Fiber to the antenna

Abstract
A cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing.
Description
SUMMARY

An aspect of the present disclosure relates to a cell site of a telecommunications network. The cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing.


Another aspect of the present disclosure relates to a telecommunications network. The telecommunications network includes a cell site and a backhaul in communication with the cell site. The cell site includes a tower, a multi-service terminal mounted to the tower and a base transceiver station in communication with the multi-service terminal. The multi-service terminal includes a housing and a plurality of adapters mounted to the housing. Each of the adapters includes an outer port accessible from outside the housing and an inner port accessible from inside the housing. A plurality of remote transceivers is in communication with the outer ports of the adapters of the multi-service terminal.


A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.





DRAWINGS


FIG. 1 is a schematic representation of a telecommunications network having exemplary features of aspects in accordance with the principles of the present disclosure.



FIG. 2 is a schematic representation of a top portion of a tower of the telecommunications network of FIG. 1.



FIG. 3 is a perspective view of a multi-service terminal suitable for use with the telecommunications network of FIG. 1.



FIG. 4 is a front view of the multi-service terminal of FIG. 3.



FIG. 5 is a side view of the multi-service terminal of FIG. 3.



FIG. 6 is a perspective view of an enclosure that is suitable for use with the telecommunications network of FIG. 1.



FIG. 7 is a perspective view of the enclosure of FIG. 6 with a cover in an open position.



FIG. 8 is a front view of the enclosure with the cover removed.



FIG. 9 is an alternate embodiment of a telecommunications network having exemplary features of aspects in accordance with the principles of the present disclosure.



FIG. 10 is a perspective view of an enclosure suitable for use with the telecommunications network of FIG. 9.



FIG. 11 is a front view of the enclosure of FIG. 10 with a cover in an open position.



FIG. 12 is a top view of the enclosure of FIG. 10.



FIG. 13 is an alternate embodiment of a telecommunications network having exemplary features of aspects in accordance with the principles of the present disclosure.



FIG. 14 is a perspective view of a multi-service terminal suitable for use with the telecommunications network of FIG. 13.



FIG. 15 is a perspective view of the multi-service terminal of FIG. 14.



FIG. 16 is an alternate embodiment of a telecommunications network having exemplary features of aspects in accordance with the principles of the present disclosure.



FIG. 17 is a perspective view of a cable drawer assembly suitable for use in the telecommunications network of FIG. 16.



FIG. 18 is a perspective view of the cable drawer assembly of FIG. 17.





DETAILED DESCRIPTION

Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.


Referring now to FIG. 1, a schematic representation of a telecommunications network 10 is shown. In the depicted embodiment, the telecommunications network 10 is a cellular network 10. The cellular network 10 includes a cell site 12, a demarcation point 14, a backhaul 16 and a core network 18.


The cell site 12 creates an area of telecommunications coverage (i.e., a cell) in the cellular network 10. In one embodiment, the cell site 12 includes a tower or mast 20 and a hut 22 that is in communication with the tower 20. In another embodiment, the cell site 12 includes a hut 22 that is in communication with an antenna or a plurality of antenna.


Referring now to FIGS. 1 and 2, the tower 20 includes a base portion 24 and an oppositely disposed top portion 26. In the depicted embodiment, the base portion 24 is rigidly fixed at a mounting location.


The top portion 26 includes a remote transceiver 28 (e.g., a remote radio head). The remote transceiver 28 is adapted to transmit and receive signals to and from devices (e.g., mobile phones, smart-phones, devices with wireless internet connectivity, etc.) of subscribers to the cellular network 10. In the depicted embodiment, the top portion 26 of the tower 20 includes a first remote transceiver 28a, a second remote transceiver 28b, a third remote transceiver 28c, a fourth remote transceiver 28d, a fifth remote transceiver 28e and a sixth remote transceiver 28f. In the subject embodiment, the fourth, fifth and sixth remote transceivers 28d-28f are backup remote transceivers.


In one embodiment, the top portion 26 of the tower 20 may include an antenna. The remote transceiver 28 may be integrated into the antenna. In another embodiment,


Referring now to FIGS. 1-5, the top portion 26 of the tower 20 further includes a multi-service terminal 30. Terminal that are suitable for use as the multi-service terminal 30 of the present disclosure have been described in U.S. Pat. Nos. 7,292,763 and 7,512,304, the disclosures of which are hereby incorporated by reference in their entirety.


The multi-service terminal 30 includes a housing 32. The housing 32 includes a first piece 34 and a second piece 36. In the depicted embodiment, the first piece 34 is a front piece while the second piece 36 is a back piece. The first and second pieces 34, 36 of the housing 32 cooperatively define an enclosed interior of the housing 32. The first and second pieces 34, 36 are joined by fasteners 38 (e.g., bolts or other fastening elements) spaced about a periphery of the main housing 32.


