1. Field of the Invention
This invention relates generally to neutron generators, and, more particularly, to a method and apparatus for creating fast-pulsed beams for such generators.
2. Description of the Related Art
Active neutron interrogation has been demonstrated to be an effective method of detecting both explosives and shielded fissile material in, for example, cargo containers. In the case of explosives, the energy of the neutrons passing through a sample in such a container can be measured. With the attenuation of the neutron energies a function of the nature of the materials encountered by the neutron beam, the elemental composition of the target material can be determined: i.e., whether or not the sample presents such explosive containing elements as N, H, C, and O, especially elevated levels of N. In the case of shielded fissile material, the penetrating ability of neutrons allows them to “see” through material that may be surrounding the fissile material. When the neutrons interact with fissile material they induce fission resulting in the emission of neutrons and gammas that may then be detected.
A fast pulsing/fast fall-time neutron generator interrogation system can be used for both types of detection modalities. In the case of fissile material, Differential Die-Away (DDA) analysis has been used to measure the fissile content of nuclear waste containers, and is a sensitive technique for detecting the presence of fissile materials such as 235U and 239PU. In DDA analysis, a neutron generator produces repetitive pulses of neutrons that are directed into a cargo container that is under inspection. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. The thermalization process is very rapid and the epithermal neutrons decays within microseconds. The thermal neutrons, however, decay much slower, which is on the order of hundreds of microseconds. If Special Nuclear Material (SNM) is present, the thermalized neutrons from the source will cause fissions that produce a new source of neutrons. These fast fission neutrons decay with a time very similar to that of the thermal neutron die-away of the surrounding cargo. Fast fall-off of the neutron pulse and low neutron background serves to improve the DDA signal and thus SNM detection. See References [1], [2], and [3].
In the case of interrogation of cargo containers for the detection of explosives, Pulsed Fast Neutron Transmission Spectroscopy (PFNTS) has been applied, employing a point neutron source with ultra short pulse widths in the order of about 2-10 nano seconds, such short pulses required for the necessary time of fight measurements. The use of PFNTS analysis is further described in commonly owned PCT Application PCT/US2007/087560, which application is incorporated herein by reference.
The basic principle of a neutron generator is to bombard an ion beam of either deuterium (D) or tritium (T) onto a target. Neutrons are produced via the D-D, D-T, or T-T reactions if the target surface is loaded with the D or T molecules. By on/off switching of the deuterium or tritium ion beams reaching the target, one can thus obtain a pulsed neutron source.
There have been several approaches undertaken to produce nano-second ion beam pulses. Beam chopping is the most common technique and is being applied with many accelerator systems. In this approach, a dc or long pulse ion beam is first extracted from an ion source. It is then accelerated and focused by using an Einsel lens. A parallel plate deflector is used to swipe the focused ion beam across a collimator slit. Ion beam pulses will be formed whenever the beam passes through the slit. The narrower the slit width and the faster the beam sweep rate, the shorter will be the beam pulse length.
In this scheme, the switching time is determined by the speed of the traverse sweeping and the beam size with respect to the aperture of the collimator. To keep the neutron background low, two-stage acceleration is required. Thus, the beam is first accelerated to a medium energy for transverse sweeping. After going through the collimator, it is then further accelerated to its full energy for neutron generation. The requirement of using extra electrodes and a fast pulsing high voltage power supply to sweep the beam makes the system complicated and limits the overall current density and duty factor.
Other disadvantages are presented with this approach. First, for only the very small percentage of the duty cycle when the beam sweeps across the opening of the collimator slit does the beam passes through the slit. During the remaining portion of the beam sweep, the beam is lost on the collimator itself In order to dissipate the power deposited on the collimator electrode, active water cooling is also needed. For deuterium ion beam acceleration, since the ions impinge on the collimator with tens of KeV energy, substantial amounts of neutrons are also generated by the D+D fusion reaction. This results in the generation of a high level of background neutrons which interfere with interrogation measurements.
In another approach, such as reported in PCT/US2007/087560, Leung et al., the ion beam is swept past a target material, that portion of the beam not “on target” being received by a beam dump. Neutron beams are generated only when the swept ion beam is “on-target”. In this scheme, the beam pulse width is determined by the speed of transverse sweeping and both the beam and target size. One problem with this approach is the technical difficultly of machining a small target with active water cooling.
