Fetal aneuploidy detection by sequencing

Information

  • Patent Grant
  • 10704090
  • Patent Number
    10,704,090
  • Date Filed
    Monday, March 11, 2013
    11 years ago
  • Date Issued
    Tuesday, July 7, 2020
    4 years ago
Abstract
The present invention provides apparatus and methods for enriching components or cells from a sample and conducting genetic analysis, such as SNP genotyping to provide diagnostic results for fetal disorders or conditions.
Description
BACKGROUND OF THE INVENTION

Analysis of specific cells can give insight into a variety of diseases. These analyses can provide non-invasive tests for detection, diagnosis and prognosis of diseases, thereby eliminating the risk of invasive diagnosis. For instance, social developments have resulted in an increased number of prenatal tests. However, the available methods today, amniocentesis and chorionic villus sampling (CVS) are potentially harmful to the mother and to the fetus. The rate of miscarriage for pregnant women undergoing amniocentesis is increased by 0.5-1%, and that figure is slightly higher for CVS. Because of the inherent risks posed by amniocentesis and CVS, these procedures are offered primarily to older women, i.e., those over 35 years of age, who have a statistically greater probability of bearing children with congenital defects. As a result, a pregnant woman at the age of 35 has to balance an average risk of 0.5-1% to induce an abortion by amniocentesis against an age related probability for trisomy 21 of less than 0.3%.


Some non-invasive methods have already been developed to diagnose specific congenital defects. For example, maternal serum alpha-fetoprotein, and levels of unconjugated estriol and human chorionic gonadotropin can be used to identify a proportion of fetuses with Down's syndrome, however, these tests are not one hundred percent accurate. Similarly, ultrasonography is used to determine congenital defects involving neural tube defects and limb abnormalities, but is useful only after fifteen weeks' gestation.


The methods of the present invention allow for the detection of fetal cells and fetal abnormalities when fetal cells are mixed with a population of maternal cells, even when the maternal cells dominate the mixture.


SUMMARY OF THE INVENTION

The presence of fetal cells within the blood of pregnant women offers the opportunity to develop a prenatal diagnostic that replaces amniocentesis and thereby eliminates the risk of today's invasive diagnosis. However, fetal cells represent a small number of cells against the background of a large number of maternal cells in the blood which make the analysis time consuming and prone to error. Current technologies and protocols for highly parallel SNP detection with DNA microarray readout result in inaccurate calls when there are too few starting DNA copies or when a particular allele represents a small fraction in the population of input DNA molecules.


The present invention relates to methods for detecting a fetal abnormality by determining the ratio of the abundance of one or more maternal alleles to the abundance of one or more paternal alleles in the genomic DNA of a sample. The genomic region includes a single nucleotide polymorphism (SNP), which can preferably be an informative SNP. The SNP can be detected by methods that include using a DNA microarray, bead microarray, or high throughput sequencing. In some embodiments, determining the ratio involves detecting an abundance of a nucleotide base at a SNP position. In other embodiments, determining the ratio also comprises calculating error rate based amplification. Prior to determining the abundance of allele(s), the sample can be enriched for fetal cells.


The method of detection is provided by highly parallel SNP detection that can be used to determine the ratios of abundance of maternal and paternal alleles at a plurality of genomic regions present in the sample. In some embodiments, the ratios of abundance are determined in at least 100 genomic regions, which can comprise a single locus, different loci, a single chromosome, or different chromosomes. In some embodiments, a first genomic region (SNP) analyzed is in a genomic region suspected of being trisomic or is trisomic and a second genomic region (SNP) analyzed is in a non-trisomic region or a region suspected of being non-trisomic. The ratio of alleles in the first genomic region can then be compared to the ratio of alleles in the second genomic region, and in some embodiments, the comparison is made by determining the difference in the means of the ratios in the first and second genomic regions. An increase in paternal abundance can be indicative of paternal trisomy, while an increase in maternal abundance can be indicative of maternal trisomy. Alternatively, an increase in paternal abundance or maternal abundance of one or more alleles is indicative of partial trisomy. The first and second genomic regions can be on the same or different chromosomes.


In an embodiment, the invention provides for a method for detecting a fetal abnormality comprising comparing an abundance of one or more maternal alleles in a first genomic region in a maternal blood sample, where said genomic region is suspected of trisomy with an abundance of one or more maternal alleles in a second genomic region in said blood sample wherein said second genomic region is non-trisomic. Up to 20 ml of blood can be used to detect the fetal abnormality. The first genomic region that is suspected of trisomy and the second genomic region that is a non-trisomic region can each be present on chromosomes 13, 18, 21 and on the X chromosome.


In some embodiments, a ratio of the abundance of the maternal alleles in the first genomic region to the abundance of the maternal alleles in the second genomic region can be determined and compared to a second ratio obtained for a control sample. The control sample can comprise a diluted portion of the maternal sample, which can be diluted by a factor of at least 1,000.


In some embodiments, detecting the fetal abnormality further involves estimating the number of fetal cells present in the maternal sample. This can be performed by, e.g., ranking the alleles detected according to their abundance. The ranking can then be used to determine an abundance of one or more paternal alleles. In some embodiments, data models can be fitted for optimal detection of aneuploidy. The methods herein can be used to identify monoploidy, triploidy, tetraploidy, pentaploidy and other multiples of the normal haploid state. For example, the data models can be used to determine estimates for the fraction of fetal cells present in a sample and for detecting a fetal abnormality or condition.


In some embodiments, the abundance of one or more paternal alleles can be compared to the abundance of the maternal alleles at one or more genetic regions. In other embodiments, one or more ratios of the abundance of the paternal allele(s) to the abundance of the maternal allele(s) at one or more genetic regions can be compared with an estimate fraction of fetal cells. A statistical analysis can be performed on the one or more ratios of the abundance of paternal alleles to the abundance of the maternal alleles to determine the presence of fetal DNA in the sample with a level of confidence that exceeds 90%.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates an overview of the process of the invention.



FIGS. 2A-2D illustrates one embodiment of a size-based separation module.



FIGS. 3A-3C illustrates one embodiment of an affinity separation module.



FIG. 4 illustrates one embodiment of a magnetic separation module.



FIG. 5 illustrates an overview for a typical parallel SNP genotyping assay.



FIG. 6 illustrates the types of SNP calls that result depicting allele strengths at different loci.



FIG. 7 illustrates the concept of rank ordering of allele strengths.



FIG. 8 illustrates a histogram of paternal allele strength normalized relative to maternal alleles.



FIGS. 9A-9B illustrate cell smears of the product and waste fractions.



FIG. 10A-10F illustrate isolated fetal cells confirmed by the reliable presence of male Y chromosome.



FIG. 11 illustrates trisomy 21 pathology in an isolated fetal nucleated red blood cell.



FIG. 12A-12D illustrate various embodiments of a size-based separation module.



FIG. 13 illustrates the detection of single copies of a fetal cell genome by qPCR.



FIG. 14 illustrates detection of single fetal cells in binned samples by SNP analysis.



FIG. 15 illustrates a method of trisomy testing. The trisomy 21 screen is based on scoring of target cells obtained from maternal blood. Blood is processed using a cell separation module for hemoglobin enrichment (CSM-HE). Isolated cells are transferred to slides that are first stained and subsequently probed by FISH. Images are acquired, such as from bright field or fluorescent microscopy, and scored. The proportion of trisomic cells of certain classes serves as a classifier for risk of fetal trisomy 21. Fetal genome identification can performed using assays such as: (1) STR markers; (2) qPCR using primers and probes directed to loci, such as the multi-repeat DYZ locus on the Y-chromosome; (3) SNP detection; and (4) CGH (comparative genome hybridization) array detection.



FIG. 16 illustrates assays that can produce information on the presence of aneuploidy and other genetic disorders in target cells. Information on anueploidy and other genetic disorders in target cells may be acquired using technologies such as: (1) a CGH array established for chromosome counting, which can be used for aneuploidy determination and/or detection of intra-chromosomal deletions; (2) SNP/taqman assays, which can be used for detection of single nucleotide polymorphisms; and (3) ultra-deep sequencing, which can be used to produce partial or complete genome sequences for analysis.



FIG. 17 illustrates methods of fetal diagnostic assays. Fetal cells are isolated by CSM-HE enrichment of target cells from blood. The designation of the fetal cells may be confirmed using techniques comprising FISH staining (using slides or membranes and optionally an automated detector), FACS, and/or binning. Binning may comprise distribution of enriched cells across wells in a plate (such as a 96 or 384 well plate), microencapsulation of cells in droplets that are separated in an emulsion, or by introduction of cells into microarrays of nanofluidic bins. Fetal cells are then identified using methods that may comprise the use of biomarkers (such as fetal (gamma) hemoglobin), allele-specific SNP panels that could detect fetal genome DNA, detection of differentially expressed maternal and fetal transcripts (such as Affymetrix chips), or primers and probes directed to fetal specific loci (such as the multi-repeat DYZ locus on the Y-chromosome). Binning sites that contain fetal cells are then be analyzed for aneuploidy and/or other genetic defects using a technique such as CGH array detection, ultra deep sequencing (such as Solexa, 454, or mass spectrometry), STR analysis, or SNP detection.



FIG. 18 illustrates methods of fetal diagnostic assays, further comprising the step of whole genome amplification prior to analysis of aneuploidy and/or other genetic defects.





DETAILED DESCRIPTION OF THE INVENTION

The methods herein are used for detecting the presence and condition of fetal cells in a mixed sample wherein the fetal cells are at a concentration of less than 90, 80, 70, 60, 50, 40, 30, 20, 10, 5 or 1% of all cells in the sample at a concentration less than 1:2, 1:4, 1:10, 1:50, 1:100, 1:1000, 1:10,000, 1:100,000, 1,000,000, 1:10,000,000 or 1:100,000,000 of all cells in the sample.



FIG. 1 illustrates an overview of the methods and systems herein.


In step 100, a sample to be analyzed for rare cells (e.g. fetal cells) is obtained from an animal. Such animal can be suspected of being pregnant, pregnant, or one that has been pregnant. Such sample can be analyzed by the systems and methods herein to determine a condition in the animal or fetus of the animal. In some embodiments, the methods herein are used to detect the presence of a fetus, sex of a fetus, or condition of the fetus. The animal from whom the sample is obtained can be, for example, a human or a domesticated animal such as a cow, chicken, pig, horse, rabbit, dog, cat, or goat. Samples derived from an animal or human include, e.g., whole blood, sweat, tears, ear flow, sputum, lymph, bone marrow suspension, lymph, urine, saliva, semen, vaginal flow, cerebrospinal fluid, brain fluid, ascites, milk, secretions of the respiratory, intestinal or genitourinary tracts fluid.


To obtain a blood sample, any technique known in the art may be used, e.g. a syringe or other vacuum suction device. A blood sample can be optionally pre-treated or processed prior to enrichment. Examples of pre-treatment steps include the addition of a reagent such as a stabilizer, a preservative, a fixant, a lysing reagent, a diluent, an anti-apoptotic reagent, an anti-coagulation reagent, an anti-thrombotic reagent, magnetic property regulating reagent, a buffering reagent, an osmolality regulating reagent, a pH regulating reagent, and/or a cross-linking reagent.


When a blood sample is obtained, a preservative such an anti-coagulation agent and/or a stabilizer is often added to the sample prior to enrichment. This allows for extended time for analysis/detection. Thus, a sample, such as a blood sample, can be enriched and/or analyzed under any of the methods and systems herein within 1 week, 6 days, 5 days, 4 days, 3 days, 2 days, 1 day, 12 hrs, 6 hrs, 3 hrs, 2 hrs, or 1 hr from the time the sample is obtained.


A blood sample can be combined with an agent that selectively lyses one or more cells or components in a blood sample. For example, fetal cells can be selectively lysed releasing their nuclei when a blood sample including fetal cells is combined with deionized water. Such selective lysis allows for the subsequent enrichment of fetal nuclei using, e.g., size or affinity based separation. In another example, platelets and/or enucleated red blood cells are selectively lysed to generate a sample enriched in nucleated cells, such as fetal nucleated red blood cells (fnRBC) and material red nucleated blood cells (mnRBC). The fnRBCs can subsequently be separated from the mnRBCs using, e.g., antigen-i affinity or differences in hemoglobin


When obtaining a sample from an animal (e.g., blood sample), the amount can vary depending upon animal size, its gestation period, and the condition being screened. Up to 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 mL of a sample is obtained. The volume of sample obtained can be 1-50, 2-40, 3-30, or 4-20 mL. Alternatively, more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 mL of a sample is obtained.


To detect fetal abnormality, a blood sample can be obtained from a pregnant animal or human within 36, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6 or 4 weeks of gestation.


In step 101, a reference or control sample is obtained by any means known in the art. A reference sample is any sample that consists essentially of, or only of, non-fetal cells or non-fetal DNA. A reference sample is preferably a maternal only cell or DNA sample. In some embodiment, a reference sample is a maternal only blood sample. When obtaining a reference sample such as a maternal blood sample from a pregnant female, or one suspected of being pregnant or the sample can be diluted enough to ensure that <<1 fetal cell is expected in the sample. Dilution can be by a factor of about 10 to 1000 fold, or by a factor of greater than 5, 10, 50, 100, 200, 500 to 1000 fold. Alternatively, white blood cells can be obtained from the same organism from whom the mixed sample is obtained. In some cases, the reference sample is obtained by deleting a portion of the mixed sample.


In step 102, when the sample to be tested or analyzed is a mixed sample (e.g. maternal blood sample), it is enriched for rare cells or rare DNA (e.g. fetal cells, fetal DNA or fetal nuclei) using one or more methods known in the art or disclosed herein. Such enrichment increases the ratio of fetal cells to non-fetal cells, the concentration of fetal DNA to non-fetal DNA, and/or the concentration of fetal cells in volume per total volume of the mixed sample.


In some embodiments, enrichment occurs by selective lysis as described above. For example, enucleated cells may be selectively lysed prior to subsequent enrichment steps or fetal nucleated cells may be selectively lysed prior to separation of the fetal nuclei from other cells and components in the sample.


In some embodiments, enrichment of fetal cells or fetal nuclei occurs using one or more size-based separation modules. Size-based separation modules include filtration modules, sieves, matrixes, etc., including those disclosed in International Publication Nos. WO 2004/113877, WO 2004/0144651, and US Application Publication No. 2004/011956.


In some embodiments, a size-based separation module includes one or more arrays of obstacles that form a network of gaps. The obstacles are configured to direct particles (e.g. cells or nuclei) as they flow through the array/network of gaps into different directions or outlets based on the particle's hydrodynamic size. For example, as a blood sample flows through an array of obstacles, nucleated cells or cells having a hydrodynamic size larger than a predetermined size, e.g., 8 microns, are directed to a first outlet located on the opposite side of the array of obstacles from the fluid flow inlet, while the enucleated cells or cells having a hydrodynamic size smaller than a predetermined size, e.g., 8 microns, are directed to a second outlet also located on the opposite side of the array of obstacles from the fluid flow inlet.


An array can be configured to separate cells smaller than a predetermined size from those larger than a predetermined size by adjusting the size of the gaps, obstacles, and offset in the period between each successive row of obstacles. For example, in some embodiments, obstacles and/or gaps between obstacles can be up to 10, 20, 50, 70, 100, 120, 150, 170, or 200 microns in length or about 2, 4, 6, 8 or 10 microns in length. In some embodiments, an array for size-based separation includes more than 100, 500, 1,000, 5,000, 10,000, 50,000 or 100,000 obstacles that are arranged into more than 10, 20, 50, 100, 200, 500, or 1000 rows. Preferably, obstacles in a first row of obstacles are offset from a previous (upstream) row of obstacles by up to 50% the period of the previous row of obstacles. In some embodiments, obstacles in a first row of obstacles are offset from a previous row of obstacles by up to 45, 40, 35, 30, 25, 20, 15 or 10% the period of the previous row of obstacles. Furthermore, the distance between a first row of obstacles and a second row of obstacles can be up to 10, 20, 50, 70, 100, 120, 150, 170 or 200 microns. A particular offset can be continuous (repeating for multiple rows) or non-continuous. In some embodiments, a separation module includes multiple discrete arrays of obstacles fluidly coupled such that they are in series with one another. Each array of obstacles has a continuous offset. But each subsequent (downstream) array of obstacles has an offset that is different from the previous (upstream) offset. Preferably, each subsequent array of obstacles has a smaller offset that the previous array of obstacles. This allows for a refinement in the separation process as cells migrate through the array of obstacles. Thus, a plurality of arrays can be fluidly coupled in series or in parallel, (e.g., more than 2, 4, 6, 8, 10, 20, 30, 40, 50). Fluidly coupling separation modules (e.g., arrays) in parallel allows for high-throughput analysis of the sample, such that at least 1, 2, 5, 10, 20, 50, 100, 200, or 500 mL per hour flows through the enrichment modules or at least 1, 5, 10, or 50 million cells per hour are sorted or flow through the device.



FIGS. 2A-2D illustrates an example of a size-based separation module. Obstacles (which may be of any shape) are coupled to a flat substrate to form an array of gaps. A transparent cover or lid may be used to cover the array. The obstacles form a two-dimensional array with each successive row shifted horizontally with respect to the previous row of obstacles, where the array of obstacles directs component having a hydrodynamic size smaller than a predetermined size in a first direction and component having a hydrodynamic size larger that a predetermined size in a second direction. The flow of sample into the array of obstacles can be aligned at a small angle (flow angle) with respect to a line-of-sight of the array. Optionally, the array is coupled to an infusion pump to perfuse the sample through the obstacles. The flow conditions of the size-based separation module described herein are such that cells are sorted by the array with minimal damage. This allows for downstream analysis of intact cells and intact nuclei to be more efficient and reliable.


In one embodiment, a size-based separation module comprises an array of obstacles configured to direct fetal cells larger than a predetermined size to migrate along a line-of-sight within the array towards a first outlet or bypass channel leading to a first outlet, while directing cells and analytes smaller than a predetermined size through the array of obstacles in a different direction towards a second outlet.


A variety of enrichment protocols may be utilized although, in most embodiments, gentle handling of the cells is needed to reduce any mechanical damage to the cells or their DNA. This gentle handling also preserves the small number of fetal cells in the sample. Integrity of the nucleic acid being evaluated is an important feature to permit the distinction between the genomic material from the fetal cells and other cells in the sample. In particular, the enrichment and separation of the fetal cells using the arrays of obstacles produces gentle treatment which minimizes cellular damage and maximizes nucleic acid integrity permitting exceptional levels of separation and the ability to subsequently utilize various formats to very accurately analyze the genome of the cells which are present in the sample in extremely low numbers.


In some embodiments, enrichment of fetal cells occurs using one or more capture modules that selectively inhibit the mobility of one or more cells of interest. Preferable a capture module is fluidly coupled downstream to a size-based separation module. Capture modules can include a substrate having multiple obstacles that restrict the movement of cells or analytes greater than a predetermined size. Examples of capture modules that inhibit the migration of cells based on size are disclosed in U.S. Pat. Nos. 5,837,115 and 6,692,952.


In some embodiments, a capture module includes a two dimensional array of obstacles that selectively filters or captures cells or analytes having a hydrodynamic size greater than a particular gap size, e.g., predetermined size. Arrays of obstacles adapted for separation by capture can include obstacles having one or more shapes and can be arranged in a uniform or non-uniform order. In some embodiments, a two-dimensional array of obstacles is staggered such that each subsequent row of obstacles is offset from the previous row of obstacles to increase the number of interactions between the analytes being sorted (separated) and the obstacles.


Another example of a capture module is an affinity-based separation module. An affinity-based separation module captures analytes or cells of interest based on their affinity to a structure or particle as opposed to their size. One example of an affinity-based separation module is an array of obstacles that are adapted for complete sample flow through, but for the fact that the obstacles are covered with binding moieties that selectively bind one or more analytes (e.g., cell population) of interest (e.g., red blood cells, fetal cells, or nucleated cells) or analytes not-of-interest (e.g., white blood cells). Binding moieties can include e.g., proteins (e.g., ligands/receptors), nucleic acids having complementary counterparts in retained analytes, antibodies, etc. In some embodiments, an affinity-based separation module comprises a two-dimensional array of obstacles covered with one or more antibodies selected from the group consisting of: anti-CD71, anti-CD235a, anti-CD36, anti-carbohydrates, anti-selectin, anti-CD45, anti-GPA, and anti-antigen-i.



FIG. 3A illustrates a path of a first analyte through an array of posts wherein an analyte that does not specifically bind to a post continues to migrate through the array, while an analyte that does bind a post is captured by the array. FIG. 3B is a picture of antibody coated posts. FIG. 3C illustrates coupling of antibodies to a substrate (e.g., obstacles, side walls, etc.) as contemplated by the present invention. Examples of such affinity-based separation modules are described in International Publication No. WO 2004/029221.


In some embodiments, a capture module utilizes a magnetic field to separate and/or enrich one or more analytes (cells) that has a magnetic property or magnetic potential. For example, red blood cells which are slightly diamagnetic (repelled by magnetic field) in physiological conditions can be made paramagnetic (attracted by magnetic field) by deoxygenation of the hemoglobin into methemoglobin. This magnetic property can be achieved through physical or chemical treatment of the red blood cells. Thus, a sample containing one or more red blood cells and one or more non-red blood cells can be enriched for the red blood cells by first inducing a magnetic property and then separating the above red blood cells from other analytes using a magnetic field (uniform or non-uniform). For example, a maternal blood sample can flow first through a size-based separation module to remove enucleated cells and cellular components (e.g., analytes having a hydrodynamic size less than 6 μm) based on size. Subsequently, the enriched nucleated cells (e.g., analytes having a hydrodynamic size greater than 6 μm) white blood cells and nucleated red blood cells are treated with a reagent, such as CO2, N2 or NaNO2, that changes the magnetic property of the red blood cells' hemoglobin. The treated sample then flows through a magnetic field (e.g., a column coupled to an external magnet), such that the paramagnetic analytes (e.g., red blood cells) will be captured by the magnetic field while the white blood cells and any other non-red blood cells will flow through the device to result in a sample enriched in nucleated red blood cells (including fnRBC's). Additional examples of magnetic separation modules are described in U.S. application Ser. No. 11/323,971, filed Dec. 29, 2005 entitled “Devices and Methods for Magnetic Enrichment of Cells and Other Particles” and U.S. application Ser. No. 11/227,904, filed Sep. 15, 2005, entitled “Devices and Methods for Enrichment and Alteration of Cells and Other Particles”.


Subsequent enrichment steps can be used to separate the rare cells (e.g. fnRBC's) from the non-rare maternal nucleated red blood cells (non-RBC's). In some embodiments, a sample enriched by size-based separation followed by affinity/magnetic separation is further enriched for rare cells using fluorescence activated cell sorting (FACS) or selective lysis of a subset of the cells (e.g. fetal cells). In some embodiments, fetal cells are selectively bound to an anti-antigen i binding moiety (e.g. an antibody) to separate them from the mnRBC's. In some embodiments, fetal cells or fetal DNA is distinguished from non-fetal cells or non-fetal DNA by forcing the rare cells (fetal cells) to become apoptotic, thus condensing their nuclei and optionally ejecting their nuclei. Rare cells such as fetal cells can be forced into apoptosis using various means including subjecting the cells to hyperbaric pressure (e.g. 4% CO2). The condensed nuclei can be detected and/or isolated for further analysis using any technique known in the art including DNA gel electrophoresis, in situ labeling of DNA nicks (terminal deoxynucleotidyl transferase (TdT))-mediated dUTP in situ nick labeling (also known as TUNEL) (Gavrieli, Y., et al. J. Cell Biol 119:493-501 (1992)) and ligation of DNA strand breaks having one or two-base 3′ overhangs (Taq polymerase-based in situ ligation). (Didenko V., et al. J. Cell Biol. 135:1369-76 (1996)).


In some embodiments, when the analyte desired to be separated (e.g., red blood cells or white blood cells) is not ferromagnetic or does not have a magnetic property, a magnetic particle (e.g., a bead) or compound (e.g., Fe3+) can be coupled to the analyte to give it a magnetic property. In some embodiments, a bead coupled to an antibody that selectively binds to an analyte of interest can be decorated with an antibody elected from the group of anti CD71 or CD75. In some embodiments a magnetic compound, such as Fe3+, can be coupled to an antibody such as those described above. The magnetic particles or magnetic antibodies herein may be coupled to any one or more of the devices described herein prior to contact with a sample or may be mixed with the sample prior to delivery of the sample to the device(s).


The magnetic field used to separate analytes/cells in any of the embodiments herein can uniform or non-uniform as well as external or internal to the device(s) herein. An external magnetic field is one whose source is outside a device herein (e.g., container, channel, obstacles). An internal magnetic field is one whose source is within a device contemplated herein. An example of an internal magnetic field is one where magnetic particles may be attached to obstacles present in the device (or manipulated to create obstacles) to increase surface area for analytes to interact with to increase the likelihood of binding. Analytes captured by a magnetic field can be released by demagnetizing the magnetic regions retaining the magnetic particles. For selective release of analytes from regions, the demagnetization can be limited to selected obstacles or regions. For example, the magnetic field can be designed to be electromagnetic, enabling turn-on and turn-off of the magnetic fields for each individual region or obstacle at will.



FIG. 4 illustrates an embodiment of a device configured for capture and isolation of cells expressing the transferrin receptor from a complex mixture. Monoclonal antibodies to CD71 receptor are readily available off-the-shelf and can be covalently coupled to magnetic materials, such as, but not limited to any conventional ferroparticles including ferrous doped polystyrene and ferroparticles or ferro-colloids (e.g., from Miltenyi or Dynal). The anti CD71 bound to magnetic particles is flowed into the device. The antibody coated particles are drawn to the obstacles (e.g., posts), floor, and walls and are retained by the strength of the magnetic field interaction between the particles and the magnetic field. The particles between the obstacles, and those loosely retained with the sphere of influence of the local magnetic fields away from the obstacles, are removed by a rinse.


One or more of the enrichment modules herein (e.g., size-based separation module(s) and capture module(s)) may be fluidly coupled in series or in parallel with one another. For example a first outlet from a separation module can be fluidly coupled to a capture module. In some embodiments, the separation module and capture module are integrated such that a plurality of obstacles acts both to deflect certain analytes according to size and direct them in a path different than the direction of analyte(s) of interest, and also as a capture module to capture, retain, or bind certain analytes based on size, affinity, magnetism or other physical property.


In any of the embodiments herein, the enrichment steps performed have a specificity and/or sensitivity≥50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9 or 99.95% The retention rate of the enrichment module(s) herein is such that ≥50, 60, 70, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.9% of the analytes or cells of interest (e.g., nucleated cells or nucleated red blood cells or nucleated from red blood cells) are retained. Simultaneously, the enrichment modules are configured to remove ≥50, 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.9% of all unwanted analytes (e.g., red blood-platelet enriched cells) from a sample.


Any or all of the enrichment steps can occur with minimal dilution of the sample. For example, in some embodiments the analytes of interest are retained in an enriched solution that is less than 50, 40, 30, 20, 10, 9.0, 8.0, 7.0, 6.0, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, or 0.5 fold diluted from the original sample. In some embodiments, any or all of the enrichment steps increase the concentration of the analyte of interest (e.g. fetal cell), for example, by transferring them from the fluid sample to an enriched fluid sample (sometimes in a new fluid medium, such as a buffer). The new concentration of the analyte of interest may be at least 2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, 100,000, 200,000, 500,000, 1,000,000, 2,000,000, 5,000,000, 10,000,000, 20,000,000, 50,000,000, 100,000,000, 200,000,000, 500,000,000, 1,000,000,000, 2,000,000,000, or 5,000,000,000 fold more concentrated than in the original sample. For example, a 10 times concentration increase of a first cell type out of a blood sample means that the ratio of first cell type/all cells in a sample is 10 times greater after the sample was applied to the apparatus herein. Such concentration can take a fluid sample (e.g., a blood sample) of greater than 10, 15, 20, 50, or 100 mL total volume comprising rare components of interest, and it can concentrate such rare component of interest into a concentrated solution of less than 0.5, 1, 2, 3, 5, or 10 mL total volume.


