The present application relates to temperature sensors, and more particularly to a fiber-optic temperature sensor assembly.
Fiber-optic temperature sensors are commonly used in given applications as an advantageous alternative to thermocouples and the like. Fiber-optic temperature sensors are immune to electromagnetic interference (EMI)/radio-frequency interference (RFI). Moreover, fiber-optic temperature sensors are relatively small, and can withstand hazardous environments, including relatively extreme temperatures.
Fiber-optic temperature sensors have an optical fiber extending from a processing unit to the measurement location. A sensor member (e.g., a semiconductor sensor) is provided at an end of the optical fiber. Present fiber-optic temperature sensors use an adhesive or solder to connect the sensor member to the end of the optical fiber.
However, the presence of an adhesive limits the uses of the fiber-optic temperature sensors. For instance, the range of temperature to which the fiber-optic temperature sensor may be exposed is reduced by the reaction of the adhesive to higher temperatures. Also, the strength of the connection between the sensor member and the optical fiber is not optimal. There also have been some shortcomings in uniformly producing fiber-optic temperature sensors of suitable strength at the fiber/sensor member connection. These problems affect the reliability of current fiber-optic temperature sensors. Unreliable temperature sensors are impractical in constraining environments (e.g., nuclear power plants), or concealed systems (e.g., industrial transformers).
It is therefore an aim of the present application to provide a fiber-optic temperature sensor assembly that addresses issues associated with the prior art.
Therefore, in accordance with the present application, there is provided a fiber-optic temperature sensor assembly comprising: a glass cap with an inner cavity; a sensor substance received loosely in the inner cavity of the cap, the sensor substance having light-producing properties adapted to change with specific temperature variations; and a glass optical fiber having a first end received in the inner cavity of the cap and fused without adhesive to the cap, and a second end of the optical fiber being adapted to be connected to a processing unit for transmitting light signals from the sensor substance to the processing unit when the fiber-optic temperature sensor assembly is subjected to specific temperatures.
Further in accordance with the present application, there is provided a method for manufacturing a fiber-optic temperature sensor assembly comprising: fusing without adhesive a first end of a glass cap having an inner cavity to an end of a glass optical fiber; inserting a sensor substance having light-emitting properties adapted to change with temperature variations into the inner cavity of the cap; and closing a second end of the cap to seal the sensor substance in the inner cavity of the cap.
Referring to the drawings and more particularly to
The sensor substance 13 may be of the type producing a light signal as a function of the temperature, which light signal is transmitted to the processing unit through the optical fiber 12. In an embodiment, the sensor substance 13 transforms an excitation signal received from a source connected to the optical fiber 12, into light of different characteristics, such as a modified wavelength (e.g., fluorescent substance). According to an embodiment, the sensor substance 13 is typically a fluorophore in a granular or powdery state, loosely received in the inner cavity 18 of the cap 16. When referring to the sensor substance 13 received loosely, it is understood that the sensor substance 13 is simply deposited in the inner cavity 18. The sensor substance may subsequently be restricted from moving in the inner cavity 18 by the insertion of the optical fiber 12 or the closing of the inner cavity 18. For instance, the fluorophore may be fluorogermanate (Mg4FGeO6:Mn) for given applications, with the granular size being within selected ranges. As an alternative, the fluorophore may be LuPO4:Dy, among other possibilities. Fluorogermanate may be used for applications ranging between −260° C. to 725° C. LuPO4:Dy may be used as sensor substance 13 for higher temperature measurements, for instance up to 1500° C.
Other sensor substances 13 may be used as well, for instance substances having a light-absorption spectrum variable as a function of the temperature, or substances whose birefringence varies as function of the temperature.
The cap 16 defines an inner cavity 18, in which the sensor substance 13 is received. A first end 20 of the cap 16 receives the sensor end 14 of the optical fiber 12. The second end 22 of the cap 16 is closed, whereby the sensor substance 13 is sealingly enclosed in the cap 16.
According to an embodiment, the optical fiber 12 and the cap 16 are all-glass components, for instance using silica. Accordingly, the optical fiber 12 may be fusion spliced to the cap 16 in the manner illustrated in
As an example, it is considered to use the optical fiber 12 and capillary 16 having the range of dimensions set forth below for the temperature sensor assembly 10: optical fiber 12 at 50/125 μm, the cap 16 at 75/175 μm and 50/125 μm; also, the optical fiber 12 at 105/125 μm for the cap 16 at 150/350 μm.
Although not shown, the optical fiber 12 may be covered with a jacket of protective material, such as polyimide or PTFE. The protective material (if needed) is selected as a function of the contemplated use of the temperature sensor assembly 10.
The cap 16 is typically a capillary having the end 22 being collapsed or closed by way of a plug. In the instance of a plug, the plug may also be a glass plug that is compatible with a remainder of the cap 16 for fusion splicing.
Referring to
In
In
In
In
A specific sequence of steps is illustrated following
The fused silica embodiment of the fiber-optic temperature sensor assembly 10 is well suited for extreme temperature range measurements, such as cryogenics, nuclear, microwave, strong RF applications, patient monitoring under MRI or intense electromagnetic field, aerospace applications and direct winding temperature measurements in high voltage transformers, among other possibilities. The temperature range of the fiber-optic temperature sensor assembly 10 will be dependent on the types of sensor substances 13 used. The temperature sensor assembly 10 may be used for long fiber link at extreme temperatures.