BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the cross section of the conventional fast recovery rectifier.
FIG. 2 shows the cross section of epitaxial based fast recovery rectifier in prior art.
FIG. 3 is a cross-sectional view of the present invention fast recovery rectifier.
FIG. 4 disclosed a cross section similar to FIG. 3 except the back side of the wafer is also etched like the top surface.
FIG. 5 disclosed a cross section of epitaxial based fast recovery rectifier.
FIG. 6 shows a normal charge diagram of an n-p junction.
FIG. 7 is smaller than the built-in potential of FIG. 6.
FIG. 8 disclosed a cross section of epitaxial based fast recovery rectifier by using guard rings as the termination structure.
FIG. 9 disclosed a cross Section of epitaxial based fast recovery rectifier by using guard rings as the termination structure.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Embodiment One
FIG. 3 is a cross-sectional view of the present invention fast recovery rectifier that difference with the FIG. 1 is in the etched structure 103A. In addition, the etched structure 103A of FIG. 3 can be etched (preferred by wet etch) either in round, hexagon, strip or other shapes. The diameter or the width of the etched structure is generally larger than the twice of the p-n junction 103 depth. In general, it is over 20 microns.
The p-n junction 103 is deposited, evaporated, sputtered, or plated alone with the top metal layer 105. This layer 105 can be finished by contact metal and/or barrier metal and/or top metal for soldering or wire bonding. The backside layer 105B is to be done by similar metallization process or by nickel plating. After the completion of the process, the wafer is diced into chips for assembly.
Embodiment Two
FIG. 4 disclosed a cross section similar to FIG. 3 except the back side of the wafer is also etched like the top surface. The purpose for this structure is to get the addition of the Schottky surface to absorb the minority carrier at the backside of the chip. The location of the etched structure 103B is not necessary to be aligned with the top surface structure 103A. The shape of the etched structure 103B can be round, hexagon, stripe or other structures depending on the requirement. Both FIG. 3 and FIG. 4 of the present invention offer the low cost version of the fast recovery rectifiers.
Embodiment Three
FIG. 5 disclosed a cross section of epitaxial based fast recovery. The epitaxial layer 102 of the same polarity is grown on the heavily doped substrate 100. The doping concentration and the thickness of the epitaxial layer 102 are determined by the breakdown voltage. The epitaxial layer 102 can be made by single or multiple layers. The p-n junction anode diffusion 103 can be done by either ion implantation or diffusion method of the opposite polarity of the epitaxial layer 102 using silicon dioxide as the mask. For the ion implantation, the photo resist can be used in addition to the oxide layer as the mask. The schottky contact region 107 is the masked region of region. This masked schottky contact region 107 is used for the Schottky contact.
In this embodiment, after the formation of the p-n junction anode layer, the life time killer such as Pt, Au or other species with proper thermal treatment can be added to the wafer. On the other way, after the top layer diffusion, the deep etched structure is to be done by etching, preferred by wet etch prior to the passivation process. The passivation layer 104 is done either by the conventional glass passivation or multiple CVD layers method.
Next, the top metal layer 105 is then opened for the metallization. The top metal layer 105 can be done by the Schottky contact metallization by either Pt, Au, Ni, Mo, W, Cr, Ti etc. followed by the barrier metal layer such as TiW, TiN, and the top metal such as Al, Ag, etc. for either wire bond or soldering. The backside layer 101 can be done by the implantation of similar polarity of the silicon substrate or omitted if the substrate is heavily doped. The bottom layer 105B is done either by Ti—Ni—Ag or Cr—Au or by Ni plating. After the completion of the process, the wafer is then ready for the dicing and assembly.
FIG. 6 shows a normal charge diagram of an n-p junction. The total area of qNa×xp1 at p region is equal to qNd×xn1 at the n region. Where Na is the doping concentration of the p region and xp 1 is the charge distance of the p region. Using a heavily doped p layer to move the distance xp2 of p region smaller, the total area of qNa×xp2 is smaller than qNa×xp1 with same doping level of Na. In order to balance the total charge, qNd×xn2 is the same as qNa×xp2. Where Nd is the doping concentration of n region and xn is the charge distance of the n region. Thus the built-in potential of FIG. 7 is smaller than the built-in potential of FIG. 6. In order to get good ohmic contact, this very thin layer of P++at xp2 must be presented; the same is true for n-p junction. Reduced p-n junction is made by the following conditions: a) the doping concentration of p region of said reduced p-n junction is in the same magnitude from 2 to 10 times of the n region, this can be accomplished by lightly doped implant with low energy and dose, the energy of the implant is from 500 ev to 50 Kev with implant dose from 1.0E12 to 1.0E15 per cm2, light implant anneal is done by either RTA or furnace in inert ambient, or the very shallow p++ region is placed on the top of the p region and the implant dose is from 1.0E12 to 1.0E15 per cm2 with the energy from 100V to 35 Kev, then implant anneal is done by RTA; the heavily doping concentration but very shallow p type region be used to terminate said p-n junction; b) used the heavily doping concentration but very shallow p type region, the heavily doping concentration but very shallow p type region may use low temperature p++type diffusion with the temperature from 700 deg. C. to 1100 deg C. from 60 seconds to one hour with furnace or RTA diffusion. said reduced p-n junction ranged from 0.5 ev. to 0.9 ev.