The final concentration of rare cells in relation to non-rare cells after enrichment can be about 1/10,000- 1/10, or 1/1,000- 1/100. In some embodiments, the concentration of fetal cells to maternal cells may be up to 1/1,000, 1/100, or 1/10 or as low as 1/100, 1/1,000 or 1/10,000.


Thus, detection and analysis of the fetal cells can occur even if the non-fetal (e.g. maternal) cells are >50%, 60%, 70%, 80%, 90%, 95%, or 99% of all cells in a sample. In some embodiments, fetal cells are at a concentration of less than 1:2, 1:4, 1:10, 1:50, 1:100, 1:1000, 1:10,000, 1:100,000, 1,000,000, 1:10,000,000 or 1:100,000,000 of all cells in a mixed sample to be analyzed or at a concentration of less than 1×10−3, 1×10−4, 1×10−5, 1×10−6, or 1×10−6 cells/μL of the mixed sample. Over all, the number of fetal cells in a mixed sample, (e.g. enriched sample) has up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 100 total fetal cells.


Enriched target cells (e.g., fnRBC) can be “binned” prior to analysis of the enriched cells (FIGS. 17 and 18). Binning is any process which results in the reduction of complexity and/or total cell number of the enriched cell output. Binning may be performed by any method known in the art or described herein. One method of binning the enriched cells is by serial dilution. Such dilution may be carried out using any appropriate platform (e.g., PCR wells, microtiter plates). Other methods include nanofluidic systems which separate samples into droplets (e.g., BioTrove, Raindance, Fluidigm). Such nanofluidic systems may result in the presence of a single cell present in a nanodroplet.


Binning may be preceded by positive selection for target cells including, but not limited to affinity binding (e.g. using anti-CD71 antibodies). Alternately, negative selection of non-target cells may precede binning. For example, output from the size-based separation module may be passed through a magnetic hemoglobin enrichment module (MHEM) which selectively removes WBCs from the enriched sample.


For example, the possible cellular content of output from enriched maternal blood which has been passed through a size-based separation module (with or without further enrichment by passing the enriched sample through a MHEM) may consist of: 1) approximately 20 fnRBC; 2) 1,500 nmRBC; 3) 4,000-40,000 WBC; 4) 15×106 RBC. If this sample is separated into 100 bins (PCR wells or other acceptable binning platform), each bin would be expected to contain: 1) 80 negative bins and 20 bins positive for one fnRBC; 2) 150 nmRBC; 3) 400-4,000 WBC; 4) 15×104 RBC. If separated into 10,000 bins, each bin would be expected to contain: 1) 9,980 negative bins and 20 bins positive for one fnRBC; 2) 8,500 negative bins and 1,500 bins positive for one mnRBC; 3) <1-4 WBC; 4) 15×102 RBC. One of skill in the art will recognize that the number of bins may be increased depending on experimental design and/or the platform used for binning. The reduced complexity of the binned cell populations may facilitate further genetic and cellular analysis of the target cells.


Analysis may be performed on individual bins to confirm the presence of target cells (e.g. fnRBC) in the individual bin. Such analysis may consist of any method known in the art, including, but not limited to, FISH, PCR, STR detection, SNP analysis, biomarker detection, and sequence analysis (FIGS. 17 and 18).


Fetal Biomarkers


In some embodiments fetal biomarkers may be used to detect and/or isolate fetal cells, after enrichment or after detection of fetal abnormality or lack thereof. For example, this may be performed by distinguishing between fetal and maternal nRBCs based on relative expression of a gene (e.g., DYS1, DYZ, CD-71, ε- and ζ-globin) that is differentially expressed during fetal development. In preferred embodiments, biomarker genes are differentially expressed in the first and/or second trimester. “Differentially expressed,” as applied to nucleotide sequences or polypeptide sequences in a cell or cell nuclei, refers to differences in over/under-expression of that sequence when compared to the level of expression of the same sequence in another sample, a control or a reference sample. In some embodiments, expression differences can be temporal and/or cell-specific. For example, for cell-specific expression of biomarkers, differential expression of one or more biomarkers in the cell(s) of interest can be higher or lower relative to background cell populations. Detection of such difference in expression of the biomarker may indicate the presence of a rare cell (e.g., fnRBC) versus other cells in a mixed sample (e.g., background cell populations). In other embodiments, a ratio of two or more such biomarkers that are differentially expressed can be measured and used to detect rare cells.


In one embodiment, fetal biomarkers comprise differentially expressed hemoglobins. Erythroblasts (nRBCs) are very abundant in the early fetal circulation, virtually absent in normal adult blood and by having a short finite lifespan, there is no risk of obtaining fnRBC which may persist from a previous pregnancy. Furthermore, unlike trophoblast cells, fetal erythroblasts are not prone to mosaic characteristics.


Yolk sac erythroblasts synthesize ε-, ζ-, γ- and α-globins, these combine to form the embryonic hemoglobins. Between six and eight weeks, the primary site of erythropoiesis shifts from the yolk sac to the liver, the three embryonic hemoglobins are replaced by fetal hemoglobin (HbF) as the predominant oxygen transport system, and ε- and ζ-globin production gives way to γ-, α- and β-globin production within definitive erythrocytes (Peschle et al., 1985). HbF remains the principal hemoglobin until birth, when the second globin switch occurs and β-globin production accelerates.


Hemoglobin (Hb) is a heterodimer composed of two identical a globin chains and two copies of a second globin. Due to differential gene expression during fetal development, the composition of the second chain changes from c globin during early embryonic development (1 to 4 weeks of gestation) to γ globin during fetal development (6 to 8 weeks of gestation) to β globin in neonates and adults as illustrated in (Table 1).









TABLE 1







Relative expression of ϵ, γ and β in maternal and fetal RBCs.











ε
γ
B
















1st trimester
Fetal
++
++





Maternal

+/−
++



2nd trimester
Fetal

++
+/−




Maternal

+/−
++









In the late-first trimester, the earliest time that fetal cells may be sampled by CVS, fnRBCs contain, in addition to a globin, primarily ε and γ globin. In the early to mid second trimester, when amniocentesis is typically performed, fnRBCs contain primarily γ globin with some adult β globin. Maternal cells contain almost exclusively α and β globin, with traces of γ detectable in some samples. Therefore, by measuring the relative expression of the ε, γ and β genes in RBCs purified from maternal blood samples, the presence of fetal cells in the sample can be determined. Furthermore, positive controls can be utilized to assess failure of the FISH analysis itself.


In various embodiments, fetal cells are distinguished from maternal cells based on the differential expression of hemoglobins β, γ or ε. Expression levels or RNA levels can be determined in the cytoplasm or in the nucleus of cells. Thus in some embodiments, the methods herein involve determining levels of messenger RNA (mRNA), ribosomal RNA (rRNA), or nuclear RNA (nRNA).


In some embodiments, identification of fnRBCs can be achieved by measuring the levels of at least two hemoglobins in the cytoplasm or nucleus of a cell. In various embodiments, identification and assay is from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 fetal nuclei. Furthermore, total nuclei arrayed on one or more slides can number from about 100, 200, 300, 400, 500, 700, 800, 5000, 10,000, 100,000, 1,000,000, 2,000,000 to about 3,000,000. In some embodiments, a ratio for γ/β or ε/β is used to determine the presence of fetal cells, where a number less than one indicates that a fnRBC(s) is not present. In some embodiments, the relative expression of γ/β or ε/β provides a fnRBC index (“FNI”), as measured by γ or ε relative to β. In some embodiments, a FNI for γ/β greater than 5, 10, 15, 20, 25, 30, 35, 40, 45, 90, 180, 360, 720, 975, 1020, 1024, 1250 to about 1250, indicate that a fnRBC(s) is present. In yet other embodiments, a FNI for γ/β of less than about 1 indicates that a fnRBC(s) is not present. Preferably, the above FNI is determined from a sample obtained during a first trimester. However, similar ratios can be used during second trimester and third trimester.


In some embodiments, the expression levels are determined by measuring nuclear RNA transcripts including, nascent or unprocessed transcripts. In another embodiment, expression levels are determined by measuring mRNA, including ribosomal RNA. There are many methods known in the art for imaging (e.g., measuring) nucleic acids or RNA including, but not limited to, using expression arrays from Affymetrix, Inc. or Illumina, Inc.


RT-PCR primers can be designed by targeting the globin variable regions, selecting the amplicon size, and adjusting the primers annealing temperature to achieve equal PCR amplification efficiency. Thus TaqMan probes can be designed for each of the amplicons with well-separated fluorescent dyes, Alexa Fluor®-355 for ε, Alexa Fluor®-488 for γ, and Alexa Fluor-555 for β. The specificity of these primers can be first verified using ε, γ, and β cDNA as templates. The primer sets that give the best specificity can be selected for further assay development. As an alternative, the primers can be selected from two exons spanning an intron sequence to amplify only the mRNA to eliminate the genomic DNA contamination.


The primers selected can be tested first in a duplex format to verify their specificity, limit of detection, and amplification efficiency using target cDNA templates. The best combinations of primers can be further tested in a triplex format for its amplification efficiency, detection dynamic range, and limit of detection.


Various commercially available reagents are available for RT-PCR, such as One-step RT-PCR reagents, including Qiagen One-Step RT-PCR Kit and Applied Biosytems TaqMan One-Step RT-PCR Master Mix Reagents kit. Such reagents can be used to establish the expression ratio of ε, γ, and β using purified RNA from enriched samples. Forward primers can be labeled for each of the targets, using Alexa fluor-355 for ε, Alexa fluor-488 for γ, and Alexa fluor-555 for β. Enriched cells can be deposited by cytospinning onto glass slides. Additionally, cytospinning the enriched cells can be performed after in situ RT-PCR. Thereafter, the presence of the fluorescent-labeled amplicons can be visualized by fluorescence microscopy. The reverse transcription time and PCR cycles can be optimized to maximize the amplicon signal:background ratio to have maximal separation of fetal over maternal signature. Preferably, signal:background ratio is greater than 5, 10, 50 or 100 and the overall cell loss during the process is less than 50, 10 or 5%.


Fetal Cell Analysis


In step 125, DNA is extracted and purified from cells/nuclei of the enriched product (mixed sample enriched) and reference sample. Methods for extracting DNA are known to those skilled in the art.


In step 131, the DNA is optionally pre-amplified to increase the overall quantity of DNA for subsequent analysis. Pre-amplification of DNA can be conducted using any amplification method known in the art, including for example, amplification via multiple displacement amplification (MDA) (Gonzalez J M, et al. Cold Spring Harb Symp Quant Biol; 68:69-78 (2003), Murthy et al. Hum Mutat 26(2):145-52 (2005) and Paulland et al., Biotechniques; 38(4):553-4, 556, 558-9 (2005)), and linear amplification methods such as in vitro transcription (Liu, et al., BMC Genomics; 4(1)19 (2003)).


Other methods for pre-amplification include PCR methods including quantitative PCR, quantitative fluorescent PCR (QF-PCR), multiplex fluorescent PCR (MF-PCR), real time PCR (RT-PCR), single cell PCR, PCR-RFLP/RT-PCR-RFLP, hot start PCR and Nested PCR. For example, the PCR products can be directly sequenced bi-directionally by dye-terminator sequencing. PCR can be performed in a 384-well plate in a volume of 15 ul containing 5 ng genomic DNA, 2 mM MgCl2, 0.75 ul DMSO, 1 M Betaine, 0.2 mM dNTPs, 20 pmol primers, 0.2 ul AmpliTaq Gold® (Applied Biosystems), 1× buffer (supplied with AmpliTaq Gold). Thermal cycling conditions are as follows: 95° C. for 10 minutes; 95° C. for 30 seconds, 60° C. for 30 seconds, 72° C. for 1 minute for 30 cycles; and 72° C. for 10 minutes. PCR products can be purified with Ampure® Magnetic Beads (Agencourt) and can be optionally separated by capillary electrophoresis on an ABI3730 DNA Analyzer (Applied Biosystems).


Other suitable amplification methods include the ligase chain reaction (LCR), transcription amplification, self-sustained sequence replication, selective amplification of target polynucleotide sequences, consensus sequence primed polymerase chain reaction (CP-PCR), arbitrarily primed polymerase chain reaction (AP-PCR) and nucleic acid based sequence amplification (NABSA). Other amplification methods that may be used in step 131 include those described in, U.S. Pat. Nos. 5,242,794, 5,494,810, 4,988,617 and 6,582,938, each of which is incorporated herein by reference.


The pre-amplification step increases the amount of enriched fetal DNA thus allowing analysis to be performed even if up to 1 μg, 500 ng, 200 ng 100 ng, 50 ng, 40 ng, 30 ng, 20 ng, 10 ng, 5 ng, 1 ng, 500 pg, 200 pg, 100 pg, 50 pg, 40 pg, 30 pg, 20 pg, 10 pg, 5 pg, or 1 pg of fetal or total DNA was obtained from the mixed sample, or between 1-5 μg, 5-10 μg, 10-50 μg of fetal or total DNA was obtained from the mixed sample.


In step 141, SNP(s) are detected from DNA of both mixed and reference samples using any method known in the art. Detection can involve detecting an abundance of a nucleotide base at a SNP position. Detection can be accomplished using a DNA microarray, bead microarray, or high throughput sequencing. In some instances SNPs are detected using highly parallel SNP detection methods such as those described in Fan J B, et al. Cold Spring Harb Symp Quant Biol; 68:69-78 (2003); Moorhead M, et al. Eur. J. Hum Genet 14:207-215 (2005); Wang Y, et. al. Nucleic Acids Res; 33(21):e183 (2005). Highly parallel SNP detection provides information about genotype and gene copy numbers at a large number of loci scattered across the genome in one procedure. In some cases, highly parallel SNP detection involves performing SNP specific ligation-extension reactions, followed by amplification of the products. The readout of the SNP types can be done using DNA microarrays (Gunderson et al. Nat. Genety 37(5):549-54 (2005), bead arrays (Shen, et al., Mutat. Res; 573 (1-2):70-82 (2005), or by sequencing, such as high throughput sequencing (e.g. Margulies et al. Nature, 437 (7057):376-80 (2005)) of individual amplicons.


In some embodiments, cDNAs, which are reverse transcribed from mRNAs obtained from fetal or maternal cells, are analyzed for the presence of SNPS using the methods disclosed within. The type and abundance of the cDNAs can be used to determine whether a cell is a fetal cell (such as by the presence of Y chromosome specific transcripts) or whether the fetal cell has a genetic abnormality (such as anueploidy, abundance of alternative transcripts or problems with DNA methylation or imprinting).


In one embodiment, fetal or maternal cells or nuclei are enriched using one or more methods disclosed herein. Preferably, fetal cells are enriched by flowing the sample through an array of obstacles that selectively directs particles or cells of different hydrodynamic sizes into different outlets such that fetal cells and cells larger than fetal cells are directed into a first outlet and one or more cells or particles smaller than the rare cells are directed into a second outlet.


Total RNA or poly-A mRNA is then obtained from enriched cell(s) (fetal or maternal cells) using purification techniques known in the art. Generally, about 1 μg-2 μg of total RNA is sufficient. Next, a first-strand complementary DNA (cDNA) is synthesized using reverse transcriptase and a single T7-oligo(dT) primer. Next, a second-strand cDNA is synthesized using DNA ligase, DNA polymerase, and RNase enzyme. Next, the double stranded cDNA (ds-cDNA) is purified.


In another embodiment, total RNA is extracted from enriched cells (fetal cells or maternal cells). Next a, two one-quarter scale Message Amp II reactions (Ambion, Austin, Tex.) are performed for each RNA extraction using 200 ng of total RNA. MessageAmp is a procedure based on antisense RNA (aRNA) amplification, and involves a series of enzymatic reactions resulting in linear amplification of exceedingly small amounts of RNA for use in array analysis. Unlike exponential RNA amplification methods, such as NASBA and RT-PCR, aRNA amplification maintains representation of the starting mRNA population. The procedure begins with total or poly(A) RNA that is reverse transcribed using a primer containing both oligo(dT) and a T7 RNA polymerase promoter sequence. After first-strand synthesis, the reaction is treated with RNase H to cleave the mRNA into small fragments. These small RNA fragments serve as primers during a second-strand synthesis reaction that produces a double-stranded cDNA template.


Any DNA microarray that is capable of detecting one or more SNPs can be used with the methods herein. DNA microarrays comprise a plurality of genetic probes immobilized at discrete sites (i.e., defined locations or assigned positions) on a substrate surface. A DNA microarray preferably monitors at least 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, 100,000, 200,000 or 500,000 different SNPs. Such SNPs can be located in one or more target chromosomes or over the entire genome. Methods for manufacturing DNA microarrays for detecting SNPs are known in the art. Microarrays that can be used in the systems herein include those commercially available from Affymetrix (Santa Clara, Calif.), Illumina (San Diego, Calif.), Spectral Genomics, Inc. (Houston, Tex.), and Vysis Corporation (Downers Grove, Ill.). Methods for detecting SNPs using microarrays are further described in U.S. Pat. Nos. 6,300,063, 5,837,832, 6,969,589, 6,040,138, and 6,858,412.


In one embodiment, SNPs are detected using molecular inversion probes (MIPs). MIPs are nearly circularized probes having a first end of the probe complementary to a region immediately upstream of the SNP to be detected, and a second end of the probe complementary to a region immediately downstream of the SNP. To use MIPs both ends are allowed to hybridize to genomic regions surrounding the SNP and an enzymatic reaction fills the gap at the SNP position in an allele specific manner. The fully circular probe now can be separated by a simple exonuclease reaction which leaves a primer sequence coupled to a label unique to the allele. The primer is subsequently used to amplify the label which is then hybridized to an array for detection.



FIG. 5 illustrates one embodiment of an allele specific extension and ligation reaction. Genomic DNA fragments are first annealed to a solid support. Subsequently, probes designed to be unique for each allele (P1 and P2) are annealed to the target DNA. After a washing step, allele-specific primer extension is conducted to extend the probes if such probes have 3′ ends that are complementary to their cognate SNP in the genomic DNA template. The extension is followed by ligation of the extended templates to their corresponding locus-specific probes (P3) to create PCR templates. Requiring the joining of two fragments (P1 and P3 or P2 and P3) to create a PCR template provides an additional level of genomic specificity, because any residual incorrectly hybridized allele-specific or locus-specific probes are unlikely to be adjacent and thus should not be able to ligate. Next, fluorescently labeled primers, each with a different dye, are added for PCR amplification, thus providing a means for detection and quantification of each SNP by providing data points. In addition, each SNP is assigned a different address sequence (P3) which is contained within the locus-specific probe. Each address sequence is complementary to a unique capture sequence that can be contained by one of several bead types present in an array. Furthermore, the use of universal PCR primers to associate a fluorescent dye with each SNP allele provides a cost-saving element, because only three primers, two labeled and one unlabeled, are needed regardless of the number of SNPs to be assayed.


If the addresses are captured by beads, multiple SNPs can be amplified in the same or in different reactions using bead amplification. When more than one DNA polymorphism is used in the same amplification reaction, primers are chosen to be multiplexable (fairly uniform melting temperature, absence of cross-priming on the human genome, and absence of primer-primer interaction based on sequence analysis) with other pairs of primers. Furthermore, primers and loci may be chosen so that the amplicon lengths from a given locus do not overlap with those from another locus. Multiple dyes and multi-color fluorescence readout may be used to increase the multiplexing capacity.


In some embodiments, highly parallel SNP detection is performed by arrayed primer extension (APEX). In order to perform APEX, a gene locus is chosen where one wishes to analyze SNPs or mutations, for example, loci for abnormal ploidy disorders (e.g. chromosome X, 13, 18, and 21). Oligonucleotides (e.g., about 20-, 25-, 30-, 40-, 50-mers) are designed to be complementary to the gene up to, but not including the base where the mutation or SNP exists. In one example, the oligonucleotides are modified with an amine group at the 5′ end to facilitate covalent binding to activated glass slides, in this case epoxy silanized surfaces. The locus in question is PCR amplified and the DNA enzymatically sheared to facilitate hybridization to the oligos. The PCR reactions contain dTTP and dUTP at about a 5 to 1 ratio, and the incorporation of the dUTP allows the amplified DNA to be enzymatically cut with uracil N-glycosylase (UNG). The optimal size of the sheared DNA is about 100 base pairs. The sheared DNA is then hybridized to the bound oligos and a primer extension reaction carried out using a thermostable DNA polymerase such as Thermo Sequenase (Amersham Pharmacia Biotech) or AmpliTaq FS (Roche Molecular Systems). The primer extension reaction contains four dideoxynucleotides (ddNTPs) corresponding to A, G, C & T, with each ddNTP containing a distinct fluor molecule. In the above example, ddNTPs can be conjugated to either fluorescein, Cy3™, Texas Red or Cy5™. Depending on which base is next in the sequence (wild type, mutant or SNP), the primer extension reaction will incorporate one nucleotide with one and only one of the four dyes. Thus, by applying a simple four laser scan one can tell which base is next in the sequence as each of the above dyes are easily spectrally separable. A large number of different oligos, (e.g., 5-, 10-, 15-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-thousand probes) may be attached to a slide for this type of analysis with the requirement that very little cross hybridization occurs among all the sequences. It may be helpful to increase the length of the oligos (e.g., 50-, 60-, 70-, 80-mers) so that the initial hybridization can be done at higher stringency resulting in less background from non-homologous hybridization. In the APEX method, the signal to noise ratio is about 40 to 1, a level which is more than sufficient for unambiguously identifying SNPs and mutations. To design such large arrays for SNP analysis, a computational screen can be conducted to favor a subset of sequences with similar GC content and thermodynamic properties, and eliminate sequences with possible secondary structure or sequence similarity to other tags. Shoemaker et al. Nature Genetics 14:450-456 (1996); Giaever et al. Nature Genetics 21:278-283 (1999); Winzeler et al. Science 285:901-906 (1999). For example, in high density tag array 64,000 probes, each probe occupying an area of 30×30 μm, are used for parallel genotyping of human SNPs.


In some cases, it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. Gasparini, et al., Mol. Cell Probes 6:1 (1992). Amplification is subsequently performed using Taq ligase and the like. Barany, Proc. Natl. Acad. Sci. USA 88:189 (1991). In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


Alternatively, detection of single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (e.g., SNP). Orita, et al., Proc. Natl. Acad. Sci. USA: 86: 2766 (1989); Cotton, Mutat. Res. 285: 125-144 (1993); and Hayashi, Genet. Anal. Tech. Appl. 9: 73-79 (1992). Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. The subject method utilizes heteroduplex analysis to separate double-stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. Keen, et al., Trends Genet. 7: 5 (1991).


Other methods for detecting SNPs include methods in which protection from cleavage agents is used to detect mismatched bases in DNA/RNA or RNA/DNA heteroduplexes. Myers, et al., Science 230: 1242 (1985). In general, the art technique of “mismatch cleavage” starts by providing, heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the control sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single stranded regions of the duplex such as those that exist due to “base pair mismatches” between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digesting the mismatched regions. Furthermore, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. Cotton, et al., Proc. Natl. Acad. Sci. USA 85:4397 (1988); and Saleeba, et al., Methods Enzymol. 2 17: 286-295 (1992). The control DNA or RNA can be labeled for detection.


SNPs can also be detected and quantified using by sequencing methods including the classic Sanger sequencing method as well as high throughput sequencing, which may be capable of generating at least 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 100,000 or 500,000 sequence reads per hour, with at least 50, 60, 70, 80, 90, 100, 120 or 150 bases per read.


High throughput sequencing can involve sequencing-by-synthesis, sequencing-by-ligation, and ultra deep sequencing.


Sequence-by-synthesis can be initiated using sequencing primers complementary to the sequencing element on the nucleic acid tags. The method involves detecting the identity of each nucleotide immediately after (substantially real-time) or upon (real-time) the incorporation of a labeled nucleotide or nucleotide analog into a growing strand of a complementary nucleic acid sequence in a polymerase reaction. After the successful incorporation of a label nucleotide, a signal is measured and then nulled by methods known in the art. Examples of sequence-by-synthesis methods are described in U.S. Application Publication Nos. 2003/0044781, 2006/0024711, 2006/0024678 and 2005/0100932. Examples of labels that can be used to label nucleotide or nucleotide analogs for sequencing-by-synthesis include, but are not limited to, chromophores, fluorescent moieties, enzymes, antigens, heavy metal, magnetic probes, dyes, phosphorescent groups, radioactive materials, chemiluminescent moieties, scattering or fluorescent nanoparticles, Raman signal generating moieties, and electrochemical detection moieties. Sequencing-by-synthesis can generate at least 1,000, at least 5,000, at least 10,000, at least 20,000, 30,000, at least 40,000, at least 50,000, at least 100,000 or at least 500,000 reads per hour. Such reads can have at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 120 or at least 150 bases per read.


Another sequencing method involves hybridizing the amplified regions to a primer complementary to the sequence element in an LST. This hybridization complex is incubated with a polymerase, ATP sulfurylase, luciferase, apyrase, and the substrates luciferin and adenosine 5′ phosphosulfate. Next, deoxynucleotide triphosphates corresponding to the bases A, C, G, and T (U) are added sequentially. Each base incorporation is accompanied by release of pyrophosphate, converted to ATP by sulfurylase, which drives synthesis of oxyluciferin and the release of visible light. Since pyrophosphate release is equimolar with the number of incorporated bases, the light given off is proportional to the number of nucleotides adding in any one step. The process is repeated until the entire sequence is determined.


Yet another sequencing method involves a four-color sequencing by ligation scheme (degenerate ligation), which involves hybridizing an anchor primer to one of four positions. Then an enzymatic ligation reaction of the anchor primer to a population of degenerate nonamers that are labeled with fluorescent dyes is performed. At any given cycle, the population of nonamers that is used is structure such that the identity of one of its positions is correlated with the identity of the fluorophore attached to that nonamer. To the extent that the ligase discriminates for complementarily at that queried position, the fluorescent signal allows the inference of the identity of the base. After performing the ligation and four-color imaging, the anchor primer:nonamer complexes are stripped and a new cycle begins. Methods to image sequence information after performing ligation are known in the art.


In some cases, high throughput sequencing involves the use of ultra-deep sequencing, such as described in Marguiles et al., Nature 437 (7057): 376-80 (2005). Briefly, the amplicons are diluted and mixed with beads such that each bead captures a single molecule of the amplified material. The DNA molecule on each bead is then amplified to generate millions of copies of the sequence which all remain bound to the bead. Such amplification can occur by PCR. Each bead can be placed in a separate well, which can be a (optionally addressable) picolitre-sized well. In some embodiments, each bead is captured within a droplet of a PCR-reaction-mixture-in-oil-emulsion and PCR amplification occurs within each droplet. The amplification on the bead results in each bead carrying at least one million, at least 5 million, or at least 10 million copies of the original amplicon coupled to it. Finally, the beads are placed into a highly parallel sequencing by synthesis machine which generates over 400,000 reads (˜100 bp per read) in a single 4 hour run.


Other methods for ultra-deep sequencing that can be used are described in Hong, S. et al. Nat. Biotechnol. 22(4):435-9 (2004); Bennett, B. et al. Pharmacogenomics 6(4):373-82 (2005); Shendure, P. et al. Science 309 (5741):1728-32 (2005).


The microarray or sequencing methods described herein provide a readout, which can be visualized via apparatus and methods known in the art. For example, for a given marker or at a given tag probe position, the fluorescence intensity of each of the fluorophores utilized (e.g., tagged sequencing or PCR primers) provides a signal which is detected by apparatus or automated systems/machines known in the art. The fluorophore markers can be utilized either in an array-based or sequencing-based analysis.