The first and second pieces 34, 36 are elongated along a central longitudinal axis 40 so as to extend generally from a first end 42 to an oppositely disposed second end 44 of the housing 32. The drop terminal further includes a gasket mounted between the front and back pieces of the main housing. The gasket extends around the perimeter or periphery of the main housing and prevents moisture from entering the interior of the assembled main housing. The multi-service terminal 30 also includes ruggedized fiber optic adapters 46 mounted to the first piece 34 of the housing 32. It will be understood that the term “ruggedized” refers to a component or system that is capable of withstanding the elements of an outdoor environment and that reduces the risk of or prevents the ingress of dirt, dust, water, etc. from entering the terminal. Each of the fiber optic adapters 46 includes an outer port 48 accessible from outside the housing 32 and an inner port accessible from the interior of the housing 32. In the depicted embodiment, the second end 44 of the housing 32 defines a cable port 50 for allowing a fiber optic cable 52 to enter/exit the interior of the housing 32. The fiber optic cable is broken out into individual optical fiber cables within the interior of the housing. The optical fiber cables are routed about cable guides and are terminated with cable connectors and connected to inner ends of connectors.


The housing 32 of the multi-service terminal 30 includes a length L and a width W. The length L is parallel to the central longitudinal axis 40 of the housing 32. First, second and third rows 54a, 54b, 54c of fiber optic adapters 46 are mounted to the first piece 34 of the housing 32. In the depicted embodiment, each of the first, second and third rows 54a, 54b, 54c includes four fiber optic adapters 46 spaced-apart across the width W of the housing 32. The first row 54a is located closest the first end 42 of the housing 32, the third row 56c is located closest the second end 44 of the housing 32 and the second row 56b is located between the first and third rows 56a, 56c. An exterior surface 58 of the first piece 34 has a stepped configuration with a first, second and third step 60a, 60b, 60c positioned consecutively along the length L of the housing 32. Each of the first, second and third steps 60a, 60b, 60c includes an adapter mounting wall 62a-c. The adapter mounting wall 62a-c of each of the first, second and third steps 60a, 60b, 60c defines adapter mounting openings in which the fiber optic adapters 46 are mounted.


As shown at FIG. 5, the adapter mounting walls 62a-62c are generally parallel to one another and are spaced apart along the length L of the housing 32. The adapter mounting walls 62a-62c have front faces that are aligned at an oblique angle θ1 relative to a plane P that extends through a center axis 66 of the fiber optic cable 52 and across the width W of the housing 32. The angled configuration of the adapter mounting walls 62 causes the fiber optic adapters 46 to be angled relative to the plane P. For example, center axes 68 of the fiber optic adapters 46 are shown aligned at an oblique angle θ2 relative to the plane P. In this way, the outer ports 48 of the fiber optic adapters 46 face generally in the same direction that the fiber optic cable 52 enters/exits the multi-service terminal 30.


Referring now to FIG. 2, each of the remote transceivers 28a-28f includes an input port 70 and an output port 72. The input port 70 is a connection location through which signals from the core network 18 are received by the remote transceiver 28 and then transmitted from the remote transceiver 28 to a subscriber. The output port 72 is a connection location through which signals from the subscriber are sent to the core network 18.


In the depicted embodiment of FIG. 2, each input port 70 and each output port 72 of the remote transceivers 28 is optically connected to the multi-service terminal 30. The remote transceivers 28 are in communication with the multi-service terminal 30 through a plurality of fiber optic drop cables 74. A first plurality of fiber optic drop cables 74a provides communication between the first remote transceiver 28a and the multi-service terminal 30. A second plurality of fiber optic drop cables 74b provides communication between the second remote transceiver 28b and the multi-service terminal 30. A third plurality of fiber optic drop cables 74c provides communication between the third remote transceiver 28c and the multi-service terminal 30. A fourth plurality of fiber optic drop cables 74d provides communication between the fourth remote transceiver 28d and the multi-service terminal 30. A fifth plurality of fiber optic drop cables 74e provides communication between the fifth remote transceiver 28e and the multi-service terminal 30. A sixth plurality of fiber optic drop cables 74f provides communication between the sixth remote transceiver 28f and the multi-service terminal 30.


Each of the first, second, third, fourth, fifth and sixth pluralities of fiber optic drop cables 74a-74f includes a first drop cable 76a and a second drop cable 76b. Each of the first and second drop cables 76a, 76b includes a first end 78 and an oppositely disposed second end 80. The first and second ends 78, 80 include fiber optic connectors 82. In one embodiment, the fiber optic connectors 82 are simplex-fiber connectors (e.g., SC, LC, etc.). In another embodiment, the fiber optic connectors 82 are multi-fiber connectors.


The fiber optic connector 82 on the first end 78 of the first drop cable 76a of the first plurality of fiber optic drop cables 74a is engaged to one of the fiber optic adapters 46 of the multi-service terminal 30 while the second end 80 of the first drop cable 76a is engaged to the input port 70 of the first remote transceiver 28a. The fiber optic connector 82 on the first end 78 of the second drop cable 76b of the first plurality of fiber optic drop cables 74a is engaged to another of the fiber optic adapters 46 of the multi-service terminal 30 while the second end 80 of the second drop cable 76b is engaged to the output port 72 of the first remote transceiver 28a. Each of the fiber optic connectors 82 on the first ends 78 of the first and second drop cables 76a, 76b of the first, second, third, fourth, fifth and sixth plurality of fiber optic drop cables 28a-28f is engaged with a different fiber optic adapter 46 of the multi-service terminal 30.


Referring now to FIG. 1, the hut 22 will be described. In the depicted embodiment, the hut 22 is disposed near the base portion 24 of the tower 20. The hut 22 is a structure that includes a plurality of walls 84 and a roof 86. The walls 84 and the roof 86 of the hut 22 cooperatively define an interior 88 of the hut 22.