Still another approach to beam pulsing has been to control ion extraction. This has been achieved by controlling the extraction gap, as explained in commonly owned U.S. Pat. No. 6,985,553 to Leung et al. In this approach an ion beam is extracted from a single or multi-aperture plasma ion source using two spaced electrodes, a plasma electrode and an extraction electrode. To produce ultra short ion or neutron pulses the apertures in the extraction system are suitably sized to prevent ion leakage, the electrodes suitably spaced, and the ion beam current leaving the source regulated by applying short voltage pulses of a suitable voltage to the extraction electrode.
Notably, at the beam “off” condition, the positive bias voltage applied to the extraction electrode pulls electrons from the ion source plasma. These extracted electrons may bombard the extraction electrode causing damage. They can also ionize the background gas in the channel and create a localized plasma. If the aperture size is small enough (in the order of micrometers), most electrons can't escape even at reverse bias. However, for micro-sized apertures, the thickness of the extraction electrode will be on the order of tens of microns (in order to keep the proper aspect ratio), which makes it quite fragile and less heat resistant.
Notwithstanding these various approaches, among others (such as achieving beam pulsing by switching the plasma on and off within the ion source, e.g. by pulsing the RF power at the ion source), there remains the need for a robust, compact and simplified means for obtaining pulsed ion beams of very short duration with fast fall time.
An apparatus and method are described herein for obtaining short pulse width/fast fall time ion beams. These beam pulsing results are achieved by the application of a retarding potential (gating) to one of the extraction electrodes in a multi electrode extraction system.
In an embodiment of the invention, an apparatus is provided including an ion source and an ion beam extraction system comprising three electrodes. In this embodiment, the first electrode forms the face plate of the ion source, and is maintained at a potential V1 which is typically the same potential as that of the ion source housing. This first extraction (i.e. plasma) electrode is positioned adjacent the plasma, and is provided with one or more apertures, this electrode serving to both contain the plasma within the ion source, and provide an exit pathway for the extracted ions used to form the ion beam. The second, or puller electrode, is closely spaced to the first electrode to define a first gap. This electrode is maintained at a voltage potential V2 which is negative relative to the voltage potential V1 of the plasma electrode (V1>V2), which effectively “pulls” the ions from the ion source through the apertures provided in the plasma electrode. Here, the bias of the second electrode provides a forward bias in the first gap, with electrons of the plasma separated out in this first gap.
A third electrode, the gating electrode, is closely spaced downstream from the second electrode to define a second gap, and is maintained at a third potential V3. In the beam “on” mode, the potential V3 of this electrode is less than that of V1. Typically V3 is equal to or less (i.e. more negative) than the potential of the second electrode (V3≦V2), which allows the extracted ions to continue on their acceleration path to the target. In the beam “off” mode, the potential of the third electrode V3 is raised above the potential of the first electrode V1 to an appropriate set point such that the flow of ions is stopped. Here, V3>V1. In operation, V1 and V2 can be preset. Then V3, in one embodiment, can be pulsed from a preset low potential where V3≦V2<V1 to a set high potential where V3>V1 to stop ion beam flow. In this embodiment, the operational bias is beam “on”, with the pulse set to raise V3 to interrupt beam flow. In a second mode of operation, where the operational bias is beam “off”, V1 and V2 can be preset to permit beam flow. Initially set high where V3>V1 (beam “off”), the third electrode can be “pulsed” (that is, dropped) to a low potential where V3≦V2<V1, thus permitting the beam to pass to the target.
In an embodiment of the invention, a forth electrode is positioned fairly close to the third electrode, this electrode maintained at a potential V4. This potential V4 can be equal to or less than V3 to both pass and/or further accelerate the beam, and effectively shield the extraction system from the field created by the strongly negative potential V5 of the target, V5 accelerating the ions of the ion beam to the target at their required final energy.
The foregoing aspects and others will be readily appreciated by the skilled artisan from the following description of illustrative embodiments when read in conjunction with the accompanying drawings.