In step 151, SNP data is used to determine aneuploidy by, e.g., determining the ratio of material allele(s) to paternal allele(s) (or vice versa); or determining ratio of maternal allele(s) in a region suspected of aneuploidy versus in a control region.


Aneuploidy means the condition of having less than or more than the normal diploid number of chromosomes. In other words, it is any deviation from euploidy. Aneuploidy includes conditions such as monosomy (the presence of only one chromosome of a pair in a cell's nucleus), trisomy (having three chromosomes of a particular type in a cell's nucleus), tetrasomy (having four chromosomes of a particular type in a cell's nucleus), pentasomy (having five chromosomes of a particular type in a cell's nucleus), triploidy (having three of every chromosome in a cell's nucleus), and tetraploidy (having four of every chromosome in a cell's nucleus). Birth of a live triploid is extraordinarily rare and such individuals are quite abnormal, however triploidy occurs in about 2-3% of all human pregnancies and appears to be a factor in about 15% of all miscarriages. Tetraploidy occurs in approximately 8% of all miscarriages. (www.emedicine.com/med/topic3241.htm).


In one embodiment, kits are provided which include a separation device, optionally a capture device and the reagents and devices used for the analysis of the genomic sequences. For example, the kit may include the separation arrays and DNA microarrays for detecting one or more SNPs. Any of the devices mentioned for the DNA determination may be combined with the separation devices. The combination of the array separation devices with DNA analysis devices provides gentle handling and accurate analysis.


A simple intuitive understanding of the effect of trisomy is that it increase the abundances of fetal alleles at loci within the affected region. Trisomies are predominately from maternal non-dysjunction events, so typically both maternal alleles, and a single paternal allele, are increased, and the ratio of maternal allele abundance to paternal allele abundance is higher in the trisomic region. These signatures may be masked by differences in DNA amplification and hybridization efficiency from locus to locus, and from allele to allele.


In one embodiment, trisomies are determined by comparing abundance (e.g. intensities) of maternal and paternal alleles in a genomic region. Within a locus, the PCR differences are smaller than between loci, because the same primers are responsible for all the different allele amplicons at that locus. Therefore, the allele ratios may be more stable than the overall allele abundances. This can be exploited by identifying loci where the paternal allele is distinct form the maternal allele and taking the ratio of the paternal allele strength to the average of the maternal allele strengths. These allele ratios then can be averaged over the hypothesized aneuploidy region and compared to the average over a control region. The distributions of these ratio values in the hypothesized aneuploidy region and in the control region can be compared to create an estimate of statistical significance for the observed difference in means. A simple example of this procedure would use Student's t-test.


Thus, the present invention contemplates detection of fetal abnormality by determining a ratio of abundance of maternal allele(s) and abundance of paternal allele(s) (or vice versa) in one or more genomic regions of interest. (Preferably the paternal allele differs from one or both the maternal alleles). The genomic region can be derived from a mixed sample comprising fetal and maternal cells. The sample can be obtained from a pregnant animal and can be, e.g., a blood sample. In some cases, the genomic region includes a SNP and/or an informative SNP. In some cases at least 10, 20, 50, 100, 200 or 500 SNPs are analyzed per sample. The SNPs analyzed can be in a single locus, different loci, single chromosome, or different chromosomes. In some cases, a first genomic region (SNP) analyzed is in a genomic region suspected of being trisomic or is trisomic and a second genomic region (SNP) analyzed is in a control region that is non-trisomic or a region suspected of being non-trisomic. The ratio of alleles (e.g., maternal/paternal) in a first genomic region or first plurality of genomic regions (trisomic) (hereinafter test regions) is then compared with a ratio of alleles (e.g., maternal/paternal) in the second genomic region or second plurality of genomic regions (hereinafter control regions). The control region(s) and test region(s) can be on the same or different chromosomes. In some instances, comparison is made by determining the difference in means of the ratios in the first regions and second regions. Detection of an increase of paternal abundance in the test region(s) is indicative of paternal trisomy, while detection of an increase of maternal abundance in the first region(s) is indicative of maternal trisomy. Furthermore, calculation of error rate based on amplification can be performed prior to making a call if a fetus has a specific condition (e.g., trisomy) or not.


Alternatively, the maternal allele strengths over the suspected aneuploidy region(s) can be compared to those in the control region(s), all without forming ratios to paternal alleles. In this approach, errors in the measurement of the paternal allele abundances are not calculated. However, differences in amplification efficiency between primer pairs are calculated. These measurements can be larger than differences between alleles in the same locus. In this approach there also may be a residual bias between the efficiencies averaged over certain chromosomes. Therefore it may be useful to also perform the same detection process in a reference sample (e.g. maternal only cell sample) and then take the ratio of ratios. In other words, the ratio obtained for the mixed sample of the abundance in test genomic region(s) and control genomic region(s) divided by the same ratio obtained from the reference sample. The ratios obtained for the mixed and reference samples reflect allele strength over suspected aneuploidy region over allele strength over control region, and the ratio of ratios presents an estimate that is normalized to the reference (maternal) sample. Such ratio of ratios is therefore free of chromosome bias, but may include errors in the measurements of the reference sample, as that sample is used as the control or normalizer.


In some cases, the methods herein contemplate detecting fetal abnormality by comparing an abundance of one or more maternal allele(s) in a first genomic region or regions (test region(s)) with one or more maternal alleles in a second genomic region or regions (control region(s)) in a mixed sample (e.g., maternal blood sample from pregnant animal). This ratio can then be compared to a similar ratio measured in a control sample (e.g., maternal-cell only sample). The control sample can be a diluted subset of the mixed sample, wherein the dilution is by a factor of at least 10, 100, 1000, or 10,000. In some cases, such methods further involve estimating the number of fetal cells in the mixed sample. This can be performed by, e.g., ranking the alleles detected according to their abundance. The ranking can be used to determine abundance of one or more paternal alleles. Ranking is described in more detail herein.


Aneuploidy can be determined by modeling SNP data. One example of a model for SNP data in the context of fetal diagnosis is given in Equations 1-3 below.


A normal (diploid) fetus result in data xk at locus k and is represented by:

xk=Ak[(1−f)(mk1+mk2)+f((mk1 or mk2)+pk)]+residual  (1)


A trisomy caused by maternal non-dysjunction is represented by

xk=Ak[(1−f)(mk1+mk2)+f(mk1+mk2+pk)]+residual  (2)


and a paternally inherited trisomy is represented by

xk=Ak[(1−f)(mk1+mk2)+f((mk1 or mk2)+pk1+pk2)]+residual  (3)


In Equations 1-3, Ak denotes a scale factor which subsumes the efficiencies of amplification, hybridization, and readout common to the alleles at locus k. In this model amplification differences between different primer pairs are fitted and do not appear in the residuals. Alternatively, a single A parameter could be used and the residuals would reflect these differences. Further, f represents the fraction of fetal cells in the mixture, mk1 and mk2 denote the maternal alleles at locus k, and pk denotes the paternal allele at locus k. The allele symbols actually represent unit data contributions that can be arithmetically summed; e.g., mk1 might be a detection of the ‘C’ genotype represented by unit contribution to the ‘C’ bin at that locus.



FIG. 6 illustrates the SNP calls that result under this data model. At Locus 1, the fetal genotype was GC. There is a paternally inherited ‘G’ allele contribution in the mixed sample that results in an increase of G signal above the noise level observed in the maternal-only sample, and a maternally inherited ‘C’ allele contribution that increases the C signal. The effective value that has been assumed in these illustrations is f=0.2. At Locus 2, the paternal allele is ‘T’. At Locus 3, the fetus is homozygous GG. In the third row of FIG. 2, the effect of a fetal trisomy is represented by the dashed red lines, superposed on a normal (diploid) mixed-sample pattern. The trisomy is assumed to include Loci 1 and 2, but not Loci 3 and 4. At Loci 1 and 2 both maternal allele strengths are increased in the mixed sample, as well as the separate paternal allele contribution. At Locus 3, it was assumed that the fetus was ‘GG’ and the paternal allele is the same as the first maternal allele. Note that the ratio between the average of the two maternal alleles and the paternal allele will be slightly greater at Loci 1 and 2 than at Locus 4—this is one indicator of trisomy.


The location and abundance of SNPs can be used to determine whether the fetus has an abnormal genotypes, such as Down syndrome or Kleinfelter Syndrome (XXY). Other examples of abnormal fetal genotypes include, but are not limited to, aneuploidy such as, monosomy of one or more chromosomes (X chromosome monosomy, also known as Turner's syndrome), trisomy of one or more chromosomes (13, 18, 21, and X), tetrasomy and pentasomy of one or more chromosomes (which in humans is most commonly observed in the sex chromosomes, e.g. XXXX, XXYY, XXXY, XYYY, XXXXX, XXXXY, XXXYY, XYYYY and XXYYY), triploidy (three of every chromosome, e.g. 69 chromosomes in humans), tetraploidy (four of every chromosome, e.g. 92 chromosomes in humans) and multiploidy. In some embodiments, an abnormal fetal genotype is a segmental aneuploidy. Examples of segmental aneuploidy include, but are not limited to, 1p36 duplication, dup(17)(p11.2p11.2) syndrome, Down syndrome, Pelizaeus-Merzbacher disease, dup(22)(q11.2q11.2) syndrome, and cat-eye syndrome. In some cases, an abnormal fetal genotype is due to one or more deletions of sex or autosomal chromosomes, which may result in a condition such as Cri-du-chat syndrome, Wolf-Hirschhorn, Williams-Beuren syndrome, Charcot-Marie-Tooth disease, Hereditary neuropathy with liability to pressure palsies, Smith-Magenis syndrome, Neurofibromatosis, Alagille syndrome, Velocardiofacial syndrome, DiGeorge syndrome, Steroid sulfatase deficiency, Kallmann syndrome, Microphthalmia with linear skin defects, Adrenal hypoplasia, Glycerol kinase deficiency, Pelizaeus-Merzbacher disease, Testis-determining factor on Y, Azospermia (factor a), Azospermia (factor b), Azospermia (factor c), or 1p36 deletion. In some embodiments, a decrease in chromosomal number results in an XO syndrome.


In some cases, data models are fitted for optimal detection of aneuploidy. For example, the data models can be used to simultaneously recover estimates of the fraction of fetal cells, and efficient detection of aneuploidy in hypothesized chromosomes or chromosomal segments. This integrated approach results in more reliable and sensitive declarations of aneuploidy.


Equations 1-3 represent five different models because of the ambiguity between mk1 and mk2 in the last term of Equations 1 and 3. In other words, since Equation 1 and 3 are different and in each equation there are two possibilities (i.e., mk1 or mk2) then it follows that each of Equations 1 and 3 represent two different models. Therefore, Equations 1-3 represent five different models. Testing for aneuploidy of Chromosomes 13, 18, and 21, for example entails 5×5×5=125 different model variants that would be fit to the data.


The parameter values for the maternal allele identities are taken from the results for the reference (i.e. maternal-only) sample and the remaining parameters are fit to the data from the mixed sample. Because the number of parameters is very large when the number of loci is large, a global optimization requires iterative search techniques. One possible approach is to do the following for each model variant


i) Set f to 0 and solve for Ak at each locus.


ii) Set f to a value equal to the smallest fetal/maternal cell ratio for which fetal cells are likely to be detectable.


iii) Solve for paternal allele(s) identities and strengths at each locus, one locus at a time, that minimize data-model residuals.


iv) Fix the paternal alleles and adjust f to minimize residuals over all the data.


v) Now vary only the Ak to minimize residuals. Repeat iv and v until convergence.


vi) Repeat iii through v until convergence.


The best overall fit of model to data is selected from among all the model variants. The best overall fit yields the values off and Ak we will call fmax, Akmax. The likelihood of observing the data given fmax can be compared to the likelihood given f=0. The ratio is a measure of the amount of evidence for fetal DNA. A typical threshold for declaring fetal DNA would be a likelihood ratio of ˜1000 or more. The likelihood calculation can be approximated by a more familiar Chi-squared calculation involving the sum of squared residuals between the data and the model, where each residual is normalized by the expected rms error. This Chi-squared is a good approximation to the Log(likelihood) to the extent the expected errors in the data are Gaussian additive errors, or can be made so by some amplitude transformation of the data.


If based on the above determination of likelihood ratio it is decided that fetal DNA is not present, then the test is declared to be non-informative. If it is decided that fetal DNA is present, then the likelihoods of the data given the different data model types can be compared to declare aneuploidy. The likelihood ratios of aneuploidy models (Equations 2 and 3) to the normal model (Equation 1) are calculated and these ratios are compared to a predefined threshold. Typically this threshold is set so that in controlled tests all the trisomic cases are declared aneuploid. Thus, it is expected that the vast majority (>99.9%) of all truly trisomic cases are declared aneuploid by the test. Another approach to accomplish approximately the 99.9% detection rate is to increase the likelihood ratio threshold beyond that necessary to declare all the known trisomic cases in the validation set by a factor of 1000/N, where N is the number of trisomy cases in the validation set.


In step 161 (FIG. 1), which is optional, the presence of fetal cells and ratio of fetal alleles/maternal alleles is determined. Because the fraction of fetal cells can be small or even zero, the aneuploidy signal (the departure of the observed ratio from unity) may be weak even when fetal aneuploidy is present. An independent estimate of fetal cell fraction, including a confidence estimate of whether measurable fetal DNA is present at all, is useful in interpreting the observed aneuploidy ratios. FIG. 7 illustrates allele signals re-ordered by rank. Assuming the mother has no more than two alleles at each locus, the magnitude of the third ranked allele is potentially a robust indicator of the presence of fetal DNA. Although measurement errors can artificially inflate the size of the third and fourth alleles, it is very unlikely to result in a bimodal distribution for the relative magnitude of the third allele with respect to the first two. Such a bimodal distribution is illustrated in FIG. 8. The secondary peak of this distribution occurs at a value approximately equal to the fraction of fetal cells. (This is one way to determine the value of the variable fin the data model.) The statistical confidence that the bimodality is real can be used to assign a confidence that fetal DNA was present in the mixed sample. Statistical tests for bimodality are discussed in M. Y. Cheng and P. Hall, J.R. Statist. Soc. B (1998), 60 (Part 3) pp. 579-589. If this confidence level exceeds a threshold, e.g., 90%, 95%, 99% or 99.9%, an aneuploidy call may be made. The threshold set can be stringent (e.g. 99.9%) to avoid declaring a fetus normal when in fact it is not. Thus, the independently estimated fetal cell fraction can be used to interpret the aneuploidy statistic. For example, a value f=0.5 along with an estimated aneuploidy ratio from the fetal-maternal mixture of 0.05±0.01 would weaken the evidence for aneuploidy because the ratio is too small to be consistent with the independently determined f value (the ratio should be ˜1+f/2). As another example, a value f=0.1 along with an estimated aneuploidy ratio from the fetal-maternal mixture of 0.05±0.02 would tend to strengthen the evidence for aneuploidy because the observed ratio is consistent with the independently derived value of f.


In any of the embodiments herein SNP data may be analyzed for possible errors. For example, in some instances SNP data can contain small additive errors associated with the readout technology, multiplicative errors associated with DNA amplification and hybridization efficiencies being different from locus to locus and from allele to allele within a locus, and errors associated with imperfect specificity in the process. By including the many parameters (Ak) in the model, rather than a single scale parameter, the residuals include allele-to-allele efficiency differences but not locus to locus differences. These tend to be multiplicative errors in the resulting observed allele strengths heights (e.g., two signals may be 20% different in strength although the starting concentrations of the alleles are identical). In other words, by providing many parameters, the errors that are otherwise attributable to locus to locus differences, are minimized. As a first approximation, one can assume errors are random from allele to allele; errors have relatively small additive measurement noise error components; and larger Poisson and multiplicative error components exist. The magnitudes of these error components can be estimated from repeated processing of identical samples. A Chi-square residuals calculation for any data-model fit then can be supported with these modeled squared errors for any peak height or data bin.


For example, we anticipate a large scale SNP genotyping platform such as the Golden Gate assay by Illumina will provide ˜100 SNP loci per chromosome of interest. Measurements of repeated ‘normal’ pregnancy samples would give ratios of paternal to maternal allele strengths which varied by ˜20% due to assay errors. Averaged over the 100 loci in a chromosome, the ratio error would be reduced to 20%/sqrt(100), or ˜2%. For an assumed fetal/maternal cell ratio of 0.2 in a sample, the expected observed aneuploidy ratio in the case of a trisomy would be 1.10 with an estimation error of 0.02, yielding a confident (5 sigma) detection of aneuploidy.


Alternatively, when using a single A parameter, the residuals will be larger and will contain a component which is correlated between alleles at the same locus. Calculation of likelihood will need to take this correlation into account.


Another aspect of the invention involves a computer executable logic for determining the presence of fetal cells in a mixed sample and fetal abnormalities and/or conditions in such cells. A computer program product is described comprising a computer usable medium having the computer executable logic (computer software program, including program code) stored therein. Computer executable logic when executed by the processor causes the processor to perform one or more functions described herein. For example, a computer executable logic can be utilized to automate, process or control sample collection, sample enrichment, pre-amplification, SNP data modeling, estimating fetal/maternal allele ratio, comparing maternal allele intensity from suspected aneuploid region and control region and determining the existence of aneuploidy and the type of aneuploidy if one exists.


For example, the computer executable logic can determine the presence and ratio of fetal cells to maternal cells in a mixed sample. The executable code can also receive data for one or more SNPs, and apply such data to one or more data models. The computer executable logic can then calculate a set of values for each of the data sets associated with each data model; select the data model that best fit the data, model and calculate for any potential errors in the data models; for example, a computer executable logic can determine the ratio of maternal alleles to paternal alleles in one or more SNP locations; and/or the ratio of maternal alleles in a region suspected of aneuploidy and a control region. One example of a data model provides a determination of a fetal abnormality from given data signals of SNPs at two genomic regions. The executable logic can establish the presence or absence of trisomy, and conclude whether the trisomy is paternally derived or if it originated from a maternal non-disjunction event. For example, the program can fit SNP data to the following model, which can provide the diagnosis as follows:


A normal (diploid) fetus result in data xk at locus k and is represented by:

xk=Ak[(1−f)(mk1+mk2)+f((mk1 or mk2)+pk)]+residual  (1)


A trisomy caused by maternal non-dysjunction is represented by

xk=Ak[(1−f)(mk1+mk2)+f(mk1+mk2+pk)]+residual  (2)


and a paternally inherited trisomy is represented by

xk=Ak[(1−f)(mk1mk2)+f((mk1 or mk2)+pk1+pk2)]+residual  (3)


In Equations 1-3, Ak denotes a scale factor which subsumes the efficiencies of amplification, hybridization, and readout common to the alleles at locus k. In this model amplification differences between different primer pairs are fitted and do not appear in the residuals. Alternatively, a single A parameter could be used and the residuals would reflect these differences. Further, f represents the fraction of fetal cells in the mixture, mk1 and mk2 denote the maternal alleles at locus k, and pk denotes the paternal allele at locus k. The allele symbols actually represent unit data contributions that can be arithmetically summed; e.g., mk1 might be a detection of the ‘C’ genotype represented by unit contribution to the bin at that locus.


In some cases, the computer executable logic records data measurements corresponding to readouts (e.g., SNP intensities from DNA microamap or a sequencing machine. Such measurements can be processed by the computer executable logic to determine fetal/maternal allele ratios and provide a call with result with respect to detection of aneuploidy. Moreover, computer executable logic can control display of such results in print or electronic formats, which an operator can view. Thus, a computer executable logic can include code for receiving data on one or more target DNA polymorphisms (i.e. SNP loci); calculating a set of values for each of the data sets associated with each data model; selecting the data model that best fit the data, wherein the best model will be an indication of the presence of fetal cells in the mixed sample and fetal abnormalities and/or conditions in said cells. The determination of presence of fetal cells in the mixed sample and fetal abnormalities and/or conditions in said cells can be made by the computer executable logic or an user. Therefore, the computer based logic can provide results for estimating fetal/maternal ratios, allele strength and aneuploidy, which can be observed by a technician or operator.


EXAMPLES
Example 1. Separation of Fetal Cord Blood


FIG. 12A-D shows a schematic of the device used to separate nucleated cells from fetal cord blood.


Dimensions:


100 mm×28 mm×1 mm


Array Design:


3 stages, gap size=18, 12 and 8 μm for the first, second and third stage, respectively.


Device Fabrication:


The arrays and channels were fabricated in silicon using standard photolithography and deep silicon reactive etching techniques. The etch depth is 140 μm. Through holes for fluid access are made using KOH wet etching. The silicon substrate was sealed on the etched face to form enclosed fluidic channels using a blood compatible pressure sensitive adhesive (9795, 3M, St Paul, Minn.).


Device Packaging:


The device was mechanically mated to a plastic manifold with external fluidic reservoirs to deliver blood and buffer to the device and extract the generated fractions.


Device Operation:


An external pressure source was used to apply a pressure of 2.0 PSI to the buffer and blood reservoirs to modulate fluidic delivery and extraction from the packaged device.


Experimental Conditions:


Human fetal cord blood was drawn into phosphate buffered saline containing Acid Citrate Dextrose anticoagulants. 1 mL of blood was processed at 3 mL/hr using the device described above at room temperature and within 48 hrs of draw. Nucleated cells from the blood were separated from enucleated cells (red blood cells and platelets), and plasma delivered into a buffer stream of calcium and magnesium-free Dulbecco's Phosphate Buffered Saline (14190-144, Invitrogen, Carlsbad, Calif.) containing 1% Bovine Serum Albumin (BSA) (A8412-100ML, Sigma-Aldrich, St Louis, Mo.) and 2 mM EDTA (15575-020, Invitrogen, Carlsbad, Calif.).


Measurement Techniques:


Cell smears of the product and waste fractions (FIG. 8A-8B) were prepared and stained with modified Wright-Giemsa (WG16, Sigma Aldrich, St. Louis, Mo.).


Performance:


Fetal nucleated red blood cells were observed in the product fraction (FIG. 8A) and absent from the waste fraction (FIG. 8B).


Example 2: Isolation of Fetal Cells from Maternal Blood

The device and process described in detail in Example 1 were used in combination with immunomagnetic affinity enrichment techniques to demonstrate the feasibility of isolating fetal cells from maternal blood.


Experimental Conditions:


blood from consenting maternal donors carrying male fetuses was collected into K2EDTA vacutainers (366643, Becton Dickinson, Franklin Lakes, N.J.) immediately following elective termination of pregnancy. The undiluted blood was processed using the device described in Example 1 at room temperature and within 9 hrs of draw. Nucleated cells from the blood were separated from enucleated cells (red blood cells and platelets), and plasma delivered into a buffer stream of calcium and magnesium-free Dulbecco's Phosphate Buffered Saline (14190-144, Invitrogen, Carlsbad, Calif.) containing 1% Bovine Serum Albumin (BSA) (A8412-100ML, Sigma-Aldrich, St Louis, Mo.). Subsequently, the nucleated cell fraction was labeled with anti-CD71 microbeads (130-046-201, Miltenyi Biotech Inc., Auburn, Calif.) and enriched using the MiniMACS™ MS column (130-042-201, Miltenyi Biotech Inc., Auburn, Calif.) according to the manufacturer's specifications. Finally, the CD71-positive fraction was spotted onto glass slides.


Measurement Techniques:


Spotted slides were stained using fluorescence in situ hybridization (FISH) techniques according to manufacturer's specifications using Vysis probes (Abbott Laboratories, Downer's Grove, Ill.). Samples were stained from the presence of X and Y chromosomes. In one case, a sample prepared from a known Trisomy 21 pregnancy was also stained for chromosome 21.


Performance:


Isolation of fetal cells was confirmed by the reliable presence of male cells in the CD71-positive population prepared from the nucleated cell fractions (FIGS. 10A-10F). In the single abnormal case tested, the trisomy 21 pathology was also identified (FIG. 11).


Example 3. Confirmation of the Presence of Male Fetal Cells in Enriched Samples

Confirmation of the presence of a male fetal cell in an enriched sample is performed using qPCR with primers specific for DYZ, a marker repeated in high copy number on the Y chromosome. After enrichment of fnRBC by any of the methods described herein, the resulting enriched fnRBC are binned by dividing the sample into 100 PCR wells. Prior to binning, enriched samples may be screened by FISH to determine the presence of any fnRBC containing an aneuploidy of interest. Because of the low number of fnRBC in maternal blood, only a portion of the wells will contain a single fnRBC (the other wells are expected to be negative for fnRBC). The cells are fixed in 2% Parafoimaldehyde and stored at 4° C. Cells in each bin are pelleted and resuspended in 5 μl PBS plus 1 μl 20 mg/ml Proteinase K (Sigma # P-2308). Cells are lysed by incubation at 65° C. for 60 minutes followed by inactivation of the Proteinase K by incubation for 15 minutes at 95° C. For each reaction, primer sets (DYZ forward primer TCGAGTGCATTCCATTCCG (SEQ ID NO: 1); DYZ reverse primer ATGGAATGGCATCAAACGGAA (SEQ ID NO: 2); and DYZ Taqman Probe 6FAM-TGGCTGTCCATTCCA-MGBNFQ (SEQ ID NO: 3)), TaqMan Universal PCR master mix, No AmpErase and water are added. The samples are run and analysis is performed on an ABI 7300: 2 minutes at 50° C., 10 minutes 95° C. followed by 40 cycles of 95° C. (15 seconds) and 60° C. (1 minute). Following confirmation of the presence of male fetal cells, further analysis of bins containing fnRBC is performed. Positive bins may be pooled prior to further analysis.



FIG. 13 shows the results expected from such an experiment. The data in FIG. 13 was collected by the following protocol. Nucleated red blood cells were enriched from cord cell blood of a male fetus by sucrose gradient two Heme Extractions (HE). The cells were fixed in 2% paraformaldehyde and stored at 4° C. Approximately 10×1000 cells were pelleted and resuspended each in 5 μl PBS plus 1 μl 20 mg/ml Proteinase K (Sigma # P-2308). Cells were lysed by incubation at 65° C. for 60 minutes followed by a inactivation of the Proteinase K by 15 minute at 95° C. Cells were combined and serially diluted 10-fold in PBS for 100, 10 and 1 cell per 6 μl final concentration were obtained. Six μl of each dilution was assayed in quadruplicate in 96 well format. For each reaction, primer sets (DYZ forward primer TCGAGTGCATTCCATTCCG (SEQ ID NO: 1); 0.9 uM DYZ reverse primer ATGGAATGGCATCAAACGGAA (SEQ ID NO: 2); and 0.5 uM DYZ TaqMan Probe 6FAM-TGGCTGTCCATTCCA-MGBNFQ (SEQ ID NO: 3)), TaqMan Universal PCR master mix, No AmpErase and water were added to a final volume of 25 μl per reaction. Plates were run and analyzed on an ABI 7300: 2 minutes at 50° C., 10 minutes 95° C. followed by 40 cycles of 95° C. (15 seconds) and 60° C. (1 minute). These results show that detection of a single fnRBC in a bin is possible using this method.


Example 4. Confirmation of the Presence of Fetal Cells in Enriched Samples by STR Analysis

Maternal blood is processed through a size-based separation module, with or without subsequent MHEM enhancement of fnRBCs. The enhanced sample is then subjected to FISH analysis using probes specific to the aneuploidy of interest (e.g., triploidy 13, triploidy 18, and XYY). Individual positive cells are isolated by “plucking” individual positive cells from the enhanced sample using standard micromanipulation techniques. Using a nested PCR protocol, STR marker sets are amplified and analyzed to confirm that the FISH-positive aneuploid cell(s) are of fetal origin. For this analysis, comparison to the maternal genotype is typical. An example of a potential resulting data set is shown in Table 2. Non-maternal alleles may be proven to be paternal alleles by paternal genotyping or genotyping of known fetal tissue samples. As can be seen, the presence of paternal alleles in the resulting cells, demonstrates that the cell is of fetal origin (cells #1, 2, 9, and 10). Positive cells may be pooled for further analysis to diagnose aneuploidy of the fetus, or may be further analyzed individually.