In the depicted embodiment, a base transceiver station (BTS) 90 is disposed in the interior 88 of the hut 22. The base transceiver station 90 facilitates wireless communication between the devices of subscribers to the cellular network 10 and the core network 18.


The base transceiver station 90 can include a plurality of transceivers for receiving and transmitting signals and a power amplifier for amplifying the signals. The base transceiver station 90 can be configured for any one or more telecommunications standards including 3G (e.g., GSM, EDGE, UMTS, CDMA, DECT, WiMAX, etc.), LTE, and 4G. In one embodiment, the base transceiver station 90 includes an optical multiplexer to join signals to be transmitted together and a demultiplexer to separate received signals.


The base transceiver station 90 is connected to the remote transceivers 28 on the top portion 26 of the tower 20 through an enclosure 92. In the depicted embodiment, the enclosure 92 is disposed on an exterior surface 94 of the hut 22.


Referring now to FIGS. 6-8, the enclosure 92 is shown. The enclosure 92 includes a housing 94 having a base 96 and a cover 98. The cover 98 is removably engaged to the base 96.


The base 96 includes a base wall 100, a first end 102 extending outwardly from the base wall 100 and an oppositely disposed second end 104 extending outwardly from the base wall 100. The first end 102 defines a first cable passage 106 and a second cable passage 108. Each of the first and second cable passages 106, 108 provide a pathway into an interior region 110 of the enclosure 92. The interior region 110 is cooperatively defined by the base 96 and the cover 98.


The enclosure 92 further includes a base panel 112 disposed in the interior region 110. The base panel 112 is mounted to the base wall 100 of the enclosure 92. In one embodiment, the base panel 112 occupies less than or equal to about 75% of the base wall 100. In another embodiment, the base panel 112 occupies less than or equal to about 50% of the base wall 100. In the depicted embodiment, the base panel 112 is disposed adjacent to the second end 104 of the enclosure 92. In the depicted embodiment, the base panel 112 is disposed closer to the second end 104 of the enclosure 92 than the first end 102.


The base panel 112 includes a termination region 114, a fanout region 116 and a storage region 118. The termination region 114 includes a plurality of fiber optic adapters 120. In the depicted embodiment, the enclosure 92 includes twenty-four fiber optic adapters 120. Each of the fiber optic adapters 120 includes a first side 122 and an oppositely disposed second side 124. In the depicted embodiment, the plurality of fiber optic adapters 120 is disposed adjacent to the second end 104 of the enclosure 92.


The fanout region 116 includes a platform 125. The platform 125 is offset from the base panel 112 so that the platform 125 is generally parallel to the base panel 112. In the depicted orientation of FIG. 7, the platform 125 is elevated above the base panel 112. A support 126 is engaged to the base panel 112 and the platform 125. The support 126 extends outwardly from the base panel 112 in a generally perpendicular direction. In the depicted embodiment, the support 126 is disposed at a periphery 127 of the base panel 112.


The fanout region 116 further includes a first fanout 128a and a first fiber optic cable stub 130a engaged to the first fanout 128a. In the depicted embodiment, the fanout region 116 includes a second fanout 128b and a second fiber optic cable stub 130b engaged to the second fanout 128b.


Each of the first and second fiber optic cable stubs 130a, 130b includes a plurality of optical fibers 132. The first and second fanouts 128a, 128b are adapted to fan-out or spread apart the optical fibers 132 of the first and second fiber optic cable stubs 130a, 130b. In the depicted embodiment, the first and second fanouts 128a, 128b are disposed in a stacked arrangement in the fanout region 116. In the depicted embodiment, the first and second fanouts 128a, 128b are mounted to platform 125 of the base panel 112 of the enclosure 92 by a plurality of fasteners 134 (e.g., screws, nuts, bolts, adhesive, resilient latches, etc.).


Each of the first and second fiber optic cable stubs 130a, 130b includes a first end portion 136 and a second end portion 138. The first end portion 136 of each of the first and second fiber optic cable stubs 130a, 130b includes an outer jacket that surrounds the optical fibers. The first end portion 136 is generally stiff. In one embodiment, the first end portion 136 has a generally flat cross-section and includes two strength members. The first end portions 136 of the first and second fiber optic cable stubs 130a, 130b is generally aligned with the first cable passage 106.


Each of the first end portions 136 of the first and second fiber optic cable stubs 130a, 130b includes a multi-fiber connector 142 engaged to the optical fibers 132. The multi-fiber connectors 142 are ruggedized connectors. In one embodiment, the multi-fiber connectors 142 are OptiTip MT connectors manufactured by Corning Cable Systems LLC. The multi-fiber connectors 142 are disposed in the interior region 110 of the enclosure 92. In the depicted embodiment, the multi-fiber connectors 142 include dust caps 144 that are adapted for removal.


Each of the second end portions 138 of the first and second fiber optic cable stubs 130a, 130b extends outwardly from the first and second fanouts 128a, 128b, respectively. The second end portions 138 of the first and second fiber optic cable stubs 130a, 130b include a plurality of fiber optic connectors 146 disposed on the ends of the plurality of optical fibers 132. The fiber optic connectors 146 of the second end portions 138 are connected to the first side 122 of the fiber optic adapters 120.