By way of this invention, a compact neutron generator is described which employs a multiplicity of small ion beamlets at low energy, in combination with an array of electrodes to effectively gate the ion beamlets. More particularly, in an exemplary embodiment of the invention, an array of 0.6-mm-diameter apertures is employed as opposed to one 6 mm diameter aperture such that gating the beamlets can be done with low voltage and a small gap to achieve sub-micro second ion beam fall times with low levels of background neutrons. Arrays of 16 apertures (4×4) and 100 apertures (10×10) were designed and fabricated for beam extraction experiments. In these experiments, using a gating voltage of 1200 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses was measured at approximately 0.15 micro seconds at beam energies of 1000 eV.
A first plasma extraction electrode 104, having multiple extraction apertures of diameter “s”, which in one embodiment forms the faceplate of ion source 100, is typically held at the potential V1 of ion source 100. A second apertured electrode 108 spaced a distance “d” from electrode 104, defining a first gap, is used to extract the D+ or T+ ions from source 100. (For normal beam optics, the diameter of an extraction aperture “s” will be smaller than gap “d”.) The potential V2 of electrode 108 is set below the potential V1 of electrode 104 so as to effectively “pull” the ions from the plasma maintained within source 100 and through the apertures of electrode 104. The forward bias in the gap between electrode 108 and next electrode 110, when operated in the beam “on” mode allows the extracted ions to continue their acceleration to the target.
A third (gating) electrode 110, defining a second gap, is maintained at a potential V3 that in one embodiment is equal to or slightly less than the potential V2 of the second (puller) electrode. In this embodiment, electrons of the plasma are separated out in the first gap “d” between plasma electrode 104 and puller electrode 108.
A pulsed change in the potential applied to gate electrode 110 can be used to either stop or start the ion flow, depending upon whether or not it is initially set at low or high position. This gating voltage V3 needs to be higher but doesn't need to be much higher than the plasma electrode voltage V1 to stop ion flow. Just how much higher it is set is not critical: the differential required to achieve beam stoppage can be determined by routine trial and error for the particular beam system under consideration.
It is to be appreciated that the system can be operated in one of two modes, where either the bias is to beam “on” or beam “off”. Here, pulsing of the third electrode serves to either stop beam flow (by being pulsed to a higher potential than V1), or turn it on (by dropping the potential to one that is lower than V1, and preferably equal to or below V2). In the case of DDA analysis either mode may be used as beam fall time is rapid in either mode. In the case of PFNTS analysis, bias to beam “off” mode may be preferable, it being potentially easier to electronically generate shorter beam “on” pulses.
Standard, commercially available power supplies can be used for powering the plasma and puller electrodes 104 and 108, respectively. A pulsed voltage power supply is used to provide the voltage change to the third, gating electrode 110. In one embodiment, the second power supply may also include pulsing capability, and for ease of manufacturing, in yet another embodiment, the same type of pulsed power supply can be used with all three electrodes. In addition to the ability to set output voltages, in the case of a power supply having a pulsing feature, the power supply should also be programmable so that both a first and second voltage level may be selected, as well as the time (the duty cycle) at which the output is maintained at said first or second voltage. Generally, while the potential of each electrode can be set as desired, once voltage levels are set, in operation they remain fixed.
The smaller the aperture openings, the smaller the distance between the various electrodes can be, and thus the more compact the overall length of the accelerator column can be, all of which facilitates the extraction of ions at low voltage. Using low voltage also minimizes the problem of voltage breakdown as well as reduces the time of flight to produce faster gating. In addition, low voltage is preferred because it not only makes the pulsing instrumentation easier, but also results in lower capacitive stored energy between electrodes, which is easier to accommodate electronically.
For a compact neutron generator to achieve less than 1 μs pulse fall time, given the beam current requirements, it has been found preferable to gate multiple small ion beamlets at low energy, as opposed to gating a single, large beam of the same total beam current. Fast fall time requires a small gap between electrodes, which in turn requires small openings “s”. Thus, to meet beam current requirements, multiple beamlets are extracted at small s and low V1. So doing, gating voltage V3 doesn't need to be much higher than the extraction voltage V1 to stop the ion flow.