TABLE 2







STR locus alleles in maternal and fetal cells















STR
STR
STR
STR
STR




locus
locus
locus
locus
locus



DNA Source
D14S
D16S
D8S
F13B
vWA







Maternal alleles
14, 17
11, 12
12, 14
9, 9
16, 17



Cell #1 alleles

 8


19



Cell #2 alleles
17

15





Cell #3 alleles


14





Cell #4 alleles








Cell #5 alleles
17
12

9




Cell #6 alleles








Cell #7 alleles




19



Cell #8 alleles








Cell #9 alleles
17

14
7, 9
17, 19



Cell #10 alleles


15










Example 5. Confirmation of the Presence of Fetal Cells in Enriched Samples by SNP Analysis

Maternal blood is processed through a size-based separation module, with or without subsequent MHEM enhancement of fnRBCs. The enhanced sample is then subjected to FISH analysis using probes specific to the aneuploidy of interest (e.g., triploidy 13, triploidy 18, and XYY). Samples testing positive with FISH analysis are then binned into 96 microtiter wells, each well containing 15 μl of the enhanced sample. Of the 96 wells, 5-10 are expected to contain a single fnRBC and each well should contain approximately 1000 nucleated maternal cells (both WBC and mnRBC). Cells are pelleted and resuspended in 5 μl PBS plus 1 μl 20 mg/ml Proteinase K (Sigma # P-2308). Cells are lysed by incubation at 65° C. for 60 minutes followed by a inactivation of the Proteinase K by 15 minute at 95° C.


In this example, the maternal genotype (BB) and fetal genotype (AB) for a particular set of SNPs is known. The genotypes A and B encompass all three SNPs and differ from each other at all three SNPs. The following sequence from chromosome 7 contains these three SNPs (rs7795605, rs7795611 and rs7795233 indicated in brackets, respectively) (ATGCAGCAAGGCACAGACTAA[G/A]CAAGGAGA[G/C]GCAAAATTTTC[A/G]TAGGGG AGAGAAATGGGTCATT, SEQ ID NO: 4).


In the first round of PCR, genomic DNA from binned enriched cells is amplified using primers specific to the outer portion of the fetal-specific allele A and which flank the interior SNP (forward primer ATGCAGCAAGGCACAGACTACG (SEQ ID NO: 5); reverse primer AGAGGGGAGAGAAATGGGTCATT (SEQ ID NO: 6)). In the second round of PCR, amplification using real time SYBR Green PCR is performed with primers specific to the inner portion of allele A and which encompass the interior SNP (forward primer CAAGGCACAGACTAAGCAAGGAGAG (SEQ ID NO: 7); reverse primer GGCAAAATTTTCATAGGGGAGAGAAATGGGTCATT (SEQ ID NO: 8)).


Expected results are shown in FIG. 14. Here, six of the 96 wells test positive for allele A, confirming the presence of cells of fetal origin, because the maternal genotype (BB) is known and cannot be positive for allele A. DNA from positive wells may be pooled for further analysis or analyzed individually.


Example 6: Use of Highly Parallel Genotyping and High Throughput Sequencing for Fetal Diagnosis

Fetal cells or nuclei can be isolated as described in the enrichment section or as described in example 1. The enrichment process described in example 1 may generate a final mixture containing approximately 500 maternal white blood cells (WBCs), approximately 100 maternal nuclear red blood cells (mnBCs), and a minimum of approximately 10 fetal nucleated red blood cells (fnRBCs) starting from an initial 20 ml blood sample taken late in the first trimester. In the context of fetal diagnosis, it is very valuable to have a reference sample containing only the mother's genotype. When the diagnosis procedure is based on enriching for circulating fetal cells in the mother's blood, the reference sample can be created simply by not enriching for fetal cells, and then diluting enough to ensure that <<1 fetal cell is expected in the sample used as input to the SNP detection process. Alternatively, white blood cells can be selected, for which the circulating fetal fraction is negligible.


Perform Multiple Displacement Amplification (MDA):


Current technologies and protocols for highly parallel SNP detection with DNA microarray readout result in inaccurate calls when there are too few starting DNA copies or when a particular allele represents a small fraction in the population of input DNA molecules. In the methods described herein a ratio-preserving pre-amplification of the DNA, such as multiple displacement amplification, is done to provide enough copies to support accurate SNP detection via primer extension ligation methods described below. This pre-amplification method is chosen to produce as close as possible the same amplification factor for all target regions of the genome.


Multiple displacement amplification protocols can be performed as described in Gonzalez et al. Environmental Microbiology 7(7) 1024-1028, (2005). Briefly, samples are suspended in 100 ul 10 mM Tris-HCl buffer (pH 7.5). Cells are lysed by adding 100 ul of alkaline lysis solution (400 mM KOH, 100 mM DTT, 10 mM EDTA) and incubating cells for 10 min on ice. Lysed cells are neutralized with 100 μl of neutralization solution (2 ml 1 M HCl and 3 ml 1 M Tris-HCl). Lysed cells are used directly as template in MDA and PCR reactions.


1 μl template DNA in 9 μl sample buffer (50 mM Tris-HCl, (pH 8.2), 0.5 mM EDTA) containing random hexamers is denatured at 95° C. for 3 min and placed on ice. Buffer (9 μl) containing dNTPs and 1 μl enzyme mix containing Φ29 DNA polymerase are added to the 10 μl of denatured DNA template-random hexamers solution and incubated at 30° C. for 6 h. A final incubation at 65° C. for 10 min inactivated the Φ29 DNA polymerase.


Highly Parallel Genotyping:


Highly parallel SNP detection can be used to obtain information about genotype and gene copy numbers at a large number of loci scattered across the genome, in one procedure. Highly parallel SNP genotyping can be performed as described in Fan et al. Cold Spring Harb Symp Quant Biol; 68: 69-78, (2003). Genomic DNA is immobilized to streptavidin-coated magnetic beads by mixing 20 μl of DNA (100 ng/μl) with 5 μl of photobiotin (0.2 μg/μl) and 15 μl of mineral oil, and incubating at 95° C. for 30 minutes. Trizma base (25 μl of 0.1 M) is added, followed by two extractions with 75 μl of Sec-butanol to remove unreacted photobiotin. The extracted gDNA (20 μl) is then mixed with 34 μl of Paramagnetic Particle A Reagent (MPA; Illumina) and incubated at room temperature for 90 minutes. The immobilized gDNA is then washed twice with DNA wash buffer (WDI) (Illumina) and resuspended at 10 ng/pl in WDI. In each subsequent reaction, 200 ng (10 μl) of DNA is used.


Assay oligonucleotides are then annealed to the genomic DNA by combining the immobilized DNA (10 μl) with annealing reagent (MAI; Illumina; 30 μl) and SNP-specific oligonucleotides (10 μl containing 25 nM of each oligonucleotide) to a final volume of 50 μl. LSOs are synthesized with a 5′ phosphate to enable ligation. Annealing is carried out by ramping temperature from 70° C. to 30° C. over ˜8 hours, then holding at 30° C. until the next processing step.


After annealing, excess and mishybridized oligonucleotides are washed away, and 37 μl of master mix for extension (MME; Illumina) is added to the beads. Extension is carried out at room temperature for 15 minutes. After washing, 37 μl of master mix for ligation (MML; Illumina) is added to the extension products, and incubated for 20 minutes at 57° C. to allow the extended upstream oligo to ligate to the downstream oligo.


The extension products are then amplified by PCR. After extension and ligation, the beads are washed with universal buffer 1 (UB 1; Illumina), resuspended in 35 μl of elution buffer (IPI; Illumina) and heated at 95° C. for one minute to release the ligated products. The supernatant is then used in a 60-μl PCR. PCR reactions are thermocycled as follows: 10 seconds at 25° C.; 34 cycles of (35 seconds at 95° C., 35 seconds at 56° C., 2 minutes at 72° C.); 10 minutes at 72° C.; and cooled to 4° C. for 5 minutes. The three universal PCR primers (P1, P2, and P3) are labeled with Cy3, Cy5, and biotin, respectively.


High Throughput Sequencing:


After the SNP-specific ligation-extension reaction, and amplification of the products, readout of the SNP types can be done using high throughput sequencing as described in Margulies et al. Nature 437 376-380, (2005). Briefly, the amplicons are diluted and mixed with beads such that each bead captures a single molecule of the amplified material. The DNA-carrying beads are isolated in separate 100 um aqueous droplets made through the creation of a PCR-reaction-mixture-in-oil emulsion. The DNA molecule on each bead is then amplified to generate millions of copies of the sequence, which all remain bound to the bead. Finally, the beads are placed into a highly parallel sequencing-by-synthesis machine which can generate over 400,000 sequence reads (˜100 bp per read) in a single 4 hour run.


Fetal Diagnosis:


The SNP data obtained from the high throughput sequencing is analyzed for fetal diagnosis using the methods described in Example 9.


Example 7: Use of Highly Parallel Genotyping and Bead Arrays for Fetal Diagnosis

Fetal cells or nuclei can be isolated as described in the enrichment section or as described in example 1. The enrichment process described in example 1 may generate a final mixture containing approximately 500 maternal white blood cells (WBCs), approximately 100 maternal nuclear red blood cells (mnBCs), and a minimum of approximately 10 fetal nucleated red blood cells (fnRBCs) starting from an initial 20 ml blood sample taken late in the first trimester. In the context of fetal diagnosis, it is very valuable to have a reference sample containing only the mother's genotype. When the diagnosis procedure is based on enriching for circulating fetal cells in the mother's blood, the reference sample can be created simply by not enriching for fetal cells, and then diluting enough to ensure that <<1 fetal cell is expected in the sample used as input to the SNP detection process. Alternatively, white blood cells can be selected, for which the circulating fetal fraction is negligible.


Perform Linear Amplification of Genomic DNA:


Current technologies and protocols for highly parallel SNP detection with DNA microarray readout result in inaccurate calls when there are too few starting DNA copies or when a particular allele represents a small fraction in the population of input DNA molecules. In the methods described herein a ratio-preserving pre-amplification of the DNA, such as linear amplification of genomic DNA, is done to provide enough copies to support accurate SNP detection via primer extension ligation methods described below. This pre-amplification method is chosen to produce as close as possible the same amplification factor for all target regions of the genome.


Linear amplification protocols can be performed as described in Liu et al. BMC Genomics 4(1) 19-30 (2003). This protocol uses a terminal transferase tailing step and second strand synthesis to incorporate T7 promoters at the ends of the DNA fragments prior to in vitro transcription (IVT). Briefly, genomic DNA can be obtained either by ChIP or by restriction digests. ChIP DNA is fragmented by sonication and isolated using antibody against di-methyl-H3 K4. Restricted genomic DNA is prepared as follows: genomic DNA isolated by bead lysis, phenol/chloroform extraction, and ethanol precipitation, is restricted either with Alu I or with Rsa I (New England BioLabs (NEB)). Digested products then undergo electrophoresis on a 2% agarose gel. Restriction fragments in the 100-700 bp size range are excised from the gel and purified using the QIAquick Gel Extraction Kit (Qiagen).


Calf intestinal alkaline phosphatase (CIP) (NEB) is used to remove 3′ phosphate groups from DNA samples prior to IVT. Up to 500 ng DNA is incubated with 2.5 U enzyme in a 10 μl volume with the supplied buffer at 37° C. for 1 hour. The reaction was cleaned up with the MinElute Reaction Cleanup Kit (Qiagen) per manufacturer instructions except that the elution volume is increased to 20 μl.


PolyT tails are generated using terminal transferase (TdT) as follows. Up to 50 ng of CIP-treated template DNA is incubated for 20 minutes at 37° C. in a 10 μl solution containing 20 U TdT (NEB), 0.2 M potassium cacodylate, 25 mM Tris-HCl pH 6.6, 0.25 mg/ml BSA, 0.75 mM CoCl2, 4.6 μM dTTP and 0.4 μM ddCTP. The reaction is halted by the addition of 2 μl of 0.5 M EDTA pH 8.0, and product isolated with the MinElute Reaction Cleanup Kit (Qiagen), increasing the elution volume to 20 μl.


Second strand synthesis and incorporation of the T7 promoter sequence is carried out as follows: the 20 μl tailing reaction product is mixed with 0.6 μl of 25 μM T7-A18B primer (5′-CATTAGCGGCCGCGAAATTAATACGACTCACTATAGGGAG(A)18 [B], where B refers to C, G or T, SEQ ID NO: 9), 5 μl 10× EcoPol buffer (100 mM Tris-HCl pH 7.5, 50 mM MgCl2, 75 mM dTT), 2 μl 5.0 mM dNTPs, and 20.4 μl nuclease-free water. In experiments with 10-50 ng starting material, the end primer concentration is kept at 300 nM, while the reaction volume is scaled down to maintain an end concentration of 1 ng/ul starting material. For starting amounts less than 10 ng, the volume is kept at 10 μl. If necessary, volume reduction of the eluate from the TdT tailing is performed in a vacuum centrifuge on medium heat. Samples are incubated at 94° C. for 2 minutes to denature, ramped down at −1 C°/sec to 35° C., held at 35° C. for 2 minutes to anneal, ramped down at −0.5 C°/sec to 25° C. and held while Klenow enzyme is added (NEB) to an end concentration of 0.2 U/μl. The sample is then incubated at 37° C. for 90 minutes for extension. The reaction is halted by addition of 5 μL 0.5 M EDTA pH 8.0 and product is isolated with the MinElute Reaction Cleanup Kit (Qiagen), increasing the elution volume to 20 μL.


Prior to in vitro transcription, samples are concentrated in a vacuum centrifuge at medium heat to 8 μl volume. The in vitro transcription is performed with the T7 Megascript Kit (Ambion) per manufacturer's instructions, except that the 37° C. incubation is increased to 16 hours. The samples are purified with the RNeasy Mini Kit (Qiagen) per manufacturer's RNA cleanup protocol, except with an additional 500 μL wash with buffer RPE. RNA is quantified by absorbance at 260 nm, and visualized on a denaturing 1.25×MOPS-EDTA-Sodium Acetate gel.


Highly Parallel Genotyping:


Highly parallel SNP detection can be used to obtain information about genotype and gene copy numbers at a large number of loci scattered across the genome, in one procedure. Highly parallel SNP genotyping can be performed as described in Example 6.


Bead Array:


After the SNP-specific ligation-extension reaction, and amplification of the products, readout of the SNP types can be done using bead arrays as described in Shen at al. Mutation Research 573 70-82, (2005). Double-stranded PCR products are immobilized onto paramagnetic particles by adding 20 μl of Paramagnetic Particle B Reagent (MPB; Illumina) to each 60-μl PCR, and incubated at room temperature for a minimum of 60 minutes. The bound PCR products are washed with universal buffer 2 (UB2; Illumina), and denatured by adding 30 μA of 0.1 N NaOH. After one minute at room temperature, 25 μl of the released ssDNAs is neutralized with 25 μl of hybridization reagent (MH I: Illumina) and hybridized to arrays.


Arrays are hydrated in UB2 for 3 minutes at room temperature, and then preconditioned in 0.1 N NaOH for 30 seconds. Arrays are returned to the UB2—reagent for at least 1 minute to neutralize the NaOH. The pretreated arrays are exposed to the labeled ssDNA samples described above. Hybridization is conducted under a temperature gradient program from 60° C. to 45° C. over −12 hours. The hybridization is held at 45° C. until the array is processed. After hybridization, the arrays are first rinsed twice in UB2 and once with IS1 (IS1; Illumina) at room temperature with mild agitation, and then imaged at a resolution of 0.8 microns using a BeadArray Reader (Illumina). PMT settings are optimized for dynamic range, channel balance, and signal-to-noise ratio. Cy3 and Cy5 dyes are excited by lasers emitting at 532 nm and 635 nm, respectively.


The automatic calling of genotypes is performed by genotype calling software (GenCall) genotyping software, using a Bayesian model, which compared intensities between probes for allele A and allele B across a large number of samples to create archetypal clustering patterns. These patterns allowed the genotyping data to be assigned membership to clusters using a probabilistic model and allowed assignment of a corresponding GenCall score. For example, data points falling between two clusters are assigned a low probability score of being a member of either cluster and had a correspondingly low GenCall score. The cluster quality can be assessed by evaluating the CSS, a measure of statistical separation between clusters. It is defined as






CSS
=


min


(






θ
AB

-

θ
AA








σ
AB

+

σ
AA





,





θ
AB

-

θ
BB








σ
AB

+

σ
BB






)


.





Loci with cluster scores around the cutoff of 3.0 are visually evaluated and the training clusters refined by manual intervention. A cutoff value of 3.0 can be chosen for the CSS on the basis of minimizing strand concordance errors. Loci with questionable clusters are scored as unsuccessful and excluded from further analysis.


Fetal Diagnosis:


The SNP data obtained from the bead array assay is analyzed for fetal diagnosis using the methods described in Example 9.


Example 8: Use of Highly Parallel Genotyping and DNA Arrays for Fetal Diagnosis

Fetal cells or nuclei can be isolated as described in the enrichment section or as described in example 1. The enrichment process described in example 1 may generate a final mixture containing approximately 500 maternal white blood cells (WBCs), approximately 100 maternal nuclear red blood cells (mnBCs), and a minimum of approximately 10 fetal nucleated red blood cells (fnRBCs) starting from an initial 20 ml blood sample taken late in the first trimester. In the context of fetal diagnosis, it is very valuable to have a reference sample containing only the mother's genotype. When the diagnosis procedure is based on enriching for circulating fetal cells in the mother's blood, the reference sample can be created simply by not enriching for fetal cells, and then diluting enough to ensure that <<1 fetal cell is expected in the sample used as input to the SNP detection process. Alternatively, white blood cells can be selected, for which the circulating fetal fraction is negligible.


Perform Multiple Displacement Amplification:


Current technologies and protocols for highly parallel SNP detection with DNA microarray readout result in inaccurate calls when there are too few starting DNA copies or when a particular allele represents a small fraction in the population of input DNA molecules. In the methods described herein a ratio-preserving pre-amplification of the DNA, such as multiple displacement amplification, is done to provide enough copies to support accurate SNP detection via primer extension ligation methods described below. This pre-amplification method is chosen to produce as close as possible the same amplification factor for all target regions of the genome. Multiple displacement amplification protocols can be performed as described in Example 6.


Highly Parallel Genotyping:


Highly parallel SNP detection can be used to obtain information about genotype and gene copy numbers at a large number of loci scattered across the genome, in one procedure. Highly parallel SNP genotyping can be performed as described in Example 6.


DNA Array:


After the SNP-specific ligation-extension reaction, and amplification of the products, readout of the SNP types can be done using DNA arrays as described in Gunderson et al. Nature Genetics 37(5) 549-554, (2005). The array data can be obtained using Illumina's Sentrix BeadArray matrix. Oligonucleotide probes on the beads are 75 bases in length; 25 bases at the 5′ end are used for decoding and the remaining 50 bases are locus-specific. The oligonucleotides are immobilized on activated beads using a 5′ amino group. The array can contain probes for SNP assays (probe pairs, allele A and allele B).


The amplification products of the SNP-specific ligation-extension reaction are denatured at 95° C. for 5 min and then exposed it to the Sentrix array matrix, which is mated to a microtiter plate, submerging the fiber bundles in 15 ml of hybridization sample. The entire assembly is incubated for 14-18 h at 48° C. with shaking. After hybridization, arrays are washed in 1× hybridization buffer and 20% formamide at 48° C. for 5 min.


Allele Specific Primer Extension (ASPE) can be used to score SNPs. Before carrying out the array-based primer extension reaction, Sentrix array matrices are washed for 1 min with wash buffer (33.3 mM NaCl, 3.3 mM potassium phosphate and 0.1% Tween-20, pH 7.6) and then incubated for 15 min in 50 μl of ASPE reaction buffer (Illumina EMM, containing polymerase, a mix of biotin-labeled and unlabeled nucleotides, single-stranded binding protein, bovine serum albumin and appropriate buffers and salts) at 37° C. After the reaction, the arrays are immediately stripped in freshly prepared 0.1 N NaOH for 2 min and then washed and neutralized twice in 1× hybridization buffer for 30 s. The biotin-labeled nucleotides incorporated during primer extension using a sandwich assay is then detected as described in Pinkel et al. PNAS 83 (1986) 2934-2938. The arrays are blocked at room temperature for 10 min in 1 mg ml−1 bovine serum albumin in 1× hybridization buffer and then washed for 1 min in 1× hybridization buffer. The arrays are then stained with streptavidin-phycoerythrin solution (1× hybridization buffer, 3 μg ml−1 streptavidin-phycoerythrin (Molecular Probes) and 1 mg ml−1 bovine serum albumin) for 10 min at room temperature. The arrays are washed with 1× hybridization buffer for 1 min and then counterstained them with an antibody reagent (10 mg ml−1 biotinylated antibody to streptavidin (Vector Labs) in 1×PBST (137 mM NaCl, 2.7 mM KCl, 4.3 mM sodium phosphate, 1.4 mM potassium phosphate and 0.1% Tween-20) supplemented with 6 mg ml−1 goat normal serum) for 20 min. After counterstaining, the arrays are washed in 1× hybridization buffer and restained them with streptavidin-phycoerythrin solution for 10 min. The arrays are washed one final time in 1× hybridization buffer before imaging them in 1× hybridization buffer on a custom CCD-based BeadArray imaging system. The intensities are extracted intensities using custom image analysis software.


The automatic calling of genotypes is performed by genotype calling software (GenCall) genotyping software as described in example 7.


Fetal Diagnosis:


The SNP data obtained from the DNA array assay is analyzed for fetal diagnosis using the methods described in Example 9.


Example 9: Fetal Diagnosis

Results obtained in Example 6, 7, and 8 can be used for fetal diagnosis.


A model for SNP data in the context of fetal diagnosis is given in Equations 1-3. A normal (diploid) fetus will result in data xk at locus k

xk=Ak[(mk1+mk2)+f((mk1 or mk2)+pk)]+residual  (1)


A trisomy caused by maternal non-dysjunction would be represented by

xk=Ak[(mk1+mk2)+f(mk1+mk2+pk)]+residual  (2)


and a paternally inherited trisomy would be represented by

xk=Ak[(mk1+mk2)+f(mk1 or mk2)+pk1+pk2)]+residual  (3)


In Equations 1-3, Ak denotes a scale factor which subsumes the efficiencies of amplification, hybridization, and readout common to the alleles at locus k. In this model amplification differences between different primer pairs are fitted and do not appear in the residuals. Alternatively, a single A parameter could be used and the residuals would reflect these differences. f represents the fraction of fetal cells in the mixture, mk1 and mk2 denote the maternal alleles at locus k, and pk denotes the paternal allele at locus k. The allele symbols actually represent unit data contributions that can be arithmetically summed; e.g., mk1 might be a detection of the ‘C’ genotype represented by unit contribution to the ‘C’ bin at that locus.



FIG. 6 illustrates the kinds of SNP calls that result under this data model. At Locus 1, the fetal genotype was GC. There is a paternally inherited ‘G’ allele contribution in the mixed sample that results in an increase of G signal above the noise level observed in the maternal-only sample, and a maternally inherited ‘C’ allele contribution that increases the C signal. The effective value of f that has been assumed in these illustrations is f=0.2. At Locus 2, the paternal allele is ‘T’. At Locus 3, the fetus is homozygous GG. In the third row of FIG. 6, the effect of a fetal trisomy is represented by the dashed red lines, superposed on a normal (diploid) mixed-sample pattern. The trisomy is assumed to include Loci 1 and 2, but not Loci 3 and 4. At Loci 1 and 2 both maternal allele strengths are increased in the mixed sample, as well as the separate paternal allele contribution. At Locus 3, it was assumed that the fetus was ‘GG’ and the paternal allele is the same as the first maternal allele. Note that the ratio between the average of the two maternal alleles and the paternal allele will be slightly greater at Loci 1 and 2 than at Locus 4—this is one indicator of trisomy.


Simple, Suboptimal Detection Methods


A simple intuitive understanding of the effect of trisomy is that it increases the abundances of fetal alleles at loci within the affected region. Trisomies are predominately from maternal non-disjunction events, so typically both maternal alleles, and a single paternal allele, are increased, and the ratio of maternal allele abundance to paternal allele abundance is higher in the trisomic region. These signatures may be masked by differences in DNA amplification and hybridization efficiency from locus to locus, and from allele to allele.


Within a locus, the PCR differences are smaller than between loci, because the same primers are responsible for all the different allele amplicons at that locus. Therefore, the allele ratios may be more stable than the overall allele abundances. This can be exploited by identifying loci where the paternal allele is distinct form the maternal allele and taking the ratio of the paternal allele strength to the average of the maternal allele strengths. These allele ratios then can be averaged over the hypothesized aneuploidy region and compared to the average over a control region. The distributions of these ratio values in the hypothesized aneuploidy region and in the control region can be compared to create an estimate of statistical significance for the observed difference in means. A simple example of this procedure would use Student's t-test.


Alternatively, the maternal allele strengths over the suspected aneuploid region can be compared to those in the control region, all without forming any ratios to paternal alleles. In this approach, errors in the measurement of the paternal allele abundances do not enter; however, the differences in amplification efficiency between primer pairs do enter, and these typically will be larger than differences between alleles in the same locus. In this approach there also may be a residual bias between the efficiencies averaged over certain chromosomes; therefore it may be useful to perform the entire detection process resulting in an observed abundance ratio for the mixed sample, do it also for the maternal sample, and then take the ratio of ratios. This ratio of ratios will be free of the chromosome bias; however, it will include errors in the measurements of the maternal sample.


Because the fraction of fetal cells can be small or even zero, the aneuploidy signal (the departure of the observed ratio from unity) may be weak even when fetal aneuploidy is present. An independent estimate of the fetal cell fraction, including a confidence estimate of whether measurable fetal DNA is present at all, is useful in interpreting the observed aneuploidy ratios. FIG. 7 illustrates allele signals re-ordered by rank. Assuming the mother has no more than two alleles at each locus, the magnitude of the third ranked allele is potentially a robust indicator of the presence of fetal DNA. Although measurement errors can artificially inflate the size of the third and fourth alleles, it is very unlikely to result in a bimodal distribution for the relative magnitude of the third allele with respect to the first two. Such a bimodal distribution is cartooned in FIG. 8. The secondary peak of this distribution occurs at a value approximately equal to the fraction of fetal cells. This is one way to determine the value of the variable fin the data model. The statistical confidence that the bimodality is real can be used to assign a confidence that fetal DNA was present in the mixed sample. Statistical tests for bimodality are discussed in MY Cheng and P Hall, J.R. Statist. Soc. B (1998), 60 (Part 3) pp 579-589, and these authors prefer bootstrap based methods. Only if this confidence exceeds a threshold, say 99.9%, would an aneuploidy call be attempted. This threshold needs to be quite stringent to avoid the expensive mistake of declaring a fetus normal when in fact it is not. The estimated fetal cell fraction can be used to interpret the aneuploidy statistic: a large value off and an observed aneuploidy ratio very close to unity would suggest no aneuploidy; a small value of f along with an aneuploidy ratio approximately equal to 1+f/2 would suggest trisomy, but it is still necessary to decide whether the observed aneuploidy is significantly different from unity and this requires an error model. A simple robust estimate of the error distribution could come from repeated processing of nominally identical samples.


Fitting of Data to the Model for Optimal Detection of Aneuploidy


The data model can be used to simultaneously recover estimates of the fraction of fetal cells, and efficient detection of aneuploidies in hypothesized chromosomes or chromosomal segments. This integrated approach should result in more reliable and sensitive declarations of aneuploidy.