The planner termination structure for high voltage guard ring either is using single or multiple guard rings for the epitaxial wafer, the epitaxial layer or multiple epitaxial layers is deposited on the similar polarity substrate, the implant dose of the opposite polarity region ranging from less than 1E10 per cm2 to 1E16 per cm2 with the implant energy from 100v to over 100 Kev and time 10 seconds to one hour with the temperature from 600 to 1100 deg C to form the p-n junction or the Schottky region by blocking the implant species, and the implant condition for the guard ring can be the same as the opposite polarity structure.
Embodiment Four
FIG. 8 disclosed a cross section of epitaxial based fast recovery rectifier by using guard rings as the termination structure. The insulating layer 104′ is a thick oxide from 200A to over 2 microns. This insulating layer 104′ can be formed either by oxidation or CVD layers or both. The guard ring 106 structure is either by single guard ring or multiple guarding rings depending on the requirement of the reverse blocking voltage. The guard ring 106 can be formed either by diffusion or implant. The implant dose for the guard ring 106 is from less than 1E10 per cm2 to over 1E15 per cm2 and the implant energy from less than 100V to over 100 Kev depending on the design requirement. The implant dose of the diode regions 103′ is done from less than 1E10 per cm2 to over 1E15 per cm2 and the implant energy from less than 100V to over 100 Kev. This implant of diode regions 103′ and guard ring 106 is in the opposite polarity as the base material of epitaxial layer 102. The diode termination layer 103A′ is a very heavy doped region with the same polarity of diode region 103′. This diode termination layer 103A′ can be formed either by the implant energy from 100V to 50 Kev and the dose from 1E11 per cm2 to over 1E15 per cm2 or by diffusion with temperature from 700 deg C to over 1100 deg C and the time from over one hour to less than 30 seconds.
In this embodiment, the purpose of diode termination layer 103A′ is to terminate the p region into the narrower space thus the total charge will be smaller. The lifetime killer such as Pt, Au, or can be added before or after the process. The top metal layer 105 can be either formed by Au, Pt, W, Mo Cr, Ni, Ti and other metal or by forming the silicide.
Next, the diffusion barrier such as TiW, TiN or other layer before the contact layer of the 105 is deposited. The contact layer of the 105 can be either Al for wire bonding or Ag or Au for soldering. The backside layer 101 is implanted or diffused with the similar polarity of the doped substrate 100. If the resistivity of the doped substrate 100 is lower enough, this layer 101 can be eliminated. The bottom layer 105B can be used for the similar metallization process as the top metal layer 105 or by using convention method such as Cr—Au, Ti—Ni—Ag or even with Nickel plating.
Embodiment Five
FIG. 9 disclosed a cross Section of epitaxial based fast recovery rectifier by using guard rings as the termination structure. The insulation layer 104′ is a thick oxide from 200A to over 2 microns. The guard ring 106 structure is either by single guard ring or multiple guarding rings depending on the requirement of the reverse blocking voltage. The guard ring 106 can be formed either by diffusion or implant. The implant dose for the guard ring 106 is from less than 1E10 per cm2 to over 1E15 per cm2 and the implant energy from less than 100V to over 100 Kev depending on the design requirement. The implant species is in the opposite polarity as the epitaxial layer 102. The Schottky contact region 107 can be either in round, hexagon, stripe or other shapes. The Schottky contact region 107 is formed by blocking of implant during the formation of region 103 by either oxide and/or photoresist as the blocking layer. The size of 107 is designed by the needs of reverse recovery time. The top metal layer 105 can be either formed by Au, Pt, W, Mo Cr, Ni, Ti and other metal or by forming the silicide, and then the diffusion barrier such as TiW, TiN or other layer before the contact layer is deposited. The contact layer can be either Al for wire bonding or Ag or Au for soldering. The backside layer 101 is a heavily doped region with the same polarity as the doped substrate 100 and the epitaxial layer 102. This layer can be done either by implantation or diffusion. If the resistivity of the substrate 100 is lower enough, this backside layer 101 can be eliminated. The bottom layer 105B uses for the similar metallization process as the top metal layer 105 or by using convention method such as Cr—Au, Ti—Ni—Ag or even with Nickel plating. The lifetime killer such as Pt, Au or radiations can be added before or after the process.
The fast recovery rectifier of this invention is accomplished by one or more following condition;
Schottky structure is accomplished with the standard fast recovery rectifier by using Pt, Au and/or radiation lifetime killer.
Reduced p-n junction is used with the standard fast recovery rectifier with Pt, Au, and/or radiation lifetime killer.
Reduced p-n junction is used with Schottky structure and standard fast recovery rectifier with Pt, Au and/or radiation lifetime killer.
Reduced p-n junction alone.
Reduced p-n junction is used with Schottky structure.
Reduced p-n junction is used with Schottky structure and standard fast recovery rectifier with Pt, Au and/or radiation lifetime killer with epitaxial substrates.
The fast recovery rectifier of this invention uses the Pt, Au and/or radiation lifetime killer, and combine with Schottky structure to reduce the minority carriers at the forward bias and in the rectifying process condition. The fast recovery rectifier use unpolished rough surface doped substrate and rough diffusion to provide a low cost. This invention is to form a reduced p-n junction space charge region by using a thin and very high doped film of the same polarity as the top junction layer which is opposite polarity of the base silicon substrate. This early termination of the junction charge region reduces the total space charge of the p-n junction thus the smaller reverse recovery time can be achieved. This method can be used in conjunction with the life time killers and/or with the Schottky structures.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore that the present invention be limited not by the specific disclosure herein, but only by the appended claims.