In the depicted embodiment, the storage region 118 is disposed between the termination region 114 and the fanout region 116. The storage region 118 includes a plurality of bend radius protectors 148. In the subject embodiment, the storage region 118 includes a first bend radius protector 148a and a second bend radius protector 148b.


Each of the bend radius protectors 148 includes a body 150. The body 150 includes a first end 152 and an oppositely disposed second end 154. The first end 152 is mounted to the base panel 112. The second end 154 extends outwardly from the base panel 112. In the depicted embodiment, the body 150 includes an arcuate portion 156 that extends between the first and second ends 152, 154. The arcuate portion 156 has a radius that is greater than the minimum bend radius of the optical fibers 132 of the first and second cable stubs 130a, 130b. In one embodiment, the arcuate portion 156 of the bend radius protector 148 extends an angle α (shown in FIG. 8) that is less than or equal to about 180°. In another embodiment, the angle α is greater than or equal to about 90°. In another embodiment, the angle α is in a range of about 90° to about 180°.


The arcuate portion 156 of the first bend radius protector 148a defines a center 158a while the arcuate portion 156 of the second bend radius protector 148b defines a center 158b. In the depicted embodiment, the first and second bend radius protectors 148a, 148b are disposed on the base panel 112 so that the centers 158a, 158b are offset. This offset provides an outer shape of the first and second bend radius protectors 148a, 148b that is generally oval.


Each of the bend radius protectors 148 includes a retention projection 160. The retention projection 160 extends outwardly from the second end 154 of the body 150 in a generally radial direction.


In the subject embodiment, the optical fibers 132 are routed from the first and second fanouts 128a, 128b to the storage region 118. In one embodiment, the optical fibers 132 are routed around the first and second bend radius protectors 148a, 148b and routed to the termination region 114. In the depicted embodiment, a portion of the optical fibers 132 in the storage region 118 are disposed beneath the platform 125 of the fanout region 116. At the termination region 114, the fiber optic connectors 146 are engaged to the first side 122 of the fiber optic adapters 120.


Referring now to FIGS. 1 and 7, the fiber optic cable 52 from the multi-service terminal 30 is routed to the enclosure 92 on the hut 22. The fiber optic cable 52 includes a first end 162 and an oppositely disposed second end 164. The first end 162 includes a plurality of connectors that are engaged to the inner ports of the fiber optic adapters 46 of the multi-service terminal 30. The second end 164 includes a multi-fiber connector that is adapted for engagement to one of the first and second multi-fiber connectors 142 of the enclosure 92.


A jumper cable 166 provides communication between the enclosure 92 and the base transceiver station 90. The jumper cable 166 includes a first end 168 and an oppositely disposed second end 170. The first end 168 is connected to the enclosure 92 while the second end 170 is connected to the base transceiver station 90. In one embodiment, the first end 168 includes a plurality of connectors that are engaged with the second side 124 of the fiber optic adapters 120 of the enclosure 92.


In one embodiment, the second end 170 of the jumper cable 166 includes a multi-fiber connector that is engaged to the base transceiver station 90. In another embodiment, the second end 170 includes a plurality of connectors that is engaged to the base transceiver station 90.


Referring now to FIG. 1, the base transceiver station 90 is in communication with a telecommunications equipment rack 180 through a multi-fiber patch cable 182. The telecommunications equipment rack 180 is disposed in the hut 22. In one embodiment, the telecommunications equipment rack 180 includes any one or more of a power distribution unit, a fiber distribution unit, a transport switch, a mobile router, a media converter, an Ethernet panel, a DSX panel, protection and a battery.


The telecommunications equipment rack 180 is in communication with the demarcation point 14. The demarcation point 14 is in communication with the backhaul 16, which is in communication with the core network 18.


Referring now to FIGS. 9-12, an alternate embodiment of a telecommunications network 200 is shown. In the depicted embodiment, the telecommunications network 200 includes the cell site 12, the demarcation point 14, the backhaul 16 and the core network 18.


The cell site 12 includes the tower 20 and the hut 22. An enclosure 202 is disposed on an exterior wall 204 of the hut 22. The enclosure 202 includes a housing 206, a cable spool 208 disposed on an external surface of the housing 206 and a mounting plate 210. An enclosure suitable for use with the telecommunications network 200 has been described in U.S. Patent Application Publication No. 2008/0292261, which is hereby incorporated by reference in its entirety.


Referring now to FIGS. 10-12, the housing 206 includes a cover 212, a base 214, a first sidewall 216, and an oppositely disposed second sidewall 218. The first and second sidewalls 216, 218 extend outwardly from the base 214 such that the base 214 and the first and second sidewalls 216, 218 cooperatively define an interior region 220.


A termination module, generally designated 222, is disposed in the interior region 220 of the housing 206. The termination module 222 of the enclosure 202 serves as the dividing line between the incoming fibers and the outgoing fibers. In the subject embodiment, the termination module 222 is mounted to the base 214 of the housing 206. In the subject embodiment, the termination module 222 includes a plurality of adapters 224.