Equations 1-3 actually represent five different models because of the ambiguity between mk1 and mk2 in the last term of Equations 1 and 3. Testing for aneupoidy of Chromosomes 13, 18, and 21 then would entail 5×5×5=125 different model variants that would be fit to the data.


The parameter values for the maternal allele identities are taken from the results for the maternal-only sample and the remaining parameters are fit to the data from the mixed sample. Because the number of parameters is very large when the number of loci is large, a global optimization requires iterative search techniques. One possible approach is to do the following for each model variant


i) Set f to 0 and solve for Ak at each locus.


ii) Set f to a value equal to the smallest fetal/maternal cell ratio for which fetal cells are likely to be detectable.


iii) Solve for paternal allele(s) identities and strengths at each locus, one locus at a time, that minimize data-model residuals.


iv) Fix the paternal alleles and adjust f to minimize residuals over all the data.


v) Now vary only the Ak to minimize residuals. Repeat iv and v until convergence.


vi) Repeat iii through v until convergence.


The best overall fit of model to data is selected from among all the model variants. The best overall fit yields the values of f and Ak we will call fmax, Akmax. The likelihood of observing the data given fmax can be compared to the likelihood given f=0. The ratio is a measure of the amount of evidence for fetal DNA. A typical threshold for declaring fetal DNA would be a likelihood ratio of ˜1000 or more. The likelihood calculation can be approximated by a more familiar Chi-squared calculation involving the sum of squared residuals between the data and the model, where each residual is normalized by the expected rms error. This Chi-squared is a good approximation to the Log(likelihood) to the extent the expected errors in the data are Gaussian additive errors, or can be made so by some amplitude transformation of the data.


If based on the above determination of likelihood ratio it is decided that fetal DNA is not present, then the test is declared to be non-informative. If it is decided that fetal DNA is present, then the likelihoods of the data given the different data model types can be compared to declare aneuploidy. The likelihood ratios of aneuploid models (Equations 2 and 3) to the normal model (Equation 1) are calculated and these ratios are compared to a predefined threshold. Typically this threshold would be set so that in controlled tests all the trisomic cases would be declared aneuploid, and so that it would be expected that the vast majority (>99.9%) of all truly trisomic cases would be declared aneuploid by the test. Given a limited patient cohort size for test validation, one strategy to accomplish approximately the 99.9% detection rate is to increase the likelihood ratio threshold beyond that necessary to declare all the known trisomic cases in the validation set by a factor of 1000/N, where N is the number of trisomy cases in the validation set.


Error Modeling


The data contain small additive errors associated with the readout technology, multiplicative errors associated with DNA amplification and hybridization efficiencies being different from locus to locus and from allele to allele within a locus, and errors associated with imperfect specificity in the process. By including the many parameters Ak in the model, rather than a single scale parameter, the residuals will include allele-to-allele efficiency differences but not locus to locus differences. These tend to be multiplicative errors in the resulting observed allele strengths heights; i.e. two signals may be 20% different in strength although the starting concentrations of the alleles were identical. As a first approximation we can assume errors are random from allele to allele, and have relatively small additive errors, and larger Poisson and multiplicative error components. The magnitudes of these error components can be estimated from repeated processing of identical samples. The Chi-square residuals calculation for any data-model fit then can be supported with these modeled squared errors for any peak height or data bin.


Alternatively, when using a single A parameter, the residuals will be larger and will contain a component which is correlated between alleles at the same locus. Calculation of likelihood will need to take this correlation into account.

Claims
  • 1. A method for determining a ratio of signal intensities of amplification products for a maternal allele in a first genomic region on a first chromosome suspected of being aneuploid and for a maternal allele in a second genomic region on a second chromosome that is not aneuploid or not suspected of being aneuploid in a maternal blood sample, the method comprising: a. enriching a maternal blood sample for fetal genomic DNA to produce an enriched sample comprising fetal and maternal genomic DNA (gDNA) having an increased concentration of fetal gDNA relative to before enrichment;b. hybridizing probes to each of a plurality of loci in the gDNA on at least two different chromosomes;c. ligating the hybridized probes at each locus to each other to create an amplification template specific to each locus;d. amplifying the amplification template specific to each locus to create amplification products;e. hybridizing the amplification products to probes on a microarray; andf. detecting, among the amplification products hybridized to probes on the microarray, a signal intensity of the amplification products for a maternal allele in a first genomic region on a first chromosome suspected of being aneuploid and a signal intensity of the amplification products for a maternal allele in a second genomic region on a second chromosome that is not aneuploid or not suspected of being aneuploid, and determining a ratio of the signal intensity of the amplification products for the maternal allele in the first genomic region to the signal intensity of the amplification products for the maternal allele in the second genomic region.
  • 2. The method of claim 1, wherein the maternal blood sample is from a pregnant woman within a first or second trimester.
  • 3. The method of claim 1, further comprising attaching the gDNA to a solid support.
  • 4. The method of claim 3, wherein the solid support comprises a paramagnetic particle.
  • 5. The method of claim 3, wherein the solid support comprises streptavidin.
  • 6. The method of claim 3, wherein the gDNA is biotin-labeled.
  • 7. The method of claim 1, wherein three oligonucleotide probes are provided for each locus.
  • 8. The method of claim 1, wherein the gDNA is attached to a particle and the ligation occurs while the gDNA is attached to the particle, thereby forming an amplification template annealed to the gDNA attached to the particle.
  • 9. The method of claim 8, further comprising releasing the amplification template from the gDNA attached to the particle.
  • 10. The method of claim 1, wherein the amplification template comprises universal PCR primer sites and the amplification comprises hybridization of universal primers to the universal PCR primer sites.
  • 11. The method of claim 1, wherein the microarray is a DNA microarray.
CROSS-REFERENCE

This application is a continuation application of U.S. patent application Ser. No. 12/751,940, filed on Mar. 31, 2010, which is a continuation application of U.S. patent application Ser. No. 11/763,133, filed Jun. 14, 2007, now abandoned, which claims the benefit of U.S. Provisional Application No. 60/804,816, filed Jun. 14, 2006, which applications are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 11/763,133 also claims the benefit of U.S. Provisional Application No. 60/820,778, filed Jul. 28, 2006. The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 6, 2013, is named 32047-718-304-Seqlisting.txt and is 3 Kilobytes in size.

