polytop Corporation, extended European search report dated Apr. 12, 2012.
Related Publications (1)
Number Date Country
20150283562 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61073616 Jun 2008 US
Continuations (2)
Number Date Country
Parent 13865763 Apr 2013 US
Child 14744883 US
Parent 12487583 Jun 2009 US
Child 13865763 US