The base 214 of the housing 206 defines a cable passage 226 through which incoming optical fibers pass. The interior region 220 of the housing 206 includes a slack storage area 228 in which is disposed a plurality of bend radius protectors 230. Each of the bend radius protectors 230 is sized such that an outer radius of the bend radius protector 230 is larger than the minimum bend radius of the optical fiber so as to avoid attenuation damage to the optical fibers during storage. In the subject embodiment, the cable passage 226 is disposed between the slack storage area 228 and the termination module 222. As incoming optical fibers pass through the cable passage 226, the incoming optical fibers are routed to the slack storage area 228. Connectorized ends of the incoming optical fibers are then routed from the slack storage area 228 to front sides 232 of the adapters 224. Connectorized ends of outgoing optical fibers are routed from the back sides 234 of the adapters 224 through fiber exit ports 236 which are disposed in the first and second sidewalls 216, 218 and to the base transceiver station 90.


The cable spool 208 is disposed on an exterior of the housing 206. In the subject embodiment, the cable spool 208 is disposed on the back side of the base 214. The cable spool 208 includes a first axial end 238, an oppositely disposed second axial end 240, and a spooling portion 242 disposed between the first and second axial ends 238, 240. The first axial end 238 is rigidly engaged (i.e., non-rotatable) to the back side of the base 214.


In one embodiment, the first axial end 238 of the cable spool 208 includes a passage. During engagement of the first axial end 238 and the back side of the base 214 of the housing 206, the first axial end 238 of the cable spool 208 is mounted to the base 214 such that the passage is aligned with the cable passage 226. With the passage of the cable spool 208 and the cable passage 226 of the base 214 aligned, incoming optical fibers, which are coiled around the spooling portion 242 of the cable spool 208, can enter the housing 206.


Referring now to FIGS. 9-12, the fiber optic cable 52, which includes multiple optical fibers, is coiled around the spooling portion 242 of the cable spool 208. The first end 162 of the fiber optic cable 52 includes connectors that are engaged to the inner ports of the fiber optic adapters 46 of the multi-service terminal 30. The second end 164 includes connectorized ends, which are inserted through the passage and the cable passage 226 and connectedly engaged with the front sides 232 of the adapters 224. However, the length of fiber optic cable 52 needed between the enclosure 202 and the multi-service terminal 30 will vary depending upon the location of the enclosure 202 with respect to the multi-service terminal 30.


A method of selectively paying-out the fiber optic cable 52 will now be described. As previously mentioned, the second end 164 of the fiber optic cable 52 is in connected engagement with the termination module 222, which is disposed in the interior region 220 of the housing 206. With the second end 164 of the fiber optic cable 52 in connected engagement with the front sides 232 of the adapters 224 and the outgoing optical fibers disengaged from the back sides of the adapters 224, the fiber optic cable 52 can be paid out. The first axial end 238 of the cable spool 208 is rigidly engaged to the housing 206 while the second axial end 240 of the cable spool 208 is engaged with the mounting plate 210 so that the cable spool 208 and housing 206 can selectively rotate about an axis 246 of the mounting plate 210. Therefore, with the mounting plate 210 mounted to the exterior wall 204 of the hut 22, the desired length of the fiber optic cable 52 can be paid out from the enclosure 202 by rotating the enclosure 202 in a rotational direction about the axis 246 of the mounting plate 210. Since the housing 206 and the cable spool 208 rotate unitarily about the axis 246 of the mounting plate 210, the first end 162 of the fiber optic cable 52 can be paid out without the second end 164 of the fiber optic cable 52 being pulled out of the termination module 222.


Once the desired length of fiber optic cable 52 has been paid out, the rotation of the enclosure 202 is ceased. In one embodiment, any excess fiber optic cable 52 is stored on the spooling portion 242 of the cable spool 208. At this point, the position of the enclosure 202 can be fixed so that it does not rotate relative to the mounting plate 210.


Referring now to FIG. 13, an alternate embodiment of a telecommunications network 400 is shown. In the depicted embodiment, the telecommunications network 400 includes the cell site 12, the demarcation point 14, the backhaul 16 and the core network 18.


The cell site 12 includes the tower 20 and the hut 22. The tower 20 includes a multi-service terminal 402 mounted to the tower 20. In the depicted embodiment, the multi-service terminal 402 is mounted to the top portion 26 of the tower 20. The multi-service terminal assembly 402 includes a housing 404 and a cable spool 406. A terminal suitable for use as the multi-service terminal 402 has been described in U.S. Patent Application Publication No. 2009/0317047, which is hereby incorporated by reference in its entirety. The terminal is environmentally sealed. In the subject embodiment, the terminal includes a gasket mounted between the front and back pieces of a housing. The gasket extends around the perimeter or periphery of the housing and prevents moisture from entering the enclosed interior of the assembled housing. An environmental seal preferably is provided at the access opening through which the multi-fiber cable enters the housing.


Referring now to FIG. 14, the multi-service terminal assembly 402 is shown. The cable spool 406 includes a spooling portion 408 around which the fiber optic cable 52 is coiled or wrapped. In one embodiment, the cable spool 406 is engaged to the housing 404 of the multi-service terminal assembly 402. In another embodiment, the cable spool 406 is removably engaged to the housing 404.


The cable spool 406 is engaged to the housing 404 so that the cable spool 406 and the housing 404 rotate in unison about an axis of a mounting bracket to pay out the fiber optic cable 52. In one embodiment, after the fiber optic cable 52 has been paid out from the cable spool 406, the cable spool 406 is removed from the housing 404.