US Referenced Citations (487)
Number Name Date Kind
4508625 Graham Sep 1985 A
4675286 Calenoff Jun 1987 A
4683202 Mullis Jul 1987 A
4789628 Nayak Dec 1988 A
4800159 Mullis et al. Jan 1989 A
4971904 Luddy Nov 1990 A
4977078 Niimura et al. Dec 1990 A
5153117 Simons Oct 1992 A
5215926 Etchells, III et al. Jun 1993 A
5296375 Kricka et al. Mar 1994 A
5300779 Hillman et al. Apr 1994 A
5302509 Cheeseman Apr 1994 A
5304487 Wilding et al. Apr 1994 A
5427663 Austin et al. Jun 1995 A
5427946 Kricka et al. Jun 1995 A
5432054 Saunders et al. Jul 1995 A
5447842 Simons Sep 1995 A
5486335 Wilding et al. Jan 1996 A
5498392 Wilding et al. Mar 1996 A
5508169 Deugau et al. Apr 1996 A
5529903 Kübler et al. Jun 1996 A
5556773 Youmo Sep 1996 A
5629147 Asgari et al. May 1997 A
5639669 Ledley Jun 1997 A
5641628 Bianchi Jun 1997 A
5646001 Terstappen et al. Jul 1997 A
5670325 Lapidus et al. Sep 1997 A
5676849 Sammons et al. Oct 1997 A
5695934 Brenner Dec 1997 A
5707799 Hansmann et al. Jan 1998 A
5709943 Coleman et al. Jan 1998 A
5715946 Reichenbach Feb 1998 A
5726026 Wilding et al. Mar 1998 A
5750339 Smith May 1998 A
5766843 Asgari et al. Jun 1998 A
5770029 Nelson et al. Jun 1998 A
5798042 Chu et al. Aug 1998 A
5837115 Austin et al. Nov 1998 A
5840502 Van Vlasselaer Nov 1998 A
5842787 Koph-Sill et al. Dec 1998 A
5858649 Asgari et al. Jan 1999 A
5866345 Wilding et al. Feb 1999 A
5879883 Benson et al. Mar 1999 A
5891651 Roche et al. Apr 1999 A
5928880 Wilding et al. Jul 1999 A
5952173 Hansmann et al. Sep 1999 A
5962234 Golbus Oct 1999 A
5962237 Ts'o et al. Oct 1999 A
5962332 Singer et al. Oct 1999 A
5972721 Bruno et al. Oct 1999 A
5993665 Terstappen et al. Nov 1999 A
5994057 Mansfield Nov 1999 A
5994517 Ts'o et al. Nov 1999 A
6007690 Nelson et al. Dec 1999 A
6008007 Fruehauf et al. Dec 1999 A
6013188 Terstappen et al. Jan 2000 A
6027923 Wallace Feb 2000 A
6066449 Ditkoff et al. May 2000 A
6074827 Nelson et al. Jun 2000 A
6100029 Lapidus et al. Aug 2000 A
6124120 Lizardi Sep 2000 A
6159685 Pinkel et al. Oct 2000 A
6143496 Brown et al. Nov 2000 A
6143576 Buechler Nov 2000 A
6154707 Livak et al. Nov 2000 A
6156270 Buechler Dec 2000 A
6176962 Soane et al. Jan 2001 B1
6184029 Wilding et al. Feb 2001 B1
6184043 Fodstad et al. Feb 2001 B1
6186660 Koph-Sill et al. Feb 2001 B1
6190870 Schmitz et al. Feb 2001 B1
6197523 Rimm et al. Mar 2001 B1
6200765 Murphy et al. Mar 2001 B1
6210891 Nyren et al. Apr 2001 B1
6214558 Shuber et al. Apr 2001 B1
6235474 Feinberg May 2001 B1
6258540 Lo et al. Jul 2001 B1
6265229 Fodstad et al. Jul 2001 B1
6300077 Shuber et al. Oct 2001 B1
6329150 Lizardi et al. Dec 2001 B1
6344326 Nelson et al. Feb 2002 B1
6361958 Shieh et al. Mar 2002 B1
6365362 Terstappen et al. Apr 2002 B1
6368871 Christel et al. Apr 2002 B1
6376181 Ramsey et al. Apr 2002 B2
6383759 Murphy et al. May 2002 B1
6387707 Seul et al. May 2002 B1
6391559 Brown et al. May 2002 B1
6394942 Moon et al. May 2002 B2
6399364 Reeve et al. Jun 2002 B1
6432630 Blankenstein Aug 2002 B1
6440706 Vogelstein et al. Aug 2002 B1
6444461 Knapp et al. Sep 2002 B1
6454938 Moon et al. Sep 2002 B2
6479299 Parce et al. Nov 2002 B1
6511967 Weissleder et al. Jan 2003 B1
6517234 Koph-Sill et al. Feb 2003 B1
6540895 Spence et al. Apr 2003 B1
6566101 Shuber et al. May 2003 B1
6576478 Wagner et al. Jun 2003 B1
6582904 Dahm Jun 2003 B2
6582969 Wagner et al. Jun 2003 B1
6596144 Regnier et al. Jul 2003 B1
6596545 Wagner et al. Jul 2003 B1
6613525 Nelson et al. Sep 2003 B2
6618679 Loehriein et al. Sep 2003 B2
6632619 Harrison et al. Oct 2003 B1
6632652 Austin et al. Oct 2003 B1
6632655 Mehta et al. Oct 2003 B1
6637463 Lei et al. Oct 2003 B1
6645731 Terstappen et al. Nov 2003 B2
6664056 Lo et al. Dec 2003 B2
6664104 Pourahmadi et al. Dec 2003 B2
6673541 Klein et al. Jan 2004 B1
6674525 Bardell et al. Jan 2004 B2
6685841 Lopez et al. Feb 2004 B2
6689615 Murto et al. Feb 2004 B1
6746503 Benett et al. Jun 2004 B1
6753147 Vogelstein et al. Jun 2004 B2
6783928 Hvichia et al. Aug 2004 B2
6818184 Fulwyler et al. Nov 2004 B2
6830936 Anderson et al. Dec 2004 B2
6858439 Xu et al. Feb 2005 B1
6875619 Blackburn Apr 2005 B2
6893881 Fodstad et al. May 2005 B1
6906182 Ts'o et al. Jun 2005 B2
6911345 Quake et al. Jun 2005 B2
6913697 Lopez et al. Jul 2005 B2
6927028 Lo et al. Aug 2005 B2
6953668 Israeli et al. Oct 2005 B1
6960449 Wang et al. Nov 2005 B2
7115709 Gray et al. Oct 2006 B1
7150812 Huang et al. Dec 2006 B2
7171975 Moon et al. Feb 2007 B2
7190818 Ellis et al. Mar 2007 B2
7192698 Kinch et al. Mar 2007 B1
7198787 Fodstad et al. Apr 2007 B2
7208275 Gocke et al. Apr 2007 B2
7208295 Faham et al. Apr 2007 B2
7212660 Wetzel et al. May 2007 B2
7220594 Foster et al. May 2007 B2
7227002 Kufer et al. Jun 2007 B1
7229838 Foster et al. Jun 2007 B2
7250256 Reinhard et al. Jul 2007 B2
7252976 Lin et al. Aug 2007 B2
7258987 Lamorte et al. Aug 2007 B2
7262177 Ts'o et al. Aug 2007 B2
7262269 Lam et al. Aug 2007 B2
7264972 Foster Sep 2007 B2
7272252 De La Torre-Bueno et al. Sep 2007 B2
7276170 Oakey et al. Oct 2007 B2
7332277 Dhallan Feb 2008 B2
7407757 Brenner Aug 2008 B2
7442506 Dhallan Oct 2008 B2
7476363 Unger et al. Jan 2009 B2
7582420 Oliphant et al. Sep 2009 B2
7645576 Lo et al. Jan 2010 B2
7655399 Cantor et al. Feb 2010 B2
7709194 Lo et al. May 2010 B2
7718367 Lo et al. May 2010 B2
7727720 Dhallan et al. Jun 2010 B2
7754428 Lo et al. Jul 2010 B2
7799531 Mitchell et al. Sep 2010 B2
7838647 Hahn et al. Nov 2010 B2
7888017 Quake et al. Feb 2011 B2
RE42315 Lopez et al. May 2011 E
7955794 Shen et al. Jun 2011 B2
8003354 Shen et al. Aug 2011 B2
8008018 Quake et al. Aug 2011 B2
8024128 Rabinowitz et al. Sep 2011 B2
8137912 Kapur et al. Mar 2012 B2
8168389 Shoemaker et al. May 2012 B2
8195415 Fan et al. Jun 2012 B2
8293470 Quake et al. Oct 2012 B2
8296076 Fan et al. Oct 2012 B2
8318430 Chuu et al. Nov 2012 B2
8372584 Shoemaker et al. Feb 2013 B2
8515679 Rabinowitz et al. Aug 2013 B2
8532930 Rabinowitz et al. Sep 2013 B2
8682592 Rabinowitz et al. Mar 2014 B2
9017942 Shoemaker et al. Apr 2015 B2
9347100 Shoemaker et al. May 2016 B2
20010007749 Feinberg Jul 2001 A1
20010051341 Lo et al. Dec 2001 A1
20010053958 Ried et al. Dec 2001 A1
20020006621 Bianchi Jan 2002 A1
20020009738 Houghton et al. Jan 2002 A1
20020012930 Rothberg et al. Jan 2002 A1
20020012931 Waldman et al. Jan 2002 A1
20020016450 Laugharn et al. Feb 2002 A1
20020019001 Light Feb 2002 A1
20020028431 Julien Mar 2002 A1
20020058332 Quake et al. May 2002 A1
20020076825 Cheng et al. Jun 2002 A1
20020086329 Shvets et al. Jul 2002 A1
20020110835 Kumar Aug 2002 A1
20020119469 Shuber et al. Aug 2002 A1
20020123078 Seul et al. Sep 2002 A1
20020127575 Hoke et al. Sep 2002 A1
20020137088 Bianchi Sep 2002 A1
20020164816 Quake Nov 2002 A1
20020166760 Prentiss et al. Nov 2002 A1
20020172987 Terstappen et al. Nov 2002 A1
20030004402 Hitt et al. Jan 2003 A1
20030013101 Balasubramanian Jan 2003 A1
20030017514 Pachmann et al. Jan 2003 A1
20030022207 Balasubramanian Jan 2003 A1
20030033091 Opalsky et al. Feb 2003 A1
20030044388 Lo et al. Mar 2003 A1
20030044781 Korlach et al. Mar 2003 A1
20030072682 Kikinis Apr 2003 A1
20030077292 Hanash et al. Apr 2003 A1
20030082566 Sylvan May 2003 A1
20030100102 Rothberg et al. May 2003 A1
20030119077 Ts'o et al. Jun 2003 A1
20030119724 Ts'o et al. Jun 2003 A1
20030129676 Terstappen et al. Jul 2003 A1
20030152981 Hulten Aug 2003 A1
20030153085 Leary et al. Aug 2003 A1
20030159999 Oakey et al. Aug 2003 A1
20030165852 Schueler et al. Sep 2003 A1
20030170631 Houghton et al. Sep 2003 A1
20030170703 Piper et al. Sep 2003 A1
20030175990 Heyenga Sep 2003 A1
20030186255 Williams et al. Oct 2003 A1
20030190602 Pressman et al. Oct 2003 A1
20030199685 Pressman et al. Oct 2003 A1
20030204331 Whitney et al. Oct 2003 A1
20030206901 Chen Nov 2003 A1
20030219765 Costa Nov 2003 A1
20030231791 Torre-Bueno et al. Dec 2003 A1
20030232350 Afar et al. Dec 2003 A1
20040005582 Shipwash Jan 2004 A1
20040009471 Cao Jan 2004 A1
20040018116 Desmond et al. Jan 2004 A1
20040018509 Bianchi Jan 2004 A1
20040043506 Haussecker et al. Mar 2004 A1
20040048360 Wada et al. Mar 2004 A1
20040053352 Ouyang et al. Mar 2004 A1
20040072278 Chou et al. Apr 2004 A1
20040096892 Wang et al. May 2004 A1
20040137452 Levett et al. Jul 2004 A1
20040137470 Dhallan Jul 2004 A1
20040142463 Walker et al. Jul 2004 A1
20040144651 Huang et al. Jul 2004 A1
20040157243 Huang et al. Aug 2004 A1
20040166555 Braff et al. Aug 2004 A1
20040171091 Lesko et al. Sep 2004 A1
20040185495 Schueler et al. Sep 2004 A1
20040203037 Lo et al. Oct 2004 A1
20040209299 Pinter et al. Oct 2004 A1
20040214240 Cao Oct 2004 A1
20040232074 Peters et al. Nov 2004 A1
20040241707 Gao et al. Dec 2004 A1
20050014208 Krehan et al. Jan 2005 A1
20050019792 McBride et al. Jan 2005 A1
20050037388 Antonarakis et al. Feb 2005 A1
20050042623 Ault-Riche et al. Feb 2005 A1
20050042685 Albert et al. Feb 2005 A1
20050049793 Paterlini-Brechot Mar 2005 A1
20050061962 Mueth et al. Mar 2005 A1
20050064476 Huang et al. Mar 2005 A1
20050095606 Hoke et al. May 2005 A1
20050100932 Lapidus et al. May 2005 A1
20050118591 Tamak et al. Jun 2005 A1
20050129581 McBride et al. Jun 2005 A1
20050130217 Huang et al. Jun 2005 A1
20050145496 Goodsaid et al. Jul 2005 A1
20050147977 Koo et al. Jul 2005 A1
20050153342 Chen Jul 2005 A1
20050158754 Puffenberger et al. Jul 2005 A1
20050164241 Hahn et al. Jul 2005 A1
20050175996 Chen Aug 2005 A1
20050181353 Rao et al. Aug 2005 A1
20050181463 Rao et al. Aug 2005 A1
20050196785 Quake et al. Sep 2005 A1
20050207940 Butler et al. Sep 2005 A1
20050211556 Childers et al. Sep 2005 A1
20050214855 Wagner et al. Sep 2005 A1
20050221341 Shimkets et al. Oct 2005 A1
20050221373 Enzelberger et al. Oct 2005 A1
20050239101 Sukumar et al. Oct 2005 A1
20050244843 Chen et al. Nov 2005 A1
20050250111 Xie et al. Nov 2005 A1
20050250147 Macevicz Nov 2005 A1
20050250155 Lesko et al. Nov 2005 A1
20050250199 Anderson et al. Nov 2005 A1
20050252773 McBride et al. Nov 2005 A1
20050255001 Padmanabhan et al. Nov 2005 A1
20050262577 Guelly et al. Nov 2005 A1
20050266417 Barany Dec 2005 A1
20050266433 Kapur et al. Dec 2005 A1
20050272103 Chen Dec 2005 A1
20050282196 Costa Dec 2005 A1
20050282293 Cosmen et al. Dec 2005 A1
20050287611 Nugent et al. Dec 2005 A1
20060000772 Sano et al. Jan 2006 A1
20060008807 O'Hara et al. Jan 2006 A1
20060008824 Ronaghi et al. Jan 2006 A1
20060024678 Buzby Feb 2006 A1
20060024711 Lapidus et al. Feb 2006 A1
20060024756 Tibbe et al. Feb 2006 A1
20060046258 Lapidus et al. Mar 2006 A1
20060051265 Mohamed et al. Mar 2006 A1
20060051775 Bianchi et al. Mar 2006 A1
20060052945 Rabinowitz et al. Mar 2006 A1
20060060767 Wang et al. Mar 2006 A1
20060072805 Tsipouras et al. Apr 2006 A1
20060073125 Clarke et al. Apr 2006 A1
20060094109 Trainer May 2006 A1
20060121452 Dhallan Jun 2006 A1
20060121624 Huang et al. Jun 2006 A1
20060128006 Gerhardt et al. Jun 2006 A1
20060134599 Toner et al. Jun 2006 A1
20060160105 Dhallan Jul 2006 A1
20060160150 Seilhamer et al. Jul 2006 A1
20060160243 Tang et al. Jul 2006 A1
20060177832 Brenner Aug 2006 A1
20060183886 Ts'o et al. Aug 2006 A1
20060205057 Wayner et al. Sep 2006 A1
20060223178 Barber et al. Oct 2006 A1
20060228721 Leamon et al. Oct 2006 A1
20060252054 Lin et al. Nov 2006 A1
20060252061 Zabeau et al. Nov 2006 A1
20060252068 Lo et al. Nov 2006 A1
20060252071 Lo et al. Nov 2006 A1
20060252087 Tang et al. Nov 2006 A1
20070015171 Bianchi et al. Jan 2007 A1
20070017633 Tonkovich et al. Jan 2007 A1
20070026381 Huang et al. Feb 2007 A1
20070026413 Toner et al. Feb 2007 A1
20070026414 Fuchs et al. Feb 2007 A1
20070026415 Fuchs et al. Feb 2007 A1
20070026416 Fuchs Feb 2007 A1
20070026417 Fuchs et al. Feb 2007 A1
20070026418 Fuchs et al. Feb 2007 A1
20070026419 Fuchs et al. Feb 2007 A1
20070026469 Fuchs et al. Feb 2007 A1
20070027636 Rabinowitz Feb 2007 A1
20070037172 Chiu et al. Feb 2007 A1
20070037173 Allard et al. Feb 2007 A1
20070037273 Shuler et al. Feb 2007 A1
20070037275 Shuler et al. Feb 2007 A1
20070042238 Kim et al. Feb 2007 A1
20070042339 Toner et al. Feb 2007 A1
20070042360 Afar et al. Feb 2007 A1
20070042368 Zehentner-Wilkinson et al. Feb 2007 A1
20070048750 Peck et al. Mar 2007 A1
20070054268 Sutherland et al. Mar 2007 A1
20070054287 Bloch Mar 2007 A1
20070059680 Kapur et al. Mar 2007 A1
20070059683 Barber et al. Mar 2007 A1
20070059710 Luke et al. Mar 2007 A1
20070059716 Balis et al. Mar 2007 A1
20070059718 Toner et al. Mar 2007 A1
20070059719 Grisham et al. Mar 2007 A1
20070059737 Baker et al. Mar 2007 A1
20070059774 Grisham et al. Mar 2007 A1
20070059781 Kapur et al. Mar 2007 A1
20070059785 Bacus et al. Mar 2007 A1
20070065845 Baker et al. Mar 2007 A1
20070065858 Haley Mar 2007 A1
20070071762 Ts'o et al. Mar 2007 A1
20070072228 Brauch Mar 2007 A1
20070072290 Hvichia Mar 2007 A1
20070077578 Penning et al. Apr 2007 A1
20070092444 Benos et al. Apr 2007 A1
20070092881 Ohnishi et al. Apr 2007 A1
20070092917 Guyon Apr 2007 A1
20070099207 Fuchs et al. May 2007 A1
20070099219 Teverovskiy et al. May 2007 A1
20070099289 Irimia et al. May 2007 A1
20070105105 Clelland et al. May 2007 A1
20070105133 Clark et al. May 2007 A1
20070110773 Asina et al. May 2007 A1
20070117158 Coumans et al. May 2007 A1
20070122856 Georges et al. May 2007 A1
20070122896 Shuler et al. May 2007 A1
20070128655 Obata Jun 2007 A1
20070131622 Oakey et al. Jun 2007 A1
20070134658 Bohmer et al. Jun 2007 A1
20070134713 Cao Jun 2007 A1
20070135621 Bourel et al. Jun 2007 A1
20070141587 Baker et al. Jun 2007 A1
20070141588 Baker et al. Jun 2007 A1
20070141717 Carpenter et al. Jun 2007 A1
20070154928 Mack et al. Jul 2007 A1
20070154960 Connelly et al. Jul 2007 A1
20070160503 Sethu et al. Jul 2007 A1
20070160974 Sidhu et al. Jul 2007 A1
20070160984 Huang et al. Jul 2007 A1
20070161064 Kinch et al. Jul 2007 A1
20070166770 Hsieh et al. Jul 2007 A1
20070170811 Rubel Jul 2007 A1
20070172903 Toner et al. Jul 2007 A1
20070178067 Maier et al. Aug 2007 A1
20070178458 O'Brien et al. Aug 2007 A1
20070178478 Dhallan et al. Aug 2007 A1
20070178501 Rabinowitz et al. Aug 2007 A1
20070187250 Huang et al. Aug 2007 A1
20070196663 Schwartz et al. Aug 2007 A1
20070196820 Kapur et al. Aug 2007 A1
20070196840 Roca et al. Aug 2007 A1
20070196869 Perez et al. Aug 2007 A1
20070202106 Palucka et al. Aug 2007 A1
20070202109 Nakamura et al. Aug 2007 A1
20070202525 Quake et al. Aug 2007 A1
20070202536 Yamanishi et al. Aug 2007 A1
20070207351 Christensen et al. Sep 2007 A1
20070207466 Cantor et al. Sep 2007 A1
20070212689 Bianchi et al. Sep 2007 A1
20070212698 Bendele et al. Sep 2007 A1
20070212737 Clarke et al. Sep 2007 A1
20070212738 Haley et al. Sep 2007 A1
20070231851 Toner et al. Oct 2007 A1
20070238105 Barrett et al. Oct 2007 A1
20070259424 Toner et al. Nov 2007 A1
20070264675 Toner et al. Nov 2007 A1
20070275402 Lo et al. Nov 2007 A1
20080020390 Mitchell et al. Jan 2008 A1
20080023399 Inglis et al. Jan 2008 A1
20080026390 Stoughton et al. Jan 2008 A1
20080038733 Bischoff et al. Feb 2008 A1
20080050739 Stoughton et al. Feb 2008 A1
20080070792 Stoughton et al. Mar 2008 A1
20080071076 Hahn et al. Mar 2008 A1
20080090239 Shoemaker et al. Apr 2008 A1
20080096216 Quake Apr 2008 A1
20080096766 Lee Apr 2008 A1
20080124721 Fuchs May 2008 A1
20080138809 Kapur et al. Jun 2008 A1
20080153090 Lo et al. Jun 2008 A1
20080182261 Bianchi Jul 2008 A1
20080193927 Mann et al. Aug 2008 A1
20080213775 Brody et al. Sep 2008 A1
20080220422 Shoemaker et al. Sep 2008 A1
20080299562 Oeth et al. Dec 2008 A1
20080318235 Handyside Dec 2008 A1
20090029377 Lo et al. Jan 2009 A1
20090053719 Lo et al. Feb 2009 A1
20090087847 Lo et al. Apr 2009 A1
20090170113 Quake et al. Jul 2009 A1
20090170114 Quake et al. Jul 2009 A1
20090215633 Van Eijk et al. Aug 2009 A1
20090280492 Stoughton et al. Nov 2009 A1
20090291443 Stoughton et al. Nov 2009 A1
20090317798 Heid et al. Dec 2009 A1
20100094562 Shohat et al. Apr 2010 A1
20100112575 Fan et al. May 2010 A1
20100112590 Lo et al. May 2010 A1
20100124751 Quake et al. May 2010 A1
20100124752 Quake et al. May 2010 A1
20100136529 Shoemaker et al. Jun 2010 A1
20100216151 Lapidus et al. Aug 2010 A1
20100216153 Lapidus et al. Aug 2010 A1
20100255492 Quake et al. Oct 2010 A1
20100255493 Quake et al. Oct 2010 A1
20100256013 Quake et al. Oct 2010 A1
20100291571 Stoughton et al. Nov 2010 A1
20100291572 Stoughton et al. Nov 2010 A1
20100311064 Oliphant et al. Dec 2010 A1
20110003293 Stoughton et al. Jan 2011 A1
20110015096 Chiu et al. Jan 2011 A1
20110105353 Lo et al. May 2011 A1
20110117548 Mitchell et al. May 2011 A1
20110171638 Stoughton et al. Jul 2011 A1
20110312503 Chuu et al. Dec 2011 A1
20120010085 Rava et al. Jan 2012 A1
20120135872 Chuu et al. May 2012 A1
20120171666 Shoemaker et al. Jul 2012 A1
20120171667 Shoemaker et al. Jul 2012 A1
20120183963 Stoughton et al. Jul 2012 A1
20120208186 Kapur et al. Aug 2012 A1
20130189688 Shoemaker et al. Jul 2013 A1
20130189689 Shoemaker et al. Jul 2013 A1
20130210644 Stoughton et al. Aug 2013 A1
20130253369 Rabinowitz et al. Sep 2013 A1
20130280709 Stoughton et al. Oct 2013 A1
20130288242 Stoughton et al. Oct 2013 A1
20130288903 Kapur et al. Oct 2013 A1
20130295565 Shoemaker et al. Nov 2013 A1
20130324418 Fuchs et al. Dec 2013 A1
20140032128 Rabinowitz et al. Jan 2014 A1
20140087385 Rabinowitz et al. Mar 2014 A1
20150232936 Shoemaker et al. Aug 2015 A1
20150344956 Kapur et al. Dec 2015 A1
20160002737 Fuchs et al. Jan 2016 A1
Foreign Referenced Citations (244)
Number Date Country
2007260676 Dec 2007 AU
2655272 Dec 2007 CA
0637996 Jul 1997 EP
0405972 May 1999 EP
1262776 Dec 2002 EP
0994963 May 2003 EP
0970365 Oct 2003 EP
783694 Nov 2003 EP
1262776 Jan 2004 EP
1388013 Feb 2004 EP
0920627 May 2004 EP
1418003 May 2004 EP
0739240 Jun 2004 EP
1462800 Sep 2004 EP
0919812 Oct 2004 EP
1561507 Aug 2005 EP
1409727 Nov 2005 EP
1272668 Feb 2007 EP
1754788 Feb 2007 EP
1757694 Feb 2007 EP
1409745 Apr 2007 EP
1754788 Apr 2007 EP
1770171 Apr 2007 EP
1313882 May 2007 EP
1803822 Jul 2007 EP
951645 Aug 2007 EP
1813681 Aug 2007 EP
1832661 Sep 2007 EP
1757694 Feb 2008 EP
2161347 Mar 2010 EP
2161347 Jun 2010 EP
2366801 Sep 2011 EP
2385143 Nov 2011 EP
2423334 Feb 2012 EP
2548972 Jan 2013 EP
2589668 May 2013 EP
1981995 Jul 2013 EP
WO 199006509 Jun 1990 WO
WO 199107660 May 1991 WO
WO 1991016452 Oct 1991 WO
WO 199322053 Nov 1993 WO
WO 199429707 Dec 1994 WO
WO 199509245 Apr 1995 WO
WO 199746882 Dec 1997 WO
WO 199802528 Jan 1998 WO
WO 199810267 Mar 1998 WO
WO 9922868 May 1999 WO
WO 199944064 Sep 1999 WO
WO 1999061888 Dec 1999 WO
WO 0006770 Feb 2000 WO
WO 0040750 Jul 2000 WO
WO 200062931 Oct 2000 WO
WO 200135071 May 2001 WO
WO 200151668 Jul 2001 WO
WO 1999061888 Dec 2001 WO
WO 200135071 Feb 2002 WO
WO 2002012896 Feb 2002 WO
WO 2002028523 Apr 2002 WO
WO 2002030562 Apr 2002 WO
WO 200231506 Apr 2002 WO
WO 200244318 Jun 2002 WO
WO 2002073204 Sep 2002 WO
WO 2003003057 Jan 2003 WO
WO 03020986 Mar 2003 WO
WO 2003018757 Mar 2003 WO
WO 2003019141 Mar 2003 WO
WO 2003020974 Mar 2003 WO
WO 2003023057 Mar 2003 WO
WO 2003031938 Apr 2003 WO
WO 03044217 May 2003 WO
WO 2003035894 May 2003 WO
WO 2003035895 May 2003 WO
WO 2003044224 May 2003 WO
WO 2003048295 Jun 2003 WO
WO 2003069421 Aug 2003 WO
WO 2003018757 Sep 2003 WO
WO 2003020974 Sep 2003 WO
WO 03044217 Oct 2003 WO
WO 2002073204 Oct 2003 WO
WO 2003031938 Nov 2003 WO
WO 2003093795 Nov 2003 WO
WO 2003023057 Dec 2003 WO
WO 2003069421 Dec 2003 WO
WO 2003035895 Jan 2004 WO
WO 2003035894 Mar 2004 WO
WO 2004025251 Mar 2004 WO
WO 2003019141 Apr 2004 WO
WO 2004029221 Apr 2004 WO
WO 2004029221 May 2004 WO
WO 2004037374 May 2004 WO
WO 2004044236 May 2004 WO
WO 2004056978 Jul 2004 WO
WO 2004065629 Aug 2004 WO
WO 2004076643 Sep 2004 WO
WO 2003093795 Oct 2004 WO
WO 2004037374 Oct 2004 WO
WO 2004088310 Oct 2004 WO
WO 2004025251 Nov 2004 WO
WO 2004101762 Nov 2004 WO
WO 2004113877 Dec 2004 WO
WO 2004101762 Feb 2005 WO
WO 2005023091 Mar 2005 WO
WO 2005028663 Mar 2005 WO
WO 2005035725 Apr 2005 WO
WO 2005042713 May 2005 WO
WO 2005043121 May 2005 WO
WO 2005047529 May 2005 WO
WO 2005047532 May 2005 WO
WO 2005023091 Jun 2005 WO
WO 2005049168 Jun 2005 WO
WO 2005058937 Jun 2005 WO
WO 2005061075 Jul 2005 WO
WO 2005049168 Sep 2005 WO
WO 2005084374 Sep 2005 WO
WO 2005084380 Sep 2005 WO
WO 2005085476 Sep 2005 WO
WO 2005085861 Sep 2005 WO
WO 2005098046 Oct 2005 WO
WO 2005108621 Nov 2005 WO
WO 2005109238 Nov 2005 WO
WO 2005028663 Dec 2005 WO
WO 2005098046 Dec 2005 WO
WO 2005116264 Dec 2005 WO
WO 2005118852 Dec 2005 WO
WO 2005121362 Dec 2005 WO
WO 2005085861 Feb 2006 WO
WO 2006010610 Feb 2006 WO
WO 2005118852 Mar 2006 WO
WO 2006023563 Mar 2006 WO
WO 2005121362 Apr 2006 WO
WO 2006041453 Apr 2006 WO
WO 2006043181 Apr 2006 WO
WO 2005109238 Jun 2006 WO
WO 2006010610 Jun 2006 WO
WO 2006043181 Jun 2006 WO
WO 2006076567 Jul 2006 WO
WO 2006078470 Jul 2006 WO
WO 2005043121 Aug 2006 WO
WO 2006076567 Sep 2006 WO
WO 2006078470 Sep 2006 WO
WO 2006097049 Sep 2006 WO
WO 2006100366 Sep 2006 WO
WO 2005042713 Nov 2006 WO
WO 2006023563 Nov 2006 WO
WO 2006120434 Nov 2006 WO
WO 2005084380 Dec 2006 WO
WO 2005116264 Feb 2007 WO
WO 2007020081 Feb 2007 WO
WO 2004076643 Mar 2007 WO
WO 2007024264 Mar 2007 WO
WO 2007028146 Mar 2007 WO
WO 2007030949 Mar 2007 WO
WO 2007033167 Mar 2007 WO
WO 2007034221 Mar 2007 WO
WO 2007035414 Mar 2007 WO
WO 2007024264 Apr 2007 WO
WO 2007036025 Apr 2007 WO
WO 2007038264 Apr 2007 WO
WO 2007041610 Apr 2007 WO
WO 2007044091 Apr 2007 WO
WO 2007044690 Apr 2007 WO
WO 2007048076 Apr 2007 WO
WO 2007030949 May 2007 WO
WO 2007034221 May 2007 WO
WO 2007050495 May 2007 WO
WO 2007053142 May 2007 WO
WO 2007053648 May 2007 WO
WO 2007053785 May 2007 WO
WO 2007059430 May 2007 WO
WO 2007062222 May 2007 WO
WO 2005058937 Jun 2007 WO
WO 2007067734 Jun 2007 WO
WO 2007048076 Jul 2007 WO
WO 2007053648 Jul 2007 WO
WO 2007075836 Jul 2007 WO
WO 2007075879 Jul 2007 WO
WO 2007076989 Jul 2007 WO
WO 2007079229 Jul 2007 WO
WO 2007079250 Jul 2007 WO
WO 2007080583 Jul 2007 WO
WO 2007082144 Jul 2007 WO
WO 2007082154 Jul 2007 WO
WO 2007082379 Jul 2007 WO
WO 2007050495 Aug 2007 WO
WO 2007075879 Aug 2007 WO
WO 2007087612 Aug 2007 WO
WO 2007089880 Aug 2007 WO
WO 2007089911 Aug 2007 WO
WO 2007090670 Aug 2007 WO
WO 2007092473 Aug 2007 WO
WO 2007092713 Aug 2007 WO
WO 2007098484 Aug 2007 WO
WO 2006100366 Sep 2007 WO
WO 2007100684 Sep 2007 WO
WO 2007100911 Sep 2007 WO
WO 2007101609 Sep 2007 WO
WO 2007033167 Oct 2007 WO
WO 2007038264 Oct 2007 WO
WO 2007044690 Oct 2007 WO
WO 2007053785 Oct 2007 WO
WO 2007059430 Oct 2007 WO
WO 2005084374 Nov 2007 WO
WO 2007035414 Nov 2007 WO
WO 2007044091 Nov 2007 WO
WO 2007089880 Nov 2007 WO
WO 2007100911 Nov 2007 WO
WO 2007126938 Nov 2007 WO
WO 2007132166 Nov 2007 WO
WO 2007132167 Nov 2007 WO
WO 2007082379 Dec 2007 WO
WO 2007098484 Dec 2007 WO
WO 2007147018 Dec 2007 WO
WO 2007147073 Dec 2007 WO
WO 2007147074 Dec 2007 WO
WO 2007147076 Dec 2007 WO
WO 2007147079 Dec 2007 WO
WO 2007062222 Jan 2008 WO
WO 2007100684 Jan 2008 WO
WO 2007075836 Feb 2008 WO
WO 2007132166 Feb 2008 WO
WO 2008017871 Feb 2008 WO
WO 2008045158 Apr 2008 WO
WO 2007089911 May 2008 WO
WO 2007132167 May 2008 WO
WO 2007028146 Jun 2008 WO
WO 2007067734 Aug 2008 WO
WO 2008111990 Sep 2008 WO
WO 2007126938 Oct 2008 WO
WO 2007082154 Nov 2008 WO
WO 2007087612 Nov 2008 WO
WO 2007092473 Nov 2008 WO
WO 2007082144 Dec 2008 WO
WO 2007092713 Dec 2008 WO
WO 2007079229 Jan 2009 WO
WO 2009013492 Jan 2009 WO
WO 2009013496 Jan 2009 WO
WO 2007080583 Feb 2009 WO
WO 2009019455 Feb 2009 WO
WO 2007079250 Mar 2009 WO
WO 2007041610 Apr 2009 WO
WO 2009019455 Apr 2009 WO
WO 2010045617 Apr 2010 WO
WO 2011094646 Aug 2011 WO
WO 2011102998 Aug 2011 WO
Non-Patent Literature Citations (549)
Entry
Notice of allowance dated Jan. 26, 2015 for U.S. Appl. No. 13/835,926.
Office action dated Aug. 1, 2014 for U.S. Appl. No. 12/816,043.
Office action dated Dec. 10, 2014 for U.S. Appl. No. 12/751,940.
Office action dated Dec. 12, 2014 for U.S. Appl. No. 13/738,268.
Office action dated Feb. 23, 2015 for U.S. Appl. No. 12/689,517.
Office action dated Nov. 7, 2014 for U.S. Appl. No. 13/831,342.
Office action dated Nov. 24, 2014 for U.S. Appl. No. 12/689,548.
Office action dated Jul. 29, 2014 for U.S. Appl. No. 13/835,926.
Office action dated Aug. 29, 2014 for U.S. Appl. No. 13/837,974.
Office action dated Sep. 17, 2014 for U.S. Appl. No. 13/863,992.
Advisory action dated Mar. 4, 2015 for U.S. Appl. No. 12/689,548.
U.S. Appl. No. 60/764,420, filed Feb. 2, 2005, Quake.
U.S. Appl. No. 60/949,227, filed Jul. 11, 2007, Kapur.
U.S. Appl. No. 60/951,438, filed Jul. 23, 2007, Lo et al.
U.S. Appl. No. 11/825,677, filed Jul. 5, 2007, Lopez et al.
U.S. Appl. No. 11/909,959, filed Sep. 27, 2007, Duff.
Adinolfi, et al. Gene Amplification to Detect Fetal Nucleated Cells in Pregnant Women. The Lancet. Aug. 5, 1989:328-329.
Adinolfi, et al. Rapid detection of aneuploidies by microsatellite and the quantitative fluorescent polymerase chain reaction. Prenat. Diagn. 1997; 17(13):1299-311.
Adinolfi, M. On a Non-Invasive Approach to Prenatel Diagnosis based on the detection of Fetal Nucleated Cells in Maternal Blood Samples. Prenatal Diagnosis. 1991;11:799-804.
Advisory action dated Dec. 16, 2013 for U.S. Appl. No. No. 12/751,940.
Ahn, et al. A fully integrated micromachined magnetic particle separator. Journal of Microelectromechanical Systems. 1996; 5(3):151-158.
Allard, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. Oct. 15, 2004;10(20):6897-904.
Andrews, et al. Enrichment of fetal nucleated cells from maternal blood: model test system using cord blood. Prenatal Diagnosis. 1995; 15:913-919.
Applicant's Amendment and Response dated Jun. 17, 2009 to Non-Final Office Action dated Jan. 28, 2009 re U.S. Appl. No. 11/701,686.
Ariga, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001; 41:1524-1530.
Arnould, et al. Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 2003; 88(10):1587-91. (Abstract only).
Babochkina, et al. Direct detection of fetal cells in maternal blood: a reappraisal using a combination of two different Y chromosome-specific FISH probes and a single X chromosome-specific probe. Arch Gynecol Obstet. Dec. 2005;273(3):166-9. (Abstract only).
Babochkina, T. I. Ph. D. Dissertation—Fetal cells in maternal circulation: Fetal cell separation and FISH analysis. University of Basel, Switzerland. Dec. 8, 2005. (123 pages).
Balko, et al. Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics. Nov. 10, 2006;7:289 (14 pages).
Barrett, et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A. 2004; 101(51):17765-70.
Basch, et al. Cell separation using positive immunoselective techniques. Journal of Immunological Methods. 1983;56:269-280.
Bauer, J. Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation. Journal of Chromatography. 1999;722:55-69.
Becker, et al. Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process). Microelectronic Engineering. 1986;4:35-56.
Becker, et al. Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications. J. Micromech Microeng.1998;9:24-28.
Beebe et al. Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels. Nature. 2000; 404:588-590.
Bennett, et al. Toward the 1,000 dollars human genome. Pharmacogenomics. 2005; 6(4):373-82.
Berenson, et al. Cellular Immunoabsorption Using Monoclonal Antibodies. Transplantation.1984 ;38:136-143.
Berenson, et al. Positive selection of viable cell populations using avidin-biotin immunoadsorption. Journal of Immunological Methods. 1986;91:11-19.
Berg, H. C. Random Walks in Biology, Ch. 4. Princeton University Press. Princeton, NJ. 1993. pp. 48-64.
Berger, et al. Design of a microfabricated magnetic cell separator. Electrophoresis. Oct. 2001;22(18):3883-92.
Bianchi, et al. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Medical Sciences. 1990;87:3279-3283.
Bianchi, et al. Demonstration of fetal gene sequences in nucleated erythrocytes isolated from maternal blood. American Journal of Human Genetics. 1989;45:A252.
Bianchi, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. Prenatal Diagnosis. 2002; 22:609-615.
Bianchi, et al. Fetal nucleated erythrocytes (FNRBC) in maternal blood: erythroid-specific antibodies improve detection. The American Journal of Human Genetics. Oct. 1992. Supplemental to vol. 51, No. 4: 996.
Bianchi, et al. Isolation of Male Fetal DNA from Nucleated Erythrocytes (NRBC) in Maternal Blood. The American Pediatric Society and Society for Pediatric Research, (1989) Mar. 1989; 818:139A.
Bianchi, et al. Possible Effects of Gestational Age on the Detection of Fetal Nucleated Erythrocytes in Maternal Blood. Prenatal Diagnosis. 1991;11:523-528.
Bignell, et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research. 2004; 14(2):287-295.
Binladen, et al. The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple Homolog Amplification Products by 454 Parallel Sequencing. Feb. 2007, PLoS One. 2(2):e197, doi:10.1371/journal.pone.0000197.
Blake, et al. Assessment of multiplex fluorescent PCR for screening single cells for trisomy 21 and single gene defects. Mol. Hum. Reprod. 1999; 5(12):1166-75.
Bode, et al. Mutations in the tyrosine kinase domain of the EGFR gene are rare in synovial sarcoma. Mod Pathol. Apr. 2006;19(4):541-7.