Returning to
In an experiment using an ion source having multiple beam apertures, as shown in
In the preceding discussion, the ion source and gating means for turning the beam on and off has been described in connection with a linear, i.e. axial generator. The principals described herein, however, are equally applicable to a co-axial neutron generator such as described in commonly owned and issued U.S. Pat. Nos. 6,870,894, 6,907,097 and 7,362,842 to Leung, et al. With reference to
As illustrated, the plasma chamber is positioned to the outside of the device with the target positioned at its center. Beamlets exiting the plasma source are thus directed from the periphery of the chamber to its center, where they strike the chamber target. It is to be appreciated that as disclosed in the cited patents, the organization of the generator can be reversed, such that the plasma source is in the center of the chamber, with the target disposed to the periphery of the generator. In either case, the electrodes would be arranged in the same order as is shown for the axial arrangement as depicted in
For either of the two arrangements in the case of the coaxial generator or in the case of the axial generator, for ease of construction, and durability and to better electrically isolate the electrodes each one from the other, they can be separated by a dielectric/insulating material such as ceramic.
With reference again to
If the potential of a third electrode V3 is increased to a value higher than the plasma potential V1, the ions will be stopped at the entrance of the third electrode by the potential barrier. As a result, no ions will arrive at the target, and therefore no neutrons will be produced. In order to form 2 ns neutron pulse lengths, a short voltage pulse (2 ns pulse length) is applied to the third electrode. If small micron size (50 to 100 μm in diameter) apertures are used, the voltage V3 needed to switch off the ion beam will also be small. Only a 2 ns low voltage pulser is needed in this system operation.
In an alternative operational mode for the coaxial design of
The neutron source size can be adjusted by choosing the proper diameter of the target tubing 308. The overall dimension of the device is one embodiment is approximately 25 cm in diameter and 12 cm in height. Pure deuterium discharge operation will produce mono-energetic 2.4 MeV D-D neutrons while pure tritium discharge operation will provide a neutron spectrum with energy ranging from 0 to 9 MeV. Mixing of deuterium and tritium gas in the discharge will form 14 MeV D-T neutrons. For PFNTS applications, a “white spectrum” is needed. For this reason, the device is operated with pure tritium.
With either the axial or coaxial neutron generator, the smaller the extraction apertures contained within the first plasma electrode, the lower the voltage differential required to extract the ions from the plasma source. Also the lower the extraction voltage, the smaller differential required to block the flow of ions which can further reduce beam “on” times.
1. B. D. Rooney et al., “Active Neutron Interrogation Package Monitor”, IEEE Nuclear Science Symposium, 1998, Conference Record, Vol. 2, 1998, p. 1027.
2. K. A. Jordan, and T. Gozani, “Detection of 235 U in Hydrogenous Cargo with Differential Die-Away Analysis and Optimized Neutron Detectors”, Nucl. Instr. and Meth. A 579 (2007) 388.
3. Q. Ji, J. Kwan, M. Regis, Y. Wu, S. B. Wilde, J. Wallig, “Fast Fall-time Ion Beam in Neutron Generators”, 20th International Conference on Application of Accelerators in Research and Industry, AIP Conf. Proc. 1099 (2009) 660.
4. J. W. Kwan, R. Gough, R. Keller, B. A. Ludewigt, M. Regis, R. P. Wells, and J. H. Vainionpaa, “A 2.45 GHz High Current Ion Source for Neutron Production”, 17th International Workshop on ECR Ion Sources and Their Applications September 17-21, 2006, IMP, Lanzhou, China.
This invention has been described herein in considerable detail to provide those skilled in the art with information relevant to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by different equipment, materials and devices, and that various modifications, both as to the equipment and operating procedures, can be accomplished without departing from the scope of the invention itself.
It is to be understood that the above description and examples are intended to be illustrative and not restrictive. Many embodiments will be apparent to those of skill in the art upon reading the above description and examples. The scope of the invention should, therefore, be determined not with reference to the above description and examples, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patents, patent applications, and publications, are incorporated herein by reference for all purposes.
This application is the national phase application of International application number PCT/US2010/045488, filed Aug. 13, 2010, which claims priority to and the benefit of U.S. Provisional Application 61/234,085, filed Aug. 14, 2009, which is herein incorporated by reference in its entirety.
The invention described and claimed herein was made in part utilizing funds supplied by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/045488 | 8/13/2010 | WO | 00 | 5/2/2012 |
Number | Date | Country | |
---|---|---|---|
61234085 | Aug 2009 | US |