Referring now to FIGS. 14 and 15, the multi-service terminal assembly 402 includes a slack storage spool 408 engaged to the housing 404. The slack storage spool 408 includes a first flange 410, a drum portion 412 and a second flange 414.


The first flange 410 is engaged to the housing 404. The second flange 414 is adapted for engagement with a front radial flange 416 of the cable spool 406. In the subject embodiment, a plurality of fasteners (e.g., bolts, screws, rivets, etc.) is used to engage the second flange 414 to the front radial flange 416 of the cable spool 406.


The drum portion 412 is disposed between the first flange 410 and the second flange 414. In the subject embodiment, the drum portion 412 is releasably engaged to the first flange 410. The releasable engagement is potentially advantageous as it allows the drum portion 412 and the second flange 414 to be removed from the housing 404 in the event all of the fiber optic cable 52 is unwound from the cable spool 406 and the slack storage spool 408. In one embodiment, the drum portion 412 is in snap-fit engagement with the first flange 410. In another embodiment, the drum portion 412 is engaged with the first flange 410 by fasteners (e.g., bolts, screws, etc.).


The drum portion 412 is configured to receive the fiber optic cable 52 so that the fiber optic cable 52 wraps around an outer surface of the drum portion 412. In the subject embodiment, the drum portion 412 is cylindrical in shape having a cross-section that is generally oblong. In another embodiment, the drum portion 412 has a cross-section that is generally oval in shape.


Referring now to FIG. 16, an alternate embodiment of a telecommunications network 600 is shown. In the depicted embodiment, the telecommunications network 600 includes the cell site 12, the demarcation point 14, the backhaul 16 and the core network 18.


The cell site 12 includes the tower 20 and the hut 22. A telecommunications equipment rack 602 is disposed in the hut 22. In the depicted embodiment, the telecommunications equipment rack 602 includes a cable drawer assembly 604. The cable drawer assembly 604 includes a length of fiber optic cable 606 that can be paid out from the cable drawer assembly. In the depicted embodiment, the fiber optic cable 606 extends from the cable drawer assembly 604 to the base transceiver station 90.


Referring now to FIGS. 17 and 18, the cable drawer assembly 604 is shown. A cable drawer assembly suitable for use with the telecommunications equipment rack 602 has been described in U.S. Patent Application Ser. Nos. 61/227,247 and 61/261,657, the disclosures of which are hereby incorporated by reference in their entirety. The cable drawer assembly 604 includes a drawer, generally designated 608, and a cable spool, generally designated 610, rotatably disposed in the drawer 608.


The drawer 608 includes a base panel 612, a first sidewall 614, an oppositely disposed second sidewall 616, and a third sidewall 618. The first, second and third sidewalls 614, 616, 618 extend outwardly from the base panel 612. In one aspect of the present disclosure, the first, second and third sidewalls 614, 616, 618 extend outwardly in a direction that is generally perpendicular to the base panel 612. In the depicted embodiment of FIG. 17, the first sidewall 614 is generally parallel to the second sidewall 616. The first sidewall 614 includes a first end 620a and an oppositely disposed second end 620b while the second sidewall 616 includes a first end 622a and an oppositely disposed second end 622b. The first ends 620a, 622a of the first and second sidewalls 614, 616 and the base 612 cooperatively define a first opening 623 of the drawer 608.


The third sidewall 618 is disposed between the second ends 620b, 622b of the first and second sidewalls 614, 616 and oriented so that the third sidewall 618 is generally perpendicular to the first and second sidewalls 614, 616. The third sidewall 618 includes a first end 624a and an oppositely disposed second end 624b.


In the depicted embodiment of FIG. 17, the first and second ends 624a, 624b of the third sidewall 618 do not abut the second ends 620b, 622b of the first and second sidewalls 614, 616, respectively. The second end 620b of the first sidewall, the first end 624a of the third sidewall 618 and the base panel 612 define a first passage 626 while the second end 622b of the second sidewall 616, the second end 624b of the third sidewall 618 and the base panel 612 define a second passage 628. Each of the first and second passages 626, 628 provides access to an interior region 630 of the drawer 608, which is cooperatively defined by the first, second and third sidewalls 614, 616, 618 and the base panel 612.


The third sidewall 618 defines an access opening 632. The access opening 632 is disposed between the first and second ends 624a, 624b of the third sidewall 618. The access opening 632 extends through the third sidewall 618. In one aspect of the present disclosure, the access opening 632 is a generally U-shaped opening.


The cable spool 610 is rotatably disposed in the interior region 630 of the drawer 608. In one aspect of the present disclosure, the cable spool 610 includes a first flange 636, an oppositely disposed second flange 638 and a drum disposed between the first and second flanges 636, 638. The fiber optic cable 606 is wrapped around the drum of the cable spool 610.


The second flange 638 includes a first surface 640, an oppositely disposed second surface 642 that is disposed adjacent to the drum, and an outer peripheral side 644. The second flange 638 further includes a cable management portion 646 and an adapter bulkhead portion 648.


The cable management portion 646 includes a cable pass-thru 650 that extends through the first and second surfaces 640, 642 of the second flange 638. The cable pass-thru 650 provides a passage through which an end portion of the fiber optic cable 606 can pass from the drum through the second flange 638 so that the portion of the fiber optic cable 606 is disposed in the cable management portion 646.