Boehm, et al. Analysis of Defective Dystrophin Genes with cDNA Probes: Rearrangement Polymorphism, Detection of Deletions in Carrier Females, and Lower Than Expected Frequency of Carrier Mothers in Isolated Cases of Delections. Pediatric Research. Apr. 1989: 139A-820.
Bohmer, et al. Differential Development of Fetal and Adult Haemoglobin Profiles in Colony Culture: Isolation of Fetal Nucleated Red Cells by Two-Colour Fluorescence Labelling. Br. J. Haematol. 1998; 103:351-60.
Bookout, et al. High-throughput real-time quantifative reverse transcription PCR. Curr. Prot. Mol. Biol. 2005; 15.8.1-15.8.21.
Braslavsky, et al. “Sequence information can be obtained from single DNA molecules,” PNAS, Apr. 2003, vol. 100, No. 7, 3960-3964.
Brison, et al. General Method for Cloning Amplified DNA by Differential Screening with Genomic Probes. Molecular and Cellular Biology. 1982;2:578-587.
Brody, et al. Deformation and Flow of Red Blood Cells in a Synthetic Lattice: Evidence for an Active Cytoskeleton. Biophys. J. 68:2224-2232 (1995).
Bustamante-Aragones, et al. Detection of a Paternally Inherited Fetal Mutation in Maternal Plasma by the Use of Automated Sequencing. Ann. N.Y. Acad. Sci. 1075:108-117 (2006), pp. 108-117, XP-002652985.
Caggana, M. Microfabricated devices for sparse cell isolation. CNF Project #905-00. Cornell NanoScale Facility. 2003; pp. 38-39.
Caggana, M. Microfabricated devices for sparse cell isolation. CNF Project #905-00. Cornell NanoScale Facility. 2004-2005; pp. 32-33.
Calin, et al. A microRNA signature Associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine. 2005; 353:1793-1801.
Cha, The utility of an erythroblast scoring system and gender-independent short tandem repeat (STR) analysis for the detection of aneuploid fetal cells in maternal blood. Prenat. Diagn. 2005; 25(7):586-91.
Chamberlain, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research. 1988;16:11141-11156.
Chan, et al. “DNA Mapping Using Microfluidic Stretching and Single-Molecule Detection of Fluorescent Site-Specific Tags,” Genome Research, 2004, vol. 14, 1137-1146.
Chan, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. Jan. 2004;50(1):88-92.
Chang, et al. Assessment of Plasma DNA Levels, Allelic Imbalance, and CA 125 as Diagnostic Tests for Cancer. Nov. 20, 2002. J. Nat'l Cancer Inst. 94(22):1697-1703.
Chang, et al. Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip. 2005; 5:64-73.
Cheung, et al. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med. 2005; 7(6):422-32.
Chiu, et al. “Effects of Blood-Processing Protocols on Fetal and Total DNA Quantification in Maternal Plasma,” Clinical Chemistry, 2001, vol. 47, No. 9, 1607-1613.
Chiu, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. Jan. 11, 2011;342:c7401. doi: 10.1136/bmj.c7401.
Chiu, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. Dec. 23, 2008;105(51):20458-63.
Chiu, et al. Patterned Deposition of Cells and Proteins Onto Surfaces by Using Three-Dimensional Microfluidic Systems. Proceedings of the National Academy of Sciences of the United States of America. 2000; pp. 2408-2413.
Choesmel, et al. Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance. Breast Cancer Res. 2004;6(5):R556-569.
Choolani, et al. Characterization of First Trimester Fetal Erythroblasts for Non-Invasive Prenatal Diagnosis. Mol. Hum. Reprod. 2003; 9:227-35.
Chou, et al. A Microfabricated Device for Sizing and Sorting DNA Molecules. Proceedings of the National Academy of Sciences of the United States of America. 1999; pp. 11-13.
Chou, et al. Sorting by diffusion: An asymmetric obstacle course for continuous molecular separation. PNAS. 1999; 96(24):13762-13765.
Christel, et al. High aspect ratio silicon microstructures for nucleic acid extraction. Solid-state sensor and actuator workshop. Hilton Head, SC. Jun. 8-11, 1998; 363-366.
Christensen, et al. Fetal Cells in Maternal Blood: A Comparison of Methods for Cell Isolation and Identification. Fetal Diagn. Ther. 2005; 20:106-12.
Chueh, et al. Prenatal Diagnosis Using Fetal Cells from the Maternal Circulation. West J. Med. 159:308-311 (1993).
Chueh, et al. Prenatal Diagnosis Using Fetal Cells in the Maternal Circulation. Seminars in Perinatology. 1990;14:471-482.
Chueh, et al. The search for fetal cells in the maternal circulation. J Perinat Med. 1991;19:411-420.
Cirigliano, et al. “Clinical application of multiplex quantitative fluorescent polymerase chain reaction (QF-PCR) for the rapid prenatal detection of common chromosome aneuploidies,” Molecular Human Reproduction, 2001, vol. 7, No. 10, 1001-1006.
Claims mailed with RCE Response to Final Rejection dated Dec. 31, 2009 for U.S. Appl. No. 11/763,421, filed Jun. 14, 2007 (6 pages).
Clayton, et al. Fetal Erythrocytes in the Maternal Circulation of Pregnant Women. Obstetrics and Gynecology. 1964;23:915-919.
Coble, et al. Characterization of New MiniSTR Loci to Aid Analysis of Degraded DNA. Jan. 2005. J. Forensic Sci. 50(1):42-53.
Collarini, et al. Comparison of methods for erythroblast selection: application to selecting fetal erythroblasts from maternal blood. Cytometry. 2001; 45:267-276.
Cotton, et al. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A. Jun. 1988;85(12):4397-401.
Cremer, et al. Detection of chromosome aberrations in human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Human Genetics.1986;74:346-352.
Cremer, et al. Detection of chromosome aberaations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Human Genetics.1988;80:235-246.
Cristofanilli, et al. Circulating tumor cells revisited. JAMA. 2010; 303(11):1092-1093.
Dahl, et al. Multigene Amplification and Massively Parallel Sequencing for Cancer Mutation Discovery. May 29, 2007. PNAS USA 104(22):9387-9392.
Das, et al. Dielectrophoretic segregation of different human cell types on microscope slides. Anal. Chem. 2005; 77:2708-2719.
De Alba, et al. Prenatal diagnosis on fetal cells obtained from maternal peripheral blood: report of 66 cases. Prenat Diagn. Oct. 1999;19(10):934-40.
De Kretser, et al. The Separation of Cell Populations using Monoclonal Antibodies attached to Sepharose. Tissue Antigens. 1980;16:317-325.
Delamarche, et al. Microfluidic Networks for Chemical Patterning of Substrates: Design and Application to Bioassays. Journal of the American Chemical Society. 1998; 120:500-508.
Delamarche, et al. Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks. Science. 1997; 276:779-781.
Deng, et al. Enumeration and microfluidic chip separation of circulating fetal cells early in pregnancy from maternal blood. American Journal of Obstetrics & Gynecology. Dec. 2008 (vol. 199, Issue 6, p. S134).
Deshmukh, et al. Continuous Micromixer With Pulsatile Micropumps. Solid-State Sensor and Actuator Workshop. Hilton Head Island, South Carolina; Jun. 4-8, 2000:73-76.
Deutsch, et al. Detection of aneuploidies by paralogous sequence quantification. J Med Genet. Dec. 2004;41(12):908-15.
Devotek. “Separation of RNA 8 DNA by Gel Filtration Chromatography,” Edvotek, 1987. 1-9.
Di Naro, et al. Prenatal diagnosis of beta-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod. 2000; 6(6):571-4.
Diehl, et al. Digital quantification of mutant DNA in cancer patients. Curr Opin Oncol. Jan. 2007;19(1):36-42.
Dilella, et al. Screening for Phenylketonuria Mutations by DNA Amplification with the Polymerase Chain Reaction. The Lancet. Mar. 5, 1988:497-499.
Dohm, et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research. 2008. 36: e105 doi: 10.1093 \nark\gkn425.
Doyle, et al. Self-Assembled Magnetic Matrices for DNA Separation Chips. Science 295:2237 (2002).
Dragovich, et al. Anti-EGFR-targeted therapy for exophageal and gastric cancers: an evolving concept. Jornal of Oncology. 2009; vol. 2009, Article ID 804108.
Dressman, et al. “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations.” PNAS, Jul. 2003, vol. 100. No. 15, 8817-8822.
Eigen, et al. Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91:5740-5747.
Emanuel, et al. Amplification of Specific Gene Products from Human Serum. Gata, 1993, vol. 10, No. 6, 144-146.
European office action dated Jun. 26, 2012 for EP Application No. 11159371.1.
European office action dated Dec. 18, 2012 for EP Application No. 11159371.1.
European Search Opinion dated Jul. 31, 2009 for EP07763674.4.
European Search Report Office action dated Dec. 21, 2010 for EP07763674.4.
European search report and search opinion dated Jan. 2, 2013 for EP Application No. 12175907.0.
European search report and search opinion dated Apr. 9, 2013 for EP Application No. 12180149.2.
European search report and search opinion dated Nov. 9, 2009 for Application No. 7784442.1.
European search report and search opinion dated Dec. 21, 2009 for Application No. 07798579.4.
European search report and search opinion dated Dec. 22, 2009 for Application No. 07784444.7.
European search report and searh opinion dated Dec. 22, 2009 for Application No. 07798580.2.
European Search Report dated Jul. 31, 2009 for EP07763674.4.
Applicant's Response with Allowed Claims dated Dec. 2, 2010 issued in U.S. Appl. No. 11/701,686.
Pending Claims filed with the USPTO on Apr. 26, 2010 for U.S. Appl. No. 11/701,686.
Extended European Search Report for Application No. 11159371 dated Aug. 10, 2011, 10 pages.
Falcidia, et al. Fetal Cells in maternal blood: a six-fold increase in women who have undergone mniocentesis and carry a fetus with Down syndrome: a multicenter study. Neuropediatrics. 2004; 35(6):321-324. (Abstract only).
Fan, et al. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem. Oct. 1, 2007; 79(19):7576-9.
Fan, et al. Highly Parallel Genomic Assays. Aug. 2006. Nat. Rev. Genet. 7(8):632-44.
Fan, et al. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003; 68:69-78.
Fan, et al. Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol. May 2009;200(5):543.e1-7.
Fan, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. Oct. 21, 2008;105(42):16266-71.
Fan, et al. Single cell degenerate oligonucleotide primer-PCR and comparative genomic hybridization with modified control reference. Journal of Ahejian University—Science A. 2001; 2(3):318-321.
Farber, et al. Demonstration of spontaneous XX/XY chimerism by DNA fingerprinting. Human Genetics. 1989;82:197-198.
Farooqui, et al. Microfabrication of Submicron Nozzles in Silicon Nitride. Journal of Microelectromechanical Systems. 1992; 1(2):86-88.
Fiedler, et al. Dielectrophoretic Sorting of Particles and Cells in a Microsystem. Analytical Chemistry. 1998; pp. 1909-1915.
Findlay, et al. Using MF-PCR to diagnose multiple defects from single cells: implications for PGD. Mol Cell Endocrinol. 2001; 183 Suppl 1:S5-12.
Freemantle, M. Downsizing Chemistry. Chemical analysis and synthesis on microchips promise a variety of potential benefits. Chemical & Engineering News. 1999; pp. 27-36.
Fu, et al. An integrated miscrofabricated cell sorter. Anal Chem. 2002;74:2451-2457.
Fu, et al. A Microfabricated Fluorescence-Activated Cell Sorter. Nature Biotechnology.1999; 17:1109-1111.
Fuhr, et al. Biological Application of Microstructures. Topics in Current Chemistry. 1997; 194:83-116.
Fullwood, et al. Next Generation Dna sequencin of paired-end tags (PET) for transcriptome and genome analyses. Genome Research. 2009. 19:521-532.
Furdui, et al Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip. Dec. 2004;4(6):614-8.
Ganshirt-Ahlert, et al. Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am J Obstet Gynecol. 1992;166:1350-1355.
Ganshirt-Ahlert, et al. Noninvasive prenatal diagnosis: Triple density gradient, magnetic activated cell sorting and FISH prove to be an efficient and reproducible method for detection of fetal aneuploidies from maternal blood. The American Journal of Human Genetics. Oct. 1992. Supplemental to vol. 51, No. 4: 182.
GenomeWeb. Immunicon inks biomarker assay, lab services deal with merck serona. Available at C:\Documents and Settings\fc3\Local Settings\Temporary Internet Files\OLK35E\141896-1.htm. Accessed on Sep. 11, 2007.
Ghia, et al. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J Exp Med. Dec. 1, 1996;184(6):2217-29.
Giddings, J. C. Chemistry ‘Eddy’ Diffusion in Chromatography. Nature. 1959;184:357-358.
Giddings, J. C. Field-Flow Fractionation: Analysis of Macromolecular, Colloidal, and Particulate Materials. Science. 1993;260:1456-1465.
Gonzalez, et al. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments. Environ Microbiol. 2005; 7(7):1024-8.
Graham. Efficiency comparison of two preparative mechanisms for magnetic separation of erthrocytes from whole blood. J. Appl. Phys. 1981; 52:2578-2580.
Greaves, et al. Expression of the OKT Monoclonal Antibody Defined Antigenic Determinants in Malignancy. Int. J. Immunopharmac. 1981;3:283-299.
Guetta, et al. Analysis of fetal blood cells in the maternal circulation: challenges, ongoing efforts, and potential solutions. Stem Cells Dev. 2004;13(1):93-9.
Gunderson, et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet. 2005; 37(5):549-54.
Hahn, et al. “Prenatal Diagnosis Using Fetal Cells and Cell-Free Fetal DNA in Maternal Blood: What is Currently Feasible?” Clinical Obstetrics and Gynecology, Sep. 2002, vol. 45, No. 3, 649-656.
Hahn, et al. Current applications of single-cell PCR. Cell. Mol. Life Sci. 2000; 57(1):96-105. Review.
Hahn, et al. Micro system for isolation of fetal DNA from maternal plasma by preparative size separation. Clin Chem. Dec. 2009;55(12):2144-52. doi: 10.1373/clinchem.2009.127480. Epub Oct. 1, 2009.
Hall. Advanced Sequencing Technologies and their Wider Impact in Microbiology. 2007. J. Exp. Biol. 209:1518-1525.
Hamabe, et al. Molecular study of the Prader-Willi syndrome: deletion, RFLP, and phenotype analyses of 50 patients. Am J Med Genet. Oct. 1, 1991;41(1):54-63.
Han, et al. Separation of Long DNA Molecules in a Microfabricated Entropic Trap Array. Science. 2000;288:1026-1029.
Hardenbol, et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 2005;15(2):269-75.
Hardenbol, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 2003; 21(6):673-8.
Harris, et al. Single-molecule DNA sequencing of a viral genome. Science. Apr. 4, 2008;320(5872):106-9.
Hartmann, et al. Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Research. 2006; 34(21): e143. (11 pages).
Herzenberg, et al. Fetal cells in the blood of pregnant women: Detection and enrichment by flourescence-activated cell sorting. Proc. Natl. Acad. Sci. 1979;76:1453-1455.
Holzgreve, et al. Fetal Cells in the Maternal Circulation. Journal of Reproductive Medicine. 1992;37:410-418.
Hong, et al. A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 2004; 22(4):435-9.
Hong, et al. Molecular biology on a microfluidic chip. Journal of Physics: Condensed Matter, 2006, vol. 18, S691-S701.
Hosono, et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. May 2003;13(5):954-64.
Hromadnikova, et al. “Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies.” Bio Med Central, May 2002, 1-5.
Huang, et al. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnology. 2002;20:1048-1051.
Huang, et al. Continuous Particle Separation Through Deterministic Lateral Displacement. Science 304:987-90 (2004).
Huang, et al. Electric Manipulation of Bioparticles and Macromoledules on Microfabricated Electrodes. Analytical Chemistry. 2001; pp. 1549-1559.
Huang, et al. Role of Molecular Size in Ratchet Fractionation. 2002; 89(17):178301-1-178301-4.
Huh, et al. Gravity-driven microhydrodynamics-based cell sorter (microHYCS) for rapid, inexpensive, and efficient cell separation and size-profiling. 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnology in Medicine and Biology. Madison, Wisconsin USA; May 2-4, 2002:466-469.
Hviid T. In-Cell PCT method for specific genotyping of genomic DNA from one individual in a micture of cells from two individuals: a model study with specific relevance to prenatal diagnosis based on fetal cells in maternal blood. Molecular Diagnostics and Genetics. 2002; 48:2115-2123.
Hviid, T. In-cell polymerase chain reaction: strategy and diagnostic applications. Methods Mol Biol. 2006;336:45-58.
International preliminary report on patentability dated Oct. 29, 2008 for PCT/US2007/003209.
International search report and written opinioan dated Feb. 25, 2008 for PCT Application No. US2007/71248.
International search report and written opinion dated Jan. 25, 2008 for PCT Application No. US2007/71250.
International search report and written opinion dated Nov. 15, 2007 for PCT Application No. US2007/71149.
International search report and written opinion dated Nov. 26, 2007 for PCT Application No. US2007/71256.
International search report and written opinion dated Feb. 25, 2008 for PCT Application No. US07/71148.
International search report and written opinion dated Mar. 16, 2010 for PCT Application No. US2009/57136.
International Search Report and Written Opinion dated Sep. 18, 2008 for PCT/US2007/003209.
International search report dated Jan. 16, 2008 for PCT Application No. US2007/71247.
Ishikawa, et al. Allelic dosage analysis with genotyping microarrays. Biochem Biophys Res Commun. Aug. 12, 2005;333(4):1309-14.
Iverson, et al. Detection and Isolation of Fetal Cells From Maternal Blood Using the Flourescence-Activated Cell Sorter (FACS). Prenatal Diagnosis 1981;1:61-73.
Jama, et al. Quantification of cell-free DNA levels in maternal plasma by STR analysis. Mar. 24-28, 2010. ACMG Annual Clinical Genetics Meeting Poster 398. Availabble athttp://acmg.omnibooksonline.com/2010/data/papers/398.pdf. Accessed Apr. 5, 2013.
Jan, et al. Fetal Erythrocytes Detected and Separated from Maternal Blood by Electronic Fluorescent Cell Sorter. Texas Rep Biol Med.1973;31:575.
Jeon, et al. Generation of Solution and surface Gradients Using Microfluidic Systems. Langmuir. 2000, pp. 8311-8316.
Jiang, et al. Genome amplification of single sperm using multiple displacement amplification. Nucleic Acids Res. 2005; 33(10):e91. (9 pages).
Jiang, et al. Old can be new again: HAPPY whole genome sequencing, mapping and assembly. Int J Biol Sci. 2009;5(4):298-303. Epub Apr. 15, 2009.
Kamholz, et al. Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: the T-Sensor. Analytical Chemistry. 1999; pp. 5340-5347.
Kan, et al. Concentration of Fetal Red Blood Cells From a Mixture of Maternal and Fetal Blood by Anti-i Serum—An Aid to Prenatal Diagnosis of Hemoglobinopathies. Blood. 1974; 43:411-415.
Kartalov et al.: “Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis.”, Nucleic Acids Research, 2004, vol. 32, No. 9, 2004, pp. 2873-2879, XP-002652987.
Kasakov, et al. Extracellular DNA in the blood of pregnant women. Tsitologiia. 1995;37(3):232-6. (English translation only).
Kenis, et al. Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science. 1999; 285:83-85.
Kim, et al. Polymer microstructures formed by moulding in capillaries. Nature. 1995;376:581-584.
Kimura, et al. The DYRKIA gene, encoded in chromosome 21 Down syndrome critical region, bridges between (β-amyloid production and tau phosphorylation in Alzheimer disease. Human Molecular Genetics, Nov. 29, 2008, vol. 16, No. 1, 15-23.
Klein, C. A. Single cell amplification methods for the study of cancer and cellular ageing. Mech. Ageing Dev. 2005; 126(1):147-51.
Klein, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A. 1999; 96(8):4494-9.
Kobayashi, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. Feb. 24, 2005;352(8):786-92.
Kogan, et al. An Improved Method for Prenatal Diagnosis of Genetic Diseases by Analysis of Amplified DNA Sequences, Application to Hemophilia A. The New England Journal of Medicine.1987;317:985-990.
Koide, et al. Fragmentation of Cell-Free Fetal DNA in Plasma and Urine of Pregnant Women. Jul. 2005. Prenat. Diagn. 25(7):604-7.
Korenberg, et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. PNAS 1994; 91:4997-5001.
Krabchi, et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenic techniques. Clin. Genet. 2001; 60:145-150.
Krivacic, et al. A rare-cell detector for cancer. PNAS. 2004;101:10501-10504.
Kulozik, et al. Fetal Cell in the Maternal Circulation: Detection by Direct AFP-Immunoflourescence. Human Genetics. 1982;62:221-224.
Kurg, et al. Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Test. 2000;4(1):1-7.
Leon, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. Mar. 1977;37(3):646-50.
Leutwyler, K. Mapping Chromosome 21. Available at http://www.scientificamerican.com/article.cfm?id=mapping-chromosome-21. Accessed Feb. 3, 2010.
Levett, et al. A large-scale evaluation of amnio-PCR for the rapid prenatal diagnosis of fetal trisomy. Ultrasound Obstet Gynecol. 2001; 17(2):115-8.
Li , et al. Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects. Analytical Chemistry., 1997; pp. 1564-1568.
Li, et al. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature. 1988;335:414-417.
Li, et al. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research. Genome Res. Nov. 2008;18(11):1851-8.
Li, et al. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem. Jun. 2004;50(6):1002-11.
Lichter , et al. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hyridization using recombinant DNA libraries. Hum Genet. 1988;80:224-234.
Lieberfarb, et al. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. Aug. 15, 2003;63(16):4781-5.
Liu, et al. Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics. 2003; 4(1):19. (11 pages).
Liu, et al. Feasibility Study of Using Fetal DNA in Maternal Plasma for Non-invasive Prenatal Diagnosis. 2007. Acta Obstet. Gynecol. Scand. 86(5):535-41.
Lo, et al. Detection of fetal RhD sequence from peripheral blood of sensitized RhD-negative pregnant women. British Journalof Haematology, 1994, vol. 87, 658-660.
Lo, et al. Detection of single-copy fetal DNA sequence from maternal blood. The Lancet, Jun. 16, 1990, vol. 335, 1463-1464.
Lo, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. PNAS. Aug. 7, 2007; 104(32):13116-13121.
Lo, et al. Fetal DNA in Maternal Plasma. Ann. N. Y. Acad. Sci, Apr. 2000, vol. 906, 141-147.
Lo, et al. Increased Fetal DNA Concentrations in the Plasma of Pregnant Women Carrying Fetuses with Trisomy 21. Oct. 1999. Clin. Chem. 45(10):1747-51.
Lo, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med. Feb. 2007;13(2):218-23.
Lo, et al. Prenatal diagnosis: progress through plasma nucleic acids. Nature. Jan. 2007, vol. 8, 71-76.
Lo, et al. Prenatal sex determination by DNA amplification from material peripheral blood. The Lancet.Dec. 9, 1989:1363-1365.
Lo, et al. Presence of fetal DNA in maternal plasma and serum. The Lancet, Aug. 16, 1997, vol. 350, 485-487.
Lo, et al. Quantitative Analysis of Fetal NA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. Am J. Hum. Genet., 1998, vol. 62, 768-775.
Lo, et al. Rapid Clearance of Fetal DNA from Maternal Plasma. Jan. 1999. Am. J. Hum. Genet. 64(1):218-24.
Lo, Y. M. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. BJOG, 2009, vol. 116, 152-157.
Loken , et al. Flow Cytometric Analysis of Human Bone Marrow: I. Normal Erythroid Development. Blood. 1987;69:255-263.
Lun, et al. Microfluidics Digital PCR Reveals a Higher than Expected Fraction of Fetal DNA in Maternal Plasma. Clinical Chemistry, 2008, vol. 54, No. 10, 1664-1672.
Mahr, et al. Fluorescence in situ hybridization of fetal nucleated red blood cells. The American Journal of Human Genetics. Oct. 1992. Supplemental to vol. 51, No. 4: 1621.
Maloney et al. “Microchimerism of maternal origin persists into adult life,” J. Clin. Invest. 104:41-47 (1999).
Marcus, et al. Microfluidic Single-Cell mRNA Isolation and Analysis. American Chemical Society, Mar. 2006; 76:3084-3089.
Marcus, et al. Parallel Picoliter RT-PCR Assays Using Microfluidics. Analytical Chemistry, Feb. 1, 2006, vol. 78, No. 3, 956-958.
Margulies, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005; 437:376-80.
Marks, et al. Epidermal growth factor receptor (EGFR) expression in prostatic adenocarcinoma after hormonal therapy: a fluorescence in situ hybridization and immunohistochemical analysis. The Prostate. 2008; 68:919-923.
Martin, et al. “A method for using serum or plasma as a source of NDA for HLA typing,” Human Immunology. 1992; 33:108-113.
Mavrou, et al. Identification of nucleated red blood cells in maternal circulation: A second step in screening for fetal aneuploidies and pregnancy complications. Prenat Diagn. 2007; 247:150-153.
Mccabe, et al. DNA microextraction from dried blood spots on filter paper blotters: potential applications to newborn screening. Hum Genet.1987;75:213-216.
McCarley, et al. Patterning of surface-capture architectures in polymer-based microanalytical devices. In Kutter, et al. Eds. Royal Society of Chemistry Special Publication. 2005;130-132. (Abstract only).
Mehrishi , et al. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis.2002;23:1984-1994.
Melville, et al. Direct magnetic separation of red cells from whole blood. Nature. 1975; 255:706.
Meng, et al.: “Design and Synthesis of a Photocleavable Fluorescent Nucleotide 3′-O-Allyl-dGTPPC-Bodipy-FL-510 as a Reversible Terminator for DNA Sequencing by Synthesis”, J. Org. Chem. 2006, 71, pp. 3248-3252, XP-002652986.
Mohamed, et al. A Micromachined Sparse Cell Isolation Device: Application in Prenatal Diagnostics. Nanotech 2006 vol. 2; 641-644. (Abstract only).
Mohamed, et al. Biochip for separating fetal cells from maternal circulation. J Chromatogr A. Aug. 31, 2007;1162(2):187-92.
Mohamed, et al. Development of a rare cell fractionation device: application for cancer detection. IEEE Trans Nanobioscience. 2004; 3(4): 251-6.
Moore, et al. Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter. J Biochem Biophys Methods. 1998;37:11-33.
Moorhead, et al. Optimal genotype determination in highly multiplexed SNP data. Eur. J. Hum. Genet. 2006;14(2):207-15. (published online Nov. 23, 2005).
Mueller , et al. Isolation of fetal trophoblast cells from peripheral blood of pregnant women. The Lancet. 1990;336:197-200.
Muller, et al. Moderately repeated DNA sequences specific for the short arm of the human Y chromosome are present in XX makes and reduced in copy number in an XY female. 1986;14:1325-1340.
Mullis, et al. Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harbor Symposia on Quantitative Biolgy 1986;51:263-273.
Murakami, et al. A novel single cell PCR assay: detection of human T lymphotropic virus type I DNA in lymphocytes of patients with adult T cell leukemia. Leukemia. Oct. 1998;12(10):1645-50.
Murthy, et al. Assessment of multiple displacement amplification for polymorphism discovery and haplotype determination at a highly polymorphic locus, MC1R. Hum. Mutat. 2005; 26(2):145-52.
Myers, et al. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. Dec. 13, 1985;230(4731):1242-6.
Nagrath, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007; 450: 1235-1241 (with Supplemental pp. 1-10).
Nannya, et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. Jul. 15, 2005;65(14):6071-9.
Nelson, et al. Genotyping Fetal DNA by Non-Invasive Means: Extraction From Maternal Plasma. Vox Sang. 2001;80:112-116.
Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine. 1998; 17:857-872.
Ng, et al. “The Concentration of Circulating Corticotropin-releasing Hormone mRNA in Maternal Plasma Is Increased in Preeclampsia,” Clinical Chemistry, 2003, vol. 49, No. 5, 727-731.
Notice of Allowance and Issue Fee Due dated Dec. 9, 2010 issued in U.S. Appl. No. 11/701,686.
Notice of allowance dated Jul. 12, 2011 with allowed claims for U.S. Appl. No. 12/393,803.
Oakey et al. Laminar Flow-Based Separations at the Microscale. Biotechnology Progress. 2002; pp. 1439-1442.
Office action (Ex parte Quayle) dated May 13, 2011 for U.S. Appl. No. 11/763,421.
Office Action dated Jan. 12, 2009 for U.S. Appl. No. 11/763,133.
Office Action dated Jan. 27, 2010 for U.S. Appl. No. 11/701,686.
Office action dated Jan. 28, 2009 for U.S. Appl. No. 11/701,686.
Office action dated Jan. 30, 2012 for Application No. CN 200780030309.3.
Office action dated Feb. 4, 2010 for U.S. Appl. No. 11/067,102.
Office action dated Feb. 15, 2011 for U.S. Appl. No. 11/763,426.
Office action dated Mar. 3, 2009 for EP Application No. EP07763674.4.
Office action dated Mar. 4, 2009 for U.S. Appl. No. 11/228,454.
Office action dated Mar. 11, 2010 for U.S. Appl. No. 11/763,245.
Office action dated Mar. 29, 2011 for U.S. Appl. No. 11/763,245.
Office action dated Apr. 4, 2008 for U.S. Appl. No. 11/067,102.
Office action dated Apr. 4, 2012 for EP Application No. 07784444.7.
Office action dated Apr. 5, 2012 for U.S. Appl. No. 12/751,931.
Office action dated Apr. 13, 2009 for U.S. Appl. No. 11/067,102.
Office action dated Apr. 24, 2012 for EP Application No. 07784442.1.
Office action dated Apr. 25, 2011 for U.S. Appl. No. 12/393,803 with pending claims.
Office action dated May 4, 2009 for U.S. Appl. No. 11/763,431.
Office action dated May 6, 2011 for U.S. Appl. No. 11/763,133.
Office action dated May 12, 2011 for U.S. Appl. No. 12/230,628.
Office action dated May 18, 2011 for U.S. Appl. No. 12/413,467.
Office action dated Jun. 5, 2012 for U.S. Appl. No. 12/393,833.
Office action dated Jun. 5, 2013 for U.S. Appl. No. 12/751,940.
Office action dated Jun. 14, 2010 for U.S. Appl. No. 11/763,426.
Office action dated Jun. 15, 2007 for U.S. Appl. No. 11/067,102.
