Fat processing system

Information

  • Patent Grant
  • 9248384
  • Patent Number
    9,248,384
  • Date Filed
    Wednesday, October 2, 2013
    11 years ago
  • Date Issued
    Tuesday, February 2, 2016
    8 years ago
Abstract
Methods and devices for treating lipoaspirate for use in fat grafting procedures are provided and generally include a canister for containing lipoaspirate, a separation mechanism structured to separate both oils and other materials from cellular components of lipoaspirate contained in the canister. The separation mechanism includes filters having different filtering capacities, for example, different pore sizes.
Description
BACKGROUND

The present invention generally relates to fat grafting and more specifically relates to a system for processing fat prior to reintroduction into the body.


Autologous fat transfer (AFT), also known as fat grafting, is a process by which fat is harvested from one part of a human body and injected into another part of the same person's body where additional bulk may be needed or desired for cosmetic and/or aesthetic purposes. Clinical applications for autologous fat transfer are expanding rapidly with recent reported use in breast reconstruction and augmentation, buttock enhancement, treatment of congenital tissue defects, facial reconstruction, and skin rejuvenation. Although this is a very attractive approach and there is an increased trend in replacement of soft tissue volume with AFT, typical survival rates of grafted fat may be poor and overall results may not be satisfactory.


WO 2008/148071 discloses kits, tools, and methods are described for harvesting, processing, and using injectable dermis in volume filling procedures.


WO 2009/003135 discloses system for harvesting fat through liposuction, concentrating the aspirate so obtained, and then re-injecting the concentrated fat into a patient.


There still remains a need for improved systems and methods for processing harvested fat for later use in fat grafting procedures.


SUMMARY

The present invention generally comprises a device or system that is structured to be useful for separating unwanted fluids/materials from a sample of lipoaspirate. The resulting cellular material is subsequently used for reintroducing into the body for augmentation or tissue replacement.


During fat grafting procedures, adipose tissue is removed from the body, for example, using an aspirating device, and reintroduced into another part of the body, for example, by means of a syringe. The lipoaspirate initially includes several types of material, for example, undamaged and damaged fat cells, oils, blood cells, intracellular fluids and other materials, some of which may are not ideally suited for reintroduction into the body, for example, for reasons such as safety and graft efficacy.


In general, the three main types of material that comprises the lipoaspirate are viable fat cells, blood/tumescent fluid, and oil (ruptured and/or nonviable fat cells). The present devices and systems are effective to separate at least two or three of these components to achieve a product comprising primarily undamaged adipose and stem cells.


Accordingly a device is provided for treating or processing lipoaspirate for use in fat grafting procedures.


The device comprises, for example, a container or canister for receiving and/or storing the lipoaspirate after removal from a patient. Lipoaspirate is delivered to the canister by means of an inlet orifice or valve, for example, connected to a source of negative pressure, or vacuum. Alternatively, lipoaspirate may be delivered to the canister without using suction, for example, by pouring the lipoaspirate into the canister through a top opening, for example. The canister may also include an outlet orifice or valve for facilitating removal of the desired, processed material, for example, a material primarily comprising viable fat cells.


The device further includes a separation mechanism structured to separate both oils and other materials from cellular components of lipoaspirate contained in the canister. The separation mechanism comprises, for example, one or more filter elements, for example, a sieve or filter screen for separating viable fat cells from damaged cells, oils, and other liquids. For example, the filter screen, or sieve, may comprise any number of known materials that are capable of sorting or dividing components by size. For example, the filter element may comprise a filter paper having a suitable pore size, a mesh with varying pitch, or other material known in the art capable of separating lipoaspirate components.


The device further comprises an activation mechanism structured to activate the separation mechanism. For example, the activation mechanism is structured to move at least one of the first and the second filter elements within the canister. The activation mechanism may comprise one or more plunger mechanisms, slidably contained in the canister and coupled to the filter elements. The one or more plungers may be operable by means of a piston, for example, and function to move the one or more filter elements within the canister. The plungers may be manually operable.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be more clearly understood and the advantages thereof better appreciated by considering the below Detailed Description and accompanying Drawings of which:



FIG. 1 is a simplified diagrammatical view of a device, in accordance with the invention, having two independently movable filter screens for separating components of lipoaspirate.



FIGS. 2A-2D show operation of the device shown in FIG. 1.



FIG. 3 shows an alternative device, in accordance with the invention, including a fixed filter screen.



FIG. 4 shows yet another device in accordance with the invention.



FIGS. 4A-4C show operation of the device shown in FIG. 4.



FIGS. 5 and 6 show mechanically limiting features for controlling rate of filtering.





DETAILED DESCRIPTION

Turning now to FIG. 1, an exemplary device 10 in accordance with an embodiment of the invention is shown. The device 10 generally includes a canister 12 for containing lipoaspirate, an inlet 14, and outlet valve 16 and a separating mechanism 18 including first and second filter screens 20a, 20b and plungers 22 which are movable, for example, by manual means, in the canister 12.