The cable management portion 646 includes a strain relief spool 654. The strain relief spool 654 is disposed on the second surface 642 of the second flange 638 adjacent to the cable pass-thru 650. The strain relief spool 654 is adapted to receive a portion of the end portion of the fiber optic cable 606. The portion of the fiber optic cable 606 is wrapped around the strain relief spool 654. The strain relief spool 654 protects the end portion of the fiber optic cable 606 disposed in the cable management portion 646 from being disrupted in the event that the fiber optic cable 606 is pulled after all of the fiber optic cable 606 disposed around the drum of the cable spool 610 has been paid out.


The cable management portion 646 further includes a plurality of cable management spools 656 around which the end portions 652 of the fiber optic cable 606 are coiled. In the depicted embodiment of FIGS. 17 and 18, the end portions 652 of the fiber optic cable 606 are loosely coiled around the cable management spools 656. This loose coiling provides excess lengths of individual fibers of the end portions of the fiber optic cable 606. In one aspect of the present disclosure, the cable management portion 646 includes a first cable management spool 656a and a second cable management spool 656b.


The cable management portion 646 further includes a fan-out mounting area 660 that is adapted to receive a fan-out 662. In one aspect of the present disclosure, the fan-out mounting area 660 includes a plurality of fan-outs 662. The fan-outs 662 serve as a transition location between the fiber optic cable 606 and the individual upjacketed fibers of the fiber optic cable 606. In one aspect of the present disclosure, the fan-out mounting area 660 includes a plurality of fasteners 664 (e.g., screws, nuts, etc.) that retains the fan-out 662 in the fan-out mounting area 660.


The cable management portion 646 further includes a plurality of cable anchors 676. The cable anchors 676 extend outwardly from the second surface 642 of the second flange 638 and define an opening through which a cable tie can pass. The cable tie is adapted for retaining the fiber optic cable 606 in the cable management portion 646.


The adapter bulkhead portion 648 extends outwardly from the cable management portion 646 of the second flange 638. In one aspect of the present disclosure, the adapter bulkhead portion 648 is about perpendicular to the cable management portion 646. The adapter bulkhead portion 648 is generally planar in shape and forms a chordal side surface of the second flange 638 of the cable spool 610. In one aspect of the present disclosure, the adapter bulkhead portion 648 is generally parallel to the first opening 623 of the drawer 608 when the cable spool 610 is in a first stored position (best shown in FIG. 17).


The adapter bulkhead portion 648 is adapted to receive a plurality of adapters 678. The adapter bulkhead portion 648 defines a plurality of adapter openings in which the plurality of adapters 678 is mounted.


The cable drawer assembly 604 further includes a cover 680. The cover 680 is adapted for engagement with the drawer 608. When the cover 608 is engaged to the drawer 608, the cover 680 is generally parallel to the base panel 612 and extends between the first and second sidewalls 614, 616.


The use of the cable drawer assembly 604 will be described. With the fiber optic cable 606 coiled around the drum of the cable spool 610 and the end portion of the fiber optic cable 606 engaged with a first side 690 of the adapters 678 in the adapter bulkhead portion 648, a second end 692 of the fiber optic cable 606 can be paid out. As the second end 692 is paid out, the cable spool 610 rotates in the drawer 608 about a rotation axis 694. After the second end 692 of the fiber optic cable 606 has been paid out, a second side 696 of the adapters 678 can be engaged with a connectorized cable (e.g., patch cable, jumper cable, etc.). In one aspect of the present disclosure, the entire length of the fiber optic cable 606 is not completely deployed during pay out. In this scenario, the residual length of fiber optic cable 606 (which is equal to the entire length minus the deployed length) remains coiled around the drum of the cable spool 610.


Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.