Office action dated Jun. 18, 2012 for U.S. Appl. No. 12/751,940.
Office action dated Jun. 22, 2012 for Application No. AU 2007260676.
Office action dated Jul. 2, 2010 for EP Application No. 07784442.1.
Office action dated Jul. 10, 2009 for U.S. Appl. No. 11/763,421.
Office action dated Jul. 10, 2012 for U.S. Appl. No. 13/433,232.
Office action dated Jul. 26, 2011 for U.S. Appl. No. 11/763,245.
Office action dated Aug. 1, 2008 for U.S. Appl. No. 11/067,102.
Office action dated Aug. 2, 2010 for EP Application No. 07784444.7.
Office action dated Aug. 27, 2010 for U.S. Appl. No. 11/762,747.
Office Action dated Sep. 8, 2010 for U.S. Appl. No. 11/701,686.
Office Action dated Sep. 11, 2009 for U.S. Appl. No. 11/701,686.
Office action dated Sep. 17, 2010 for U.S. Appl. No. 11/067,102.
Office action dated Sep. 23, 2009 for EP Application No. EP07763674.4.
Office action dated Oct. 29, 2010 for U.S. Appl. No. 12/230,628.
Office action dated Nov. 3, 2009 for U.S. Appl. No. 11/763,133.
Office action dated Dec. 1, 2009 for U.S. Appl. No. 11/763,426.
Office action dated Dec. 3, 2008 for U.S. Appl. No. 11/763,426.
Office action dated Dec. 16, 2013 for U.S. Appl. No. 13/863,992.
Office action dated Dec. 31, 2009 for U.S. Appl. No. 11/763,421.
Olson, et al. An In Situ Flow Cytometer for the Optical Analysis of Individual Particles in Seawater. Available at http://www.whoi.edu/science/B/Olsonlab/insitu2001.htm. Accessed Apr. 24, 2006.
Oosterwijk, et al. Prenatal diagnosis of trisomy 13 on fetal cells obtained from maternal blood after minor enrichment. Prenat Diagn. 1998;18(10):1082-5.
Ottesen,et al. Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria. Science. Dec. 1, 2006; 314(5804):1464-1467. (Abstract only).
Owen, et al. High gradient magnetic separation of erythrocytes. Biophys. J. 1978; 22:171-178.
Paez, et al. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. May 18, 2004;32(9):e71.
Pallavicini, et al. Analysis of fetal cells sorted from maternal blood using fluorescence in situ hybridization. The American Journal of Human Genetics. Oct. 1992. Supplemental to vol. 51, No. 4: 1031.
Parano, et al. Fetal Nucleated red blood cell counts in peripheral blood of mothers bearing Down Syndrome fetus. Neuropediatrics. 2001; 32(3):147-149. (Abstract only).
Parano, et al. Noninvasive Prenatal Diagnosis of Chromosomal Aneuploidies by Isolation and Analysis of Fetal Cells from Maternal Blood. Am. J. Med. Genet. 101:262-7 (2001).
Paterlini-Brechot, et al. Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Letter. 2007. (In press, 25 pages.) Available at www.sciencedirect.com.
Pathak, et al. Circulating Cell-Free DNA in Plasma/Serum of Lung Cancer Patients as a Potential Screening and Prognostic Tool. Oct. 2006. Clin. Chem.52(10):1833-42.
Paul, et al. Single-molecule dilution and multiple displacement amplification for molecular haplotyping. Biotechniques. 2005; 38(4):553-4, 556, 558-9.
Pawlik, et al. Prodrug Bioactivation and Oncolysis of Diffuse Liver Metastases by a Herpes Simplex Virus 1 Mutant that Expresses the CYP2B1 Transgene. Cancer. 2002;95:1171-81.
Peixoto, et al. Quantification of multiple gene expression in individual cells. Genome Res. Oct. 2004;14(10A):1938-47.
Pending Claims and Preliminary Amendment filed Nov. 19, 2010 for U.S. Appl. No. 11/763,133.
Pending claims and preliminary amendment filed Dec. 10, 2010 for U.S. Appl. No. 11/763,245.
Pending claims filed with the USPTO on Apr. 26, 2010 for U.S. Appl. No. 11/067,102.
Peng, et al. Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res. 2005; 65(5):1909-17.
Pertl, et al. “Fetal DNA in Maternal Plasma: Emerging Clinical Applications,” Obstetrics and Gynecology, Sep. 2001, vol. 98, No. 3, 483-490.
Pertl, et al. Detection of Male and Female DNA in Maternal Plasma by Multiplex Fluorescent Polymerase Chain Reaction Amplification of Short Tandem Repeats. Jan. 2000. Hum. Genet. 106(1):45-9.
Petersen, et al. The Promise of Miniaturized Clinical Diagnostic Systems. IVD Technol. 4:43-49 (1998).
Pfaffl, et al. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. May 1, 2002;30(9):e36.
Pinkel, et al. Cytogenetic Analysis Using Quantitative, High-sensitivity, Fluorescence Hybridization. Genetics. 1986;83:2934-2938.
Pinkel, et al. Fluorescence in situ Hybridization with Human Chromosome-specific Libraries: Detection of Trisomy 21 and Translocations of Chromosome 4. Genetics.1988;85:9138-9142.
Pinkel, et al. Detection of structural chromosome abberations in metaphase in metaphase spreads and interphase nuclei by in situ hybridization high complexity probes which stain entire human chromosomes. The American Journal of Human Genetics. Sep. 1988. Supplemental to vol. 43, No. 3: 0471.
Pinzani, et al. Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum Pathol. 2006; 37(6):711-8.
Pohl et al. Principle and applications of digital PCR. Expert Rev Mol Diagn. Jan. 2004;4(1):41-7.
Poon, et al. “Circulating fetal DNA in maternal plasma,” ClinicalChimica Acta, 2001, vol. 313, 151-155.
Potti, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med. 2006; 12(11):1294-1300.
Price, et al. Prenatal Diagnosis with Fetal Cells Isolated from Maternal Blood by Multiparameter Flow Cytometry. Am. J. Obstet. Gynecol. 1991; 165:1731-7.
Prieto, et al. Isolation of fetal nucleated red blood cells from maternal blood in normal and aneuploid pregnancies. Clin Chem Lab Med. Jul. 2002;40(7):667-72.
Product literature for GEM, a system for blood testing: GEM Premier 3000. Avaiable at http://www.ilus.com/premier_gem3000_iqm.asp. Accessed Apr. 24, 2006.
Purwosunu, et al. Clinical potential for noninvasive prenatal diagnosis through detection of fetal cells in maternal blood. Taiwan J Obstet Gynecol. Mar. 2006;45(1):10-20.
Raeburn, P. Fetal Cells Isolated in Women's Blood. Associated Press (Jul. 28, 1989) [electronic version].
Rahil, et al. Rapid detection of common autosomal aneuploidies by quantitative fluorescent PCR on uncultured amniocytes, European Journal of Human Genetics, 2002, vol. 10, 462-466.
Request for Continued Examination by applicant with claim set dated Mar. 26, 2010 in Response to Final Office Action dated Nov. 3, 2009 for U.S. Appl. No. 11/763,133.
Request for Continued Examination by applicant with claim set dated Mar. 26, 2010 in Response to Final Office Action dated Dec. 1, 2009 for U.S. Appl. No. 11/763,426.
Response dated Nov. 24, 2010 to Office action dated Jun. 14, 2010 with Pending Claims for U.S. Appl. No. 11/763,426.
Rickman, et al. Prenatal diagnosis by array-CGH. European Journal of Medical Genetics. 2005; 48:232-240.
Rolle, et al. Increase in number of circulating disseminated epithelia cells after surgery for non-small cell lung cancer monitored by MAINTRAC is a predictor for relapse: a preliminary report. World Journal of Surgical Oncology. 2005; 9 pages.
Ruan, et al. Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Molecular & Cellular Proteomics. 2006; 5(12): 2364-73.
Sakhnini, et al. Magnetic behavior of human erythrocytes at different hemoglobin states. Eur Biophys J. Oct. 2001;30(6):467-70.
Saleeba, et al. Chemical cleavage of mismatch to detect mutations. Methods Enzymol. 1993;217:286-95.
Samura, et al. Diagnosis of trisomy 21 in fetal nucleated erythrocytes from maternal blood by use of short tandem repeat sequences. Clin. Chem. 2001; 47(9):1622-6.
Samura, et al. Female fetal cells in maternal blood: use of DNA polymorphisms to prove origin. Hum. Genet. 2000;107(1):28-32.
Sato, et al. Individual and Mass Operation of Biological Cells Using Micromechanical Silicon Devices. Sensors and Actuators. 1990;A21-A23:948-953.
Schaefer, et al. The Clinical Relevance of Nucleated Red Blood Cells counts. Sysmex Journal International. 2000; 10(2):59-63.
Schröder, et al. Fetal Lymphocytes in the Maternal Blood. The Journal of Hematolog:Blood. 1972;39:153-162.
Sehnert, et al. Optimal Detection of Fetal Chromosomal Abnormalities by Massively Parallel DNA Sequencing of Cell-Free Fetal DNA from Maternal Blood. Clin Chem. Apr. 25, 2011. [Epub ahead of print].
Sethu, et al. Continuous Flow Microfluidic Device for Rapid Erythrocyte Lysis. Anal. Chem. 76:6247-6253 (2004).
Shen, et al. High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 2005; 573:70-82.
Shendure, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005; 309:1728-32.
Shendure, et al. Next-generation DNA sequencing. Nature. 2008; 26(10):1135-1145.
Sherlock, et al. Assessment of diagnostic quantitative fluorescent multiplex polymerase chain reaction assays performed on single cells. Ann. Hum. Genet. 1998; 62:9-23.
Sitar, et al. The Use of Non-Physiological Conditions to Isolate Fetal Cells from Maternal Blood. Exp. Cell. Res. 2005; 302:153-61.
Sohda, et al. The Proportion of Fetal Nucleated Red Blood Cells in Maternal Blood: Estimation by FACS Analysis. Prenat. Diagn. 1997; 17:743-52.
Solexa Genome Analysis System. 2006; 1-2.
Sparkes, et al. “New Molecular Techniques for the Prenatal Detection of Chromosomal Aneuploidy,” JOGC, Jul. 2008, No. 210, 617-621.
Stipp, D. IG Labs Licenses New Technology for Fetal Testing. The Wall Street Journal. Aug. 10, 1990:B5.
Stoecklein, et al. SCOMP is superior to degenerated oligonucleotide primed-polymerase chain reaction for global amplification of minute amounts of DNA from microdissected archival tissue samples. Am J Pathol. 2002; 161(1):43-51.
Stoughton, et al. Data-adaptive algorithms for calling alleles in repeat polymorphisms. Electrophoresis. 1997;18(1):1-5.
Su, et al. Human Urine Contains Small, 150 to 250 Nucleotide-Sized, Soluble DNA Derived from the Circulation and may be Useful in the Detection of Colorectal Cancer. May 2005. J. Mol. Diagn. 6(2):101-7.
Sun, et al. Whole-genome amplification: relative efficiencies of the current methods. Leg Med. 2005; 7(5):279-86.
Supplemental Amendment and Transmittal of Terminal Disclaimer dated Oct. 18, 2011 for U.S. Appl. No. 12/230,628.
Swarup, et al. Circulating (cell free) nucleic acids—A promising, non-invasive tool for early detection of several human diseases. 2007 FEBS Letters 581:795-799.
Sykes, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. Sep. 1992;13(3):444-9.
Tanaka, et al. “Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray,” PNAS, Aug. 2000, vol. 97, No. 16, 9127-9132.
Tettelin, et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. May 29, 1997;387(6632 Suppl):81-4.
Thomas, et al. Specific Binding and Release of Cells from Beads Using Cleavable Tettrametric Antibody Complexes. Journal of Immunological Methods 1989;120:221-231.
Thomas, et al. Sensitive Mutation Detection in Heterogeneous Cancer Specimens by Massively Parallel Picoliter Reactor Sequencing. Jul. 2006. Nature Medicine. 12(7):852-855.
Tibbe, et al. Statistical considerations for enumeration of circulating tumor cells. Cytometry A. Mar. 2007;71(3):154-62.
Toner, et al. Blood-on-a-Chip. Annu. Rev. Biomed. Eng. 7:77-103, C1-C3 (2005).
Trask, et al. Detection of DNA Sequences and Nuclei in Suspension by In Situ Hybridization and Dual Beam Flow Cytometry. Science.1985;230:1401-1403.
Troeger, et al. Approximately half of the erythroblasts in maternal blood are of fetal origin. Mol Hum Reprod. 1999; 5(12):1162-5.
Tufan, et al., Analysis of Cell-Free Fetal DNA from Maternal Plasma and Serum Using a Conventional Multiplex PCR: Factors Influencing Success. 2005. Turk. J. Med. Sci. 35:85-92.
Uitto, et al. Probing the fetal genome: progress in non-invasive prenatal diagnosis. Trends Mol Med. Aug. 2003;9(8):339-43.
Van Raamsdonk, et al. Optimizing the detection of nascent transcripts by RNA fluorescence in situ hybridization. Nucl. Acids. Res. 2001; 29(8):e42.
Voelkerding, et al. Digital fetal aneuploidy diagnosis by next-generation sequencing. Clin Chem. Mar. 2010;56(3):336-8.
Vogelstein, et al. “Digital PCR.” Proc Natl. Acad Sci. USA, Aug. 1999, vol. 96., 9236-9241.
Voldberg, et al. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol. Dec. 1997;8(12):1197-206.
Volkmuth, et al. DNA electrophoresis in microlithographic arrays. Nature. 1992; 358:600-602.
Volkmuth, et al. Observation of Electrophoresis of Single DNA Molecules in Nanofabricated Arrays. Presentation at joint annual meeting of Biophysical Society and the American Society for Biochemistry and Molecular Biology. Feb. 9-13, 1992.
Von Eggeling, et al. Determination of the origin of single nucleated cells in maternal circulation by means of random PCR and a set of length polymorphisms. Hum Genet. Feb. 1997;99(2):266-70.
Vona, et al. Enrichment, immunomorphological, and genetic characterization of fetal cells circulating in maternal blood. Am J Pathol. Jan. 2002;160(1):51-8.
Voullaire, et al. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagn. 1999; 19(9):846-51.
Vrettou, et al. Real-time PCR for single-cell genotyping in sickle cell and thalassemia syndromes as a rapid, accurate, reliable, and widely applicable protocol for preimplantation genetic diagnosis. Human Mutation. 2004; 23(5):513-21.
Wachtel, et al. Fetal Cells in the Maternal Circulation: Isolation by Multiparameter Flow Cytometry and Confirmation by Polymerase Chain Reaction. Human Reproduction. 1991;6:1466-1469.
Wang, et al. Allele quantification using molecular inversion probes (MIP). Nucleic Acids Research. 2005; 33(21); e183 (14 pages).
Wapner, et al. First-trimester screening for trisomies 21 and 18. N. Engl. J. Med. 2003; 349:1405-1413.
Warren, et al. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. PNAS. Nov. 21, 2006; 103(47):17807-17812.
Washizu, et al. Handling Biological Cells Utilizing a Fluid Integrated Circuit. IEEE Industry Applications Society Annual Meeting Presentations. Oct. 2-7, 1988;: 1735-40.
Washizu, et al. Handling Biological Cells Utilizing a Fluid Integrated Circuit. IEEE Transactions of Industry Applications. 1990; 26: 352-8.
Weigl, et al. Microfluidic Diffusion-Based Separation and Detection. Science. 1999; pp. 346-347.
White, et al. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics. Mar. 19, 2009;10:116.
Williams, et al. Comparison of cell separation methods to entrich the proportion of fetal cells in material blood samples. The American Journal of Human Genetics. Oct. 1992. Supplemental to vol. 51, No. 4: 1049.
Wright, et al. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update. Jan.-Feb. 2009;15(1):139-51.
Xiong, et al. “A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences,” Nucleic Acids Research, Apr. 19, 2004, vol. 32, No. 12, e98.
Yang, et al. Prenatal diagnosis of trisomy 21 with fetal cells i maternal blood using comparative genomic hybridization. Fetal Diagn Ther. 2006; 21:125-133.
Yang, et al. Rapid Prenatal Diagnosis of Trisomy 21 by Real-time Quantitative Polymerase Chain Reaction with Amplification of Small Tandem Repeats and S100B in Chromosome 21. Yonsei Medical Journal, 2005, vol. 46, No. 2, 193-197.
Yu, et al. Objective Aneuploidy Detection for Fetal and Neonatal Screening Using Comparative Genomic Hybridization (CGH). Cytometry. 1997; 28(3): 191-197. (Absbract).
Zavala, et al. Genomic GC content prediction in prokaryotes from a sample of genes. Gene. Sep. 12, 2005;357(2):137-43.
Zhao, et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. May 1, 2004;64(9):3060-71.
Zhen, et al. Poly-FISH: a technique of repeated hybridizations that improves cytogenetic analysis of fetal cells in maternal blood. Prenat Diagn. 1998; 18(11):1181-5.
Zheng, et al. Fetal cell identifiers: results of microscope slide-based immunocytochemical studies as a function of gestational age and abnormality. Am J Obstet Gynecol. May 1999;180(5):1234-9.
Zhu, et al. Single molecule profiling of alternative pre-mRNA splicing. Science. Aug. 8, 2003;301(5634):836-8.
Zimmerman, et al. Novel real-time quantitative PCR test for trisomy 21. Jan. 1, 2002. Clinical Chemistry, American Association for Clinical Chemistry. 48:(2) 362-363.
Zimmermann, Bernhard. “Molecular Diagnosis in Prenatal Medicine,” Ph.D. Thesis, 2004.
Zuska, P. Microtechnology Opens Doors to the Universe of Small Space, MD&DI Jan. 1997, p. 131.
Adams, et al. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science Jun. 21, 1991: vol. 252 No. 5013 pp. 1651-1656 DOI: 10.1126/science.2047873.
Amendment to the Claims dated Jun. 16, 2014 for U.S. Appl. No. 13/863,992.
Amendment to the Claims dated Dec. 5, 2013 for U.S. Appl. No. 12/751,940.
Brown, et al. Applicant-Initiated Interview Summary, with Office Action Summary, and Information Disclosure Statement by Applicant, dated Sep. 16, 2009.
Cappuzzo, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. May 4, 2005;97(9):643-55.
Chiu, et al. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends in Genetics, vol. 25, Issue 7, Jul. 2009, pp. 324-331.
Craig, et al. Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods. Oct. 2008 ; 5(10): 887-893. DOI:10.1038/nmeth.1251.
Cristofanilli, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. Aug. 19, 2004;351(8):781-91.
De Luca, et al. Detection of circulating tumor cells in carcinoma patients by a novel epidermal growth factor receptor reverse transcription-PCR assay. Clin Cancer Res. Apr. 2000;6(4):1439-44.
Decision re: Institution of Inter Partes Review 37 C.F.R. § 42.108. Entered Oct. 25, 2013. For Case IPR2013-00277. U.S. Pat. No. 8,318,430.
Decision: Institution of Inter Partes Review 37 C.F.R. § 42.108. Dated . Entered Oct. 25, 2013. For Case IPR2013-00276. U.S. Pat. No. 8,318,430 B2.
Declaration of Atul J. Butte, M.D. Ph.D. in Support of Patent Owner's Response to Inter Partes Review of U.S. Pat. No. 8,316,430. US Patent Office. Dated Jan. 16, 2014.
Declaration of Cynthia Casson Morton. Dated 29 May 2013. U.S. Pat. No. 8,296,076.
Declaration of Cynthia Casson Morton. Dated May 10, 2013. In re: Chuu, et al., U.S. Pat. No. 8,318,430.
Declaration of Cynthia Casson Morton. Dated May 10, 2013. In re: Chuu, et al., U.S. Pat. No. 8,318,430, claims 1-18.
Declaration of Robert Nussbaum. Dated May 22, 2013. U.S. Pat. No. 8,296,076.
Declaration of Robert Nussbaum. Dated May 8, 2013. In re Patent of: Chuu, et al. U.S. Pat. No. 8,318,430.
Declaration of Robert Nussbaum. Dated Apr. 16, 2013. In re Patent of: Fan, et al. U.S. Pat. No. 8,318,430, claims 1-18.
Deposition of Dr. Cynthia Casson Morton. US Patent Office. Dated Dec. 10, 2013.
Deposition of Dr. Robert Nussbaum. US Patent Office. Dated Dec. 11, 2013.
Dhallan, et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study. The Lancet, vol. 369, Issue 9560, Feb. 10, 2007, pp. 440-442.
Drmanac, et al. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing. Science Jun. 11, 1993: vol. 260 No. 5114 pp. 1649-1652 DOI: 10.1126/science.8503011. Jun. 11, 1993.
European office action dated Aug. 22, 2013 for EP Application No. 07798579.4.
European office action dated Dec. 13, 2013 for EP Application No. 11159371.1.
European office action dated Dec. 16, 2013 for EP Application No. 12175907.
European search report and search opinion dated Mar. 16, 2012 for EP Application No. 11182181.
European search report and search opinion dated Nov. 17, 2011 for EP Application No. 11175845.
Feinberg, et al. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. Jul. 1, 1983;132(1):6-13.
Fleischmann, et al. Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Science Jul. 28, 1995: vol. 269 No. 5223 pp. 496-512 DOI: 10.1126/science.7542800.
Gardella, et al. Second Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 Et Seq.(Claims 19-30). Dated May 10, 2013, for U.S. Pat. No. 8,318,430.
Gardella, G. First Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 Et Seq. (Claims 1-18). Dated May 10, 2013. U.S. Pat. No. 8,318,430.
Gardella, G. Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 Et Seq. Dated May 24, 2013. U.S. Pat. No. 8,296,076.
Holt, et al. The new paradigm of flow cell sequencing. DOI: 10.1101/gr.073262.107 Genome Res. 2008. 18: 839-846.
Joint Claim Construction and Prehearing Statement. Case: 12-cv-05501-SI; Dated May 3, 2013.
Kazakov, et al. Extracellular DNA in the blood of pregnant women Tsitologiia. 1995; 37(3): 232-6.
Kimura, et al. Deletional mutant EGFR detected in circulating tumor-derived DNA from lung cancer patients treated with gefitinib. American Association for Cancer Research 96th Annual Meeting. Apr. 16-20, 2005. Abstract 479.
Lander, et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (Feb. 15, 2001) | DOI:10.1038/35057062; Accepted Jan. 9, 2001.
Li, et. al. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. Nov. 2008;18(11):1851-8. doi: 10.1101/gr.078212.108. Epub Aug. 19, 2008.
Lo, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 1998; 339:1734-1738 Dec. 10, 1998 DOI: 10.1056/NEJM199812103392402.
Martin, New technologies for large-genome sequencing. Genome, 1989, vol. 31, No. 2 : pp. 1073-1080 DOI: 10.1139/g89-184.
Metzker, et al. Sequencing technologies—the next generation. Nature Reviews Genetics 11, 31-46 (Jan. 2010) | doi:10.1038/nrg2626.
Mirzabekov, et al. DNA sequencing by hybridization—a megasequencing method and a diagnostic tool? Trends in Biotechnology, vol. 12, Issue 1, Jan. 1994, pp. 27-32.
Notice of allowance dated Jun. 21, 2012 for U.S. Appl. No. 12/815,647.
Notice of allowance dated Oct. 5, 2012 for U.S. Appl. No. 11/763,421.
Notice of allowance dated Dec. 23, 2011 for U.S. Appl. No. 12/230,628.
Notice of allowance dated Dec. 29, 2011 for U.S. Appl. No. 11/763,245.
Office action dated Jan. 28, 2014 for U.S. Appl. No. 13/835,926.
Office action dated Feb. 5, 2014 for U.S. Appl. No. 12/689,517.
Office action dated Mar. 7, 2012 for U.S. Appl. No. 12/816,043.
Office action dated Mar. 20, 2013 for U.S. Appl. No. 12/815,674.
Office action dated Mar. 20, 2014 for U.S. Appl. No. 12/816,043.
Office action dated Mar. 21, 2014 for U.S. Appl. No. 12/815,674.
Office action dated Apr. 4, 2013 for U.S. Appl. No. 12/689,517.
Office action dated Apr. 9, 2013 for U.S. Appl. No. 13/306,520.
Office action dated Apr. 12, 2012 for U.S. Appl. No. 12/815,647.
Office action dated Apr. 28, 2014 for U.S. Appl. No. 12/689,548.
Office action dated May 26, 2011 for U.S. Appl. No. 11/762,750.
Office action dated May 31, 2013 for U.S. Appl. No. 13/835,926.
Office action dated Jun. 3, 2013 for U.S. Appl. No. 13/306,640.
Office action dated Jun. 3, 2013 for U.S. Appl. No. 13/837,974.
Office action dated Jun. 4, 2012 for U.S. Appl. No. 11/762,747.
Office action dated Jun. 18, 2012 for U.S. Appl. No. 12/751,908.
Office action dated Jul. 9, 2012 for U.S. Appl. No. 11/762,750.
Office action dated Aug. 1, 2012 for U.S. Appl. No. 12/815,674.
Office action dated Aug. 7, 2013 for U.S. Appl. No. 13/863,992.
Office action dated Sep. 10, 2010 for U.S. Appl. No. 11/762,750.
Office action dated Sep. 14, 2012 for U.S. Appl. No. 12/393,833.
Office action dated Sep. 22, 2011 for U.S. Appl. No. 12/815,647.
Office action dated Sep. 23, 2009 for EP Application No. EP07763674.4 with pending claims.
Office action dated Sep. 27, 2010 for U.S. Appl. No. 12/413,485.
Office action dated Sep. 27, 2013 for U.S. Appl. No. 12/816,043.
Office action dated Oct. 24, 2011 for U.S. Appl. No. 11/762,747.
Office action dated Oct. 25, 2012 for U.S. Appl. No. 12/816,043.
Office action dated Dec. 2, 2008 for U.S. Appl. No. 11/762,747.
Office action dated Dec. 10, 2013 for CA Application No. 2655272.
Office action dated Dec. 13, 2013 for U.S. Appl. No. 13/306,698.
Office action dated Dec. 31, 2009 for U.S. Appl. No. 11/762,750.
Office action dated Dec. 31, 2011 for U.S. Appl. No. 11/763,421.
Olson, et al. A Common Language for Physical Mapping of the Human Genome. “A common language for physical mapping of the human genome.” Science 245.4925 (1989): 1434-1435. Sep. 29, 1989.
Preliminary Amendments to the Claims. Filed Jul. 11, 2013 with U.S. Patent Office for U.S. Appl. No. 13/738,268.
Pruitt, et al. RefSeq and LocusLink: NCBI gene-centered resources. Nucl. Acids Res. (2001) vol. 29 No. 1: 137-140. DOI: 10.1093/nar/29.1.137.
REPLI-g® Mini and Midi Kits pamphlet from Qiagen (Oct. 2005).
Rosato, M. Verinata Health, Inc.'s Preliminary Patent Owner Response Pursuant to 37 C.F.R. §42.107(a). Dated Jul. 29, 2013. For Case IPR2013-00276. U.S. Pat. No. 8,318,430.
Rosato, Verinata Health Inc.'s Preliminary Patent Owner Response Pursuant to 37 C.F.R. §42.107(a). Dated Jul. 29, 2013. For Case IPR2013-00277. U.S. Pat. No. 8,318,430.
Venter, et al. The Sequence of the Human Genome. Science Feb. 16, 2001; vol. 291 No. 5507 pp. 1304-1351 DOI: 10.1126/science.1058040.
Verinata Health. Complaint for Patent Infringement. Case: 12-cv-05501-SI; Dated Oct. 25, 2012.
Verinata Health. Plaintiffs' Opposition to Defendants' Motion to Dismiss Plaintiffs' Claims for Patent Infringement Against Laboratory Corporation of America and Claims for Enhanced Damages Against All Defendants. Case: 12-cv-05501-SI; Dated Jan. 25, 2013.
Verinata Health: Joint Claim Construction and Prehearing Statement. Case: 12-cv-05501-SI; Dated May 3, 2013.
Voss, et al. Efficient low redundancy large-scale DNA sequencing at EMBL. Journal of Biotechnology, vol. 41, Issues 2-3, Jul. 31, 1995, pp. 121-129.
Wheeler, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872-876 (Apr. 18, 2008) | DOI:10.1038/nature06884; Accepted Mar. 4, 2008.
Zhang, et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A. Jul. 1, 1992;89(13):5847-51.
Zimmerman et al. QIAGEN News. 2003. e12. Available via uri: <b2b.qiagen.com/literature/qiagennews/weeklyarticle/apr03/e12/default.aspx>.
Amendments to the Claims. Filed Oct. 14, 2014 with U.S. Patent Office for U.S. Appl. No. 13/831,342.
U.S. Appl. No. 14/705,239, filed May 6, 2015, Kapur, et al.
European office action dated May 22, 2015 for EP Application No. 07798579.4.
European office action dated Oct. 8, 2012 for EP Application No. 11175845.
International Preliminary Report on Patentability dated Dec. 16, 2008 for PCT Application No. US2007/071248.
Office action dated Jan. 26, 2015 for CA Application No. 2655272.
Office action dated Jan. 30, 2014 for U.S. Appl. No. 13/837,974.
Office action dated Mar. 7, 2013 for European Application No. 11182181.
Office action dated Mar. 11, 2015 for U.S. Appl. No. 13/737,730.
Office action dated Apr. 7, 2015 for U.S. Appl. No. 13/829,971.
Office action dated Apr. 23, 2015 for U.S. Appl. No. 12/751,940.
Office action dated May 8, 2015 for U.S. Appl. No. 12/816,043.
Office action dated May 11, 2015 for U.S. Appl. No. 13/863,992.
Office action dated Jun. 10, 2015 for U.S. Appl. No. 13/830,871.
Office action dated Jul. 16, 2015 for U.S. Appl. No. 13/837,974.
Office action dated Jul. 21, 2015 for U.S. Appl. No. 12/689,548.
Office action dated Aug. 19, 2015 for U.S. Appl. No. 12/689,517.
Office action dated Sep. 18, 2015 for U.S. Appl. No. 12/816,043.
Pending claims dated Jun. 10, 2016 for U.S. Appl. No. 13/830,871.
Pending claims dated Sep. 24, 2014 for U.S. Appl. No. 13/738,268.
Allowed claims dated Dec. 9, 2010 for U.S. Appl. No. 11/701,686.
Amendments to the Claims Filed Mar. 29, 2013 with U.S. Patent Office for U.S. Appl. No. 12/751,940.
Amendments to the Claims. Filed Aug. 14, 2013 with U.S. Patent Office for U.S. Appl. No. 13/737,730.
Amendments to the Claims. Filed Jul. 11, 2013 with U.S. Patent Office for U.S. Appl. No. 13/831,342.
Amendments to the Claims. Filed Jul. 25, 2013 with U.S. Patent Office for U.S. Appl. No. 13/829,971.
Amendments to the Claims. Filed Mar. 15, 2013 with U.S. Patent Office for U.S. Appl. No. 13/835,926.
Amendments to the Claims. Filed Mar. 15, 2013 with U.S. Patent Office for U.S. Appl. No. 13/837,974.
Amendments to the Claims. Filed Nov. 7, 2013 with U.S. Patent Office for U.S. Appl. No. 13/863,992.
Applicant's Amendment and Response dated Jun. 24, 2010 to Office Action dated Jan. 27, 2010 re U.S. Appl. No. 11/701,686.
Applicant's Amendment and Response dated Nov. 13, 2009 to Office Action dated Sep. 11, 2009 re U.S. Appl. No. 11/701,686.
Applicant's response dated Jun. 10, 2011 to Office action dated Apr. 25, 2011 for U.S. Appl. No. 12/393,803.
Claims. Filed Nov. 29, 2011 with U.S. Patent Office for U.S. Appl. No. 13/306,520.
Claims. Filed Nov. 29, 2011 with U.S. Patent Office for U.S. Appl. No. 13/306,640.
Claims. Filed Nov. 29, 2011 with U.S. Patent Office for U.S. Appl. No. 13/306,698.
European office action dated Jul. 17, 2013 for EP Application No. 11159371.1, 8 pages.
Office action dated Mar. 15, 2016 for U.S. Appl. No. 12/751,940.
Office action dated Mar. 31, 2016for U.S. Appl. No. 13/863,992.
Preliminary Amendments to the Claims Filed Jul. 3, 2013 with U.S. Patent Office for U.S. Appl. No. 13/830,871.
Response filed Dec. 26, 2012 with claims for U.S. Appl. No. 12/393,833.
Office action dated Aug. 16, 2016 for U.S. Appl. No. 13/863,992.
Notice of allowance dated Jan. 22, 2016 for U.S. Appl. No. 13/837,974.
Notice of allowance dated Oct. 27, 2015 for U.S. Appl. No. 13/829,971.
Office action dated Dec. 10, 2015 for U.S. Appl. No. 13/830,871.
Related Publications (1)
Number Date Country
20140106975 A1 Apr 2014 US
Provisional Applications (2)
Number Date Country
60820778 Jul 2006 US
60804816 Jun 2006 US
Continuations (2)
Number Date Country
Parent 12751940 Mar 2010 US
Child 13794503 US
Parent 11763133 Jun 2007 US
Child 12751940 US