The operation of the device 10 is shown in FIG. 2A-2D.


Lipoaspirate 24 is brought into canister 12, for example, drawn into the canister 12 by vacuum mechanism 28 through inlet 14 (FIG. 2A). The plungers 22 may be manually driven by a physician/operator applying force to plungers 22 as illustrated by arrows (FIG. 2B). Driving of plungers 22 forces lipoaspirate materials which can pass through the filter screens 20a, 20b into spaces in canister 12 opposing the screens 20a, 20b, thus separating the materials making up the lipoaspirate 24.


The filter screens may comprise any number of suitable materials capable of separating components of the lipoaspirate.


Advantageously, the present device 10 allows separation of lipoaspirate to a desired degree. For example, it may be desirable in certain circumstances, as determined by the physician/operator, to remove a portion of the liquids, for example, oils, from the viable cells, leaving a minor amount or desired percentage of oil in the lipoaspirate for promoting fat graft viability. The simplicity of device 10 allows the physician/operator to control the degree or amount of separation. To further facilitate this feature, the canister 12 may be structured or made of a material, for example, a transparent polymer, that allows the physician/operator to view the content of the canister 12.


As the filter screens 20a, 20b are driven through the lipoaspirate, the lipoaspirate is separated into various components. For example, blood/tumescent fluid 24a are forced through first filter 20a, while oil 24b is forced through the second filter 20b. (FIG. 2C). After sufficient separation is achieved, viable fat cells 24c and any remaining blood/tumescent fluid and/or oils, can be removed via the outlet valve 16 (FIG. 2D).



FIG. 3 shows a device 110 in accordance with another embodiment of the invention. For the sake of simplicity, elements of device 110 which are similar or identical to elements of device 10 are indicated by the same reference number increased by 100.


Device 110 is similar to device 10, with a major distinction being that device 110 includes a single plunger 122 rather than multiple plungers, and a fixed filter screen 120a. Device 110 includes first and second screens 120a, 120b for separating blood/fluid and oils from fat cells. In this embodiment, the first filter screen 120a is fixed within the canister 112, while second filter screen 120b is movable in canister 112 by means of plunger 122. Outlet 116 may be positioned on an upstream side of fixed filter 120a, as shown. The physician/operator causes separation of lipoaspirate within the canister 112 by pressing on the plunger 122. Movement of second filter screen 120b into the lipoaspirate causes separation of the lipoaspirate as described elsewhere herein, leaving viable fat cells between the first and second filter screens 120a, 120b, which can be removed from canister via outlet 116.



FIG. 4 shows yet another device 210 in accordance with the invention. For the sake of simplicity, elements of device 210 which are similar or identical to elements of device 10 are indicated by the same reference number increased by 200.


Device 210 includes inlet 214 and outlet 216 both located on a common side of first and second filter screens 220a, 220b, for example, at a bottom side of the canister 212. This arrangement may eliminate the sensitivity associated with placing the inlet and outlet valves on the canister in a specific location (which may be dependent on how much and the type of lipoaspirate that is sampled. This arrangement ensures that all incoming fluid is below both filter screens 220a, 220b, and allows for effective drainage of tumescent fluid, which has a relatively high density, followed by complete removal of viable fat.


Exemplary operation of device 210 is illustrated in FIGS. 4A-4C. First and second filter screens 220a, 220b, are oriented such that first screen 220a and second screen 220b are initially directly adjacent one another (FIG. 4). Due to arrangement of plunger heads, one overlapping the other, pressure on first plunger 222a (shown as left plunger in the Figures) moves both first and second screens 220a, 220b into lipoaspirate 24 and causes separation of the oil 22b therefrom (FIG. 4A). Second plunger 222b is then pressed, independently of first plunger 222a, which moves only first filter screen 220a and filters out the blood and tumescent fluid 24a (FIG. 4B). The viable fat cells 24c are then removed through the outlet valve 216 (FIG. 4C).


Turning now to FIG. 5, any of the aforementioned embodiments may further comprise a mechanically limiting feature for controlling filtering rate. The amount of stress applied to lipoaspirate may affect the viability of the lipoaspirate cells. Thus, in some embodiments, a mechanism is provided to control the acceleration of the plunger through the lipoaspirate and/or reduce the speed at which the filter screens are forced through the lipoaspirate. For example, the mechanically limiting feature comprise, for example, any suitable mechanism, for example, spring 46, or the like, coupled to plunger 22, 122, 222a and/or 222b. The spring 46 controls the movement of the plunger, for example, by providing a dampening effect, thereby allowing a slower and/or more consistent motion of the filter screen through the lipoaspirate, thereby reducing damage to cells. Alternatively, the mechanically limiting feature may comprise a hydraulic mechanism 48 for controlling plunger rate, such as shown in FIG. 6.