Claims
  • 1. A method of cabling a cell tower, the method comprising: paying out at least a portion of a fiber optic cable assembly from a spool arrangement having a first spool portion and a second spool portion, the spool arrangement extending along a rotation axis between opposite first and second axial ends, the first spool portion extending along the rotation axis between first and second flanges with the first flange defining the first axial end of the spool arrangement, the second spool portion being aligned along the rotation axis with the first spool portion, the second spool portion including a third flange at an opposite side of the second spool portion from the first spool portion, the third flange defining the second axial end of the spool arrangement; androuting the cable assembly along the tower so that a breakout end of the cable assembly is disposed at a top of the cell tower and an opposite second end of the cable assembly is disposed at ground level and connects to a base transceiver station located within a hut positioned in proximity to a base of the cell tower, the breakout end of the cable assembly being received at an interior of an environmentally sealed terminal.
  • 2. The method of claim 1, wherein the terminal mounts to the second spool portion of the spool arrangement.
  • 3. The method of claim 2, further comprising removing the first spool portion when the cable assembly has been paid out from the spool arrangement.
  • 4. The method of claim 3, wherein the second spool portion remains attached to the terminal after the first spool portion has been removed.
  • 5. The method of claim 1, wherein the terminal rotates in unison with the second spool portion when the cable assembly is paid out from the spool arrangement.
  • 6. The method of claim 1, wherein the terminal includes a housing and a plurality of adapters mounted to the housing, each of the adapters having an outer port accessible from outside the housing and an inner port accessible from inside the housing.
  • 7. The method of claim 6, wherein the breakout end of the cable assembly is received at the inner ports of the terminal while the cable assembly is being paid out from the spool arrangement.
  • 8. The method of claim 7, wherein outgoing optical fibers are disengaged from the outer ports of the terminal while the cable assembly is being paid out from the spool arrangement.
  • 9. The method of claim 6, wherein the housing includes a first piece and a second piece.
  • 10. The method of claim 9, wherein the adapters include first, second and third rows of fiber optic adapters mounted to the first piece of the housing.
  • 11. The method of claim 1, wherein paying out the cable assembly includes pulling the second end of the cable assembly away from the spool arrangement.
  • 12. The method of claim 1, wherein the second spool portion includes a fourth flange disposed at an opposite side of the second spool portion from the third flange, the fourth flange being coupled to the second flange of the first spool portion.
  • 13. The method of claim 1, wherein a majority of the cable assembly is paid out from the first spool portion.
  • 14. The method of claim 1, wherein the terminal is initially disposed at the second axial end of the spool arrangement prior to paying out the cable assembly.
  • 15. The method of claim 14, wherein the terminal is attached to the third flange while the cable assembly is being paid out from the spool.
  • 16. The method of claim 1, wherein the second flange of the first spool portion defines a notch through which the cable assembly extends between the first and second spool portions.
  • 17. The method of claim 1, wherein the first and second spool portions are attached to each other via fasteners.
  • 18. The method of claim 1, further comprising releasing a drum of the second spool portion from the third flange.
  • 19. The method of claim 1, further comprising fixing a position of the spool arrangement when the portion of the cable assembly has been paid out.
  • 20. The method of claim 1, further comprising routing a drop cable between the terminal and a remote transceiver.
  • 21. A method of cabling a cell tower, the method comprising: paying out at least a portion of a fiber optic cable assembly from a spool arrangement having a first spool portion and a second spool portion, the spool arrangement extending along a rotation axis between opposite first and second axial ends, the first spool portion extending along the rotation axis between first and second flanges with the first flange defining the first axial end of the spool arrangement, the second spool portion being aligned along the rotation axis with the first spool portion, the second spool portion including a third flange at an opposite side of the second spool portion from the first spool portion, the third flange defining the second axial end of the spool arrangement;routing the cable assembly along the tower so that a breakout end of the cable assembly is disposed at a top of the cell tower and an opposite second end of the cable assembly is disposed at ground level, the breakout end of the cable assembly being received at an interior of an environmentally sealed terminal, wherein the environmentally sealed terminal mounts to the second spool portion of the spool arrangement; andremoving the first spool portion when the cable assembly has been paid out from the spool arrangement, wherein the second spool portion remains attached to the terminal after the first spool portion has been removed.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 16/940,457, filed Jul. 28, 2020, which is a continuation of application Ser. No. 16/410,608, filed May 13, 2019, now U.S. Pat. No. 10,736,179, which is a continuation of application Ser. No. 15/879,159, filed Jan. 24, 2018, now U.S. Pat. No. 10,292,206, which is a continuation of application Ser. No. 15/408,034, filed Jan. 17, 2017, now U.S. Pat. No. 9,888,524, which is a continuation of application Ser. No. 14/749,213, filed Jun. 24, 2015, now U.S. Pat. No. 9,553,669, which is a continuation of application Ser. No. 13/087,022, filed Apr. 14, 2011, now U.S. Pat. No. 9,078,287, which application claims the benefit of provisional application Ser. No. 61/324,245, filed Apr. 14, 2010, which applications are incorporated herein by reference in their entirety.

US Referenced Citations (204)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4420220 Dean et al. Dec 1983 A
4497537 Dench Feb 1985 A
4552432 Anderson et al. Nov 1985 A
4695127 Ohlhaber et al. Sep 1987 A
4723832 Okazato et al. Feb 1988 A
4787705 Shinmoto et al. Nov 1988 A
4867527 Dotti et al. Sep 1989 A
4895426 Pinson Jan 1990 A
5125060 Edmundson Jun 1992 A
5268971 Nilsson et al. Dec 1993 A
5317663 Beard et al. May 1994 A
5394466 Schneider et al. Feb 1995 A
5469523 Blew et al. Nov 1995 A
5539851 Taylor et al. Jul 1996 A
5555336 Winslow Sep 1996 A
5555338 Haag et al. Sep 1996 A
5557698 Gareis et al. Sep 1996 A
5627879 Russell et al. May 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5677974 Elms et al. Oct 1997 A
5699176 Cohen Dec 1997 A
5745627 Arroyo et al. Apr 1998 A
5778122 Giebel et al. Jul 1998 A
5864672 Bodeep et al. Jan 1999 A
5880865 Lu et al. Mar 1999 A
5913003 Arroyo et al. Jun 1999 A
5946617 Portaro et al. Aug 1999 A
5966489 Harwell et al. Oct 1999 A
5997186 Huynh et al. Dec 1999 A
RE36592 Giebel et al. Feb 2000 E
6104855 Jeon Aug 2000 A
6169834 Keller Jan 2001 B1
6195487 Anderson et al. Feb 2001 B1
6236789 Fitz May 2001 B1
6343172 Schiestle et al. Jan 2002 B1
6363192 Spooner Mar 2002 B1
6463198 Coleman et al. