The present disclosure generally relates to fat grafting and more specifically relates to methods and systems for processing fat prior to reintroduction into the body.
Autologous fat transfer (AFT), also known as fat grafting, is a process by which fat is harvested from one part of a human body and injected into another part of the same person's body where additional bulk may be needed or desired for cosmetic and/or aesthetic purposes. Clinical applications for autologous fat transfer are expanding rapidly with recent reported use in breast reconstruction and augmentation, buttock enhancement, treatment of congenital tissue defects, facial reconstruction, and skin rejuvenation. Although this is a very attractive approach and there is an increased trend in replacement of soft tissue volume with AFT, typical survival rates of grafted fat may be poor and overall results may not be satisfactory.
WO 2008/148071 discloses kits, tools, and methods are described for harvesting, processing, and using injectable dermis in volume filling procedures.
WO 2009/003135 discloses system for harvesting fat through liposuction, concentrating the aspirate so obtained, and then re-injecting the concentrated fat into a patient.
There still remains a need for improved systems and methods for processing harvested fat for later use in fat grafting procedures.
The present disclosure is generally directed to devices or systems and related methods for separating unwanted fluids/materials from a sample of lipoaspirate. The resulting cellular material is subsequently used for reintroducing into the body for augmentation or tissue replacement.
During fat grafting procedures, adipose tissue is removed from the body, for example, using an aspirating device, and reintroduced into another part of the body, for example, by means of a syringe. The lipoaspirate initially includes several types of material, for example, undamaged and damaged fat cells, oils, blood cells, intracellular fluids and other materials, some of which may are not ideally suited for reintroduction into the body, for example, for reasons such as safety and graft efficacy.
In general, the three main types of material that comprises the lipoaspirate are viable fat cells, blood/tumescent fluid, and oil (ruptured and/or nonviable fat cells). The present devices and systems are effective to separate at least two or three of these components to achieve a product comprising primarily undamaged adipose and stem cells.
Accordingly, methods are provided for treating or processing lipoaspirate for use in fat grafting procedures.
In accordance with some embodiments, a method for treating lipoaspirate for use in fat grafting procedures may include providing a container for containing lipoaspirate, the container including an inlet for receiving the lipoaspirate and an outlet for dispensing and removal of desired materials from the lipoaspirate. The container may have a first filter element and a second filter element disposed therein and both the inlet and the outlet may be located on a common side of the first and second filter elements. The method may further include moving the first filter element relative to the second filter element within the container to separate cellular components of the lipoaspirate from non-cellular components of the lipoaspirate. The moving may include slidably coupling a plunger to each of the first and second filter elements in the container, and driving at least one of the respective plungers to displace the first filter element relative to the second filter element within the container.
In accordance with some embodiments, a method for treating lipoaspirate for use in fat grafting procedures may include placing the lipoaspirate in a container having an inlet for receiving the lipoaspirate and an outlet for dispensing and removal of desired materials from the lipoaspirate, in which both the inlet and the outlet may be located on a common side of first and second filter elements, The method may further include actuating an activation mechanism which moves the first filter element relative to the second filter element within the container to separate cellular components of the lipoaspirate from non-cellular components of the lipoaspirate.
In some embodiments, the device comprises, for example, a container or canister for receiving and/or storing the lipoaspirate after removal from a patient. Lipoaspirate is delivered to the canister by means of an inlet orifice or valve, for example, connected to a source of negative pressure, or vacuum. Alternatively, lipoaspirate may be delivered to the canister without using suction, for example, by pouring the lipoaspirate into the canister through a top opening, for example. The canister may also include an outlet orifice or valve for facilitating removal of the desired, processed material, for example, a material primarily comprising viable fat cells.
The device further includes a separation mechanism structured to separate both oils and other materials from cellular components of lipoaspirate contained in the canister. The separation mechanism comprises, for example, one or more filter elements, for example, a sieve or filter screen for separating viable fat cells from damaged cells, oils, and other liquids. For example, the filter screen, or sieve, may comprise any number of known materials that are capable of sorting or dividing components by size. For example, the filter element may comprise a filter paper having a suitable pore size, a mesh with varying pitch, or other material known in the art capable of separating lipoaspirate components.
The device further comprises an activation mechanism structured to activate the separation mechanism. For example, the activation mechanism is structured to move at least one of the first and the second filter elements within the canister. The activation mechanism may comprise one or more plunger mechanisms, slidably contained in the canister and coupled to the filter elements. The one or more plungers may be operable by means of a piston, for example, and function to move the one or more filter elements within the canister. The plungers may be manually operable.
The present disclosure may be more clearly understood and the advantages thereof better appreciated by considering the below Detailed Description and accompanying Drawings of which:
Turning now to
The operation of the device 10 is shown in
Lipoaspirate 24 is brought into canister 12, for example, drawn into the canister 12 by vacuum mechanism 28 through inlet 14 (
The filter screens may comprise any number of suitable materials capable of separating components of the lipoaspirate.
Advantageously, the present device 10 allows separation of lipoaspirate to a desired degree. For example, it may be desirable in certain circumstances, as determined by the physician/operator, to remove a portion of the liquids, for example, oils, from the viable cells, leaving a minor amount or desired percentage of oil in the lipoaspirate for promoting fat graft viability. The simplicity of device 10 allows the physician/operator to control the degree or amount of separation. To further facilitate this feature, the canister 12 may be structured or made of a material, for example, a transparent polymer, that allows the physician/operator to view the content of the canister 12.
As the filter screens 20a, 20b are driven through the lipoaspirate, the lipoaspirate is separated into various components. For example, blood/tumescent fluid 24a are forced through first filter 20a, while oil 24b is forced through the second filter 20b. (
Device 110 is similar to device 10, with a major distinction being that device 110 includes a single plunger 122 rather than multiple plungers, and a fixed filter screen 120a. Device 110 includes first and second screens 120a, 120b for separating blood/fluid and oils from fat cells. In this embodiment, the first filter screen 120a is fixed within the canister 112, while second filter screen 120b is movable in canister 112 by means of plunger 122. Outlet 116 may be positioned on an upstream side of fixed filter 120a, as shown. The physician/operator causes separation of lipoaspirate within the canister 112 by pressing on the plunger 122. Movement of second filter screen 120b into the lipoaspirate causes separation of the lipoaspirate as described elsewhere herein, leaving viable fat cells between the first and second filter screens 120a, 120b, which can be removed from canister via outlet 116.
Device 210 includes inlet 214 and outlet 216 both located on a common side of first and second filter screens 220a, 220b, for example, at a bottom side of the canister 212. This arrangement may eliminate the sensitivity associated with placing the inlet and outlet valves on the canister in a specific location (which may be dependent on how much and the type of lipoaspirate that is sampled. This arrangement ensures that all incoming fluid is below both filter screens 220a, 220b, and allows for effective drainage of tumescent fluid, which has a relatively high density, followed by complete removal of viable fat.
Exemplary operation of device 210 is illustrated in
Turning now to
In another aspect of the disclosure, a method for treating lipoaspirate for use in fat grafting procedures is provided wherein the method comprises containing lipoaspirate in a container, the container including a first filter element and a second filter element, and moving the first filter element relative to a second filter element within the container to separate cellular components of the lipoaspirate from non-cellular components of the lipoaspirate. As mentioned elsewhere herein, the first filtering element may have a pore size different from a pore size of the second filtering element. Further, in some embodiments the first filtering element is capable of separating blood/tumescent fluids from cellular materials in lipoaspirate, and the second filtering element is capable of separating oils from cellular materials in lipoaspirate. In some embodiments, the container allows for viewing of the lipoaspirate during the separation, and the method may involve the step of observing the separation and stopping the moving when a desired degree of separation is achieved.
While this disclosure has been described with respect to various specific examples and embodiments, it is to be understood that the disclosure is not limited thereto and that it can be variously practiced within the scope of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/012,019, filed Feb. 1, 2016, which is a continuation of U.S. patent application Ser. No. 14/044,594, filed Oct. 2, 2013, the entire disclosure of each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15012019 | Feb 2016 | US |
Child | 16532354 | US | |
Parent | 14044594 | Oct 2013 | US |
Child | 15012019 | US |