In another aspect of the invention, a method for treating lipoaspirate for use in fat grafting procedures is provided wherein the method comprises containing lipoaspirate in a container, the container including a first filter element and a second filter element, and moving the first filter element relative to a second filter element within the container to separate cellular components of the lipoaspirate from non-cellular components of the lipoaspirate. As mentioned elsewhere herein, the first filtering element may have a pore size different from a pore size of the second filtering element. Further, in some embodiments the first filtering element is capable of separating blood/tumescent fluids from cellular materials in lipoaspirate, and the second filtering element is capable of separating oils from cellular materials in lipoaspirate. In some embodiments, the container allows for viewing of the lipoaspirate during the separation, and the method may involve the step of observing the separation and stopping the moving when a desired degree of separation is achieved.


While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the invention.

Claims
  • 1. A method for treating lipoaspirate for use in fat grafting procedures, the method comprising: containing lipoaspirate in a container, the container including a first filter element and a second filer element; andmoving the first filter element relative to a second filter element within the container to separate cellular components of the lipoaspirate from non-cellular components of the lipoaspirate.
  • 2. The method of claim 1 wherein the first filtering element has a pore size different from a pore size of the second filtering element.
  • 3. The method of claim 1 wherein the first filtering element is capable of separating blood/tumescent fluids from cellular materials in lipoaspirate.
  • 4. The method of claim 1 wherein the second filtering element is capable of separating oils from cellular materials in lipoaspirate.
  • 5. The method of claim 1 further comprising observing the separation and stopping the moving when a desired degree of separation is achieved.
US Referenced Citations (55)
Number Name Date Kind
4605691 Balazs et al. Aug 1986 A
4627444 Brooker Dec 1986 A
4909932 Monnet Mar 1990 A
5650317 Chang et al. Jul 1997 A
5716404 Vacanti Feb 1998 A
5814511 Chang et al. Sep 1998 A
5972385 Liu et al. Oct 1999 A
6082364 Balian et al. Jul 2000 A
6083912 Khouri Jul 2000 A
6129761 Hubbell et al. Oct 2000 A
6171610 Vacanti et al. Jan 2001 B1
6214045 Corbitt Apr 2001 B1
6239105 Brewitt et al. May 2001 B1
6582960 Martin et al. Jun 2003 B1
6638308 Corbitt Oct 2003 B2
6656488 Yi et al. Dec 2003 B2
6666893 Burg et al. Dec 2003 B2
6777231 Katz et al. Aug 2004 B1
6881226 Corbitt Apr 2005 B2
6916603 Baron et al. Jul 2005 B2
6991652 Burg et al. Jan 2006 B2
7015037 Furcht et al. Mar 2006 B1
7129209 Rhee et al. Oct 2006 B2
7285266 Vournakis et al. Oct 2007 B2
7316822 Binette et al. Jan 2008 B2
7390484 Fraser et al. Jun 2008 B2
7445793 Niwa et al. Nov 2008 B2
7501115 Fraser et al. Mar 2009 B2
7514075 Hedrick et al. Apr 2009 B2
7560276 Harmon et al. Jul 2009 B2
7651684 Hedrick et al. Jan 2010 B2
7767452 Kleinsek et al. Aug 2010 B2
7799767 Lamberti et al. Sep 2010 B2
7875296 Binette et al. Jan 2011 B2
8053423 Lamberti et al. Nov 2011 B2
8066691 Khouri Nov 2011 B2
8137705 Doyle et al. Mar 2012 B2
8153591 Masters et al. Apr 2012 B2
20040092011 Wilkison et al. May 2004 A1
20070251531 Khouri Nov 2007 A1
20080243028 Howard et al. Oct 2008 A1
20080317718 Yoshimura Dec 2008 A1
20090098177 Werkmeister et al. Apr 2009 A1
20090123547 Hill May 2009 A1
20090124552 Hill May 2009 A1
20090162415 Huang et al. Jun 2009 A1
20090312746 Khouri Dec 2009 A1
20100010627 Matheny Jan 2010 A1
20110070281 Altman et al. Mar 2011 A1
20110150823 Huang Jun 2011 A1
20110213336 Cucin Sep 2011 A1
20120010146 Han et al. Jan 2012 A1
20120076868 Lamberti et al. Mar 2012 A1
20120156265 Binette et al. Jun 2012 A1
20120209248 Gurtner et al. Aug 2012 A1
Foreign Referenced Citations (16)
Number Date Country
1476202 Jan 2009 EP
2007124478 Nov 2007 WO
2008063569 May 2008 WO
2008148026 Dec 2008 WO
2008148071 Dec 2008 WO
2009003135 Dec 2008 WO
2009047346 Apr 2009 WO
2009085548 Jul 2009 WO
2009103818 Aug 2009 WO
2009115581 Sep 2009 WO
2009155583 Dec 2009 WO
2010026299 Mar 2010 WO
2010127310 Nov 2010 WO
2011072399 Jun 2011 WO
2012006587 Jan 2012 WO
WO 2012019103 Feb 2012 WO
Related Publications (1)
Number Date Country
20150093362 A1 Apr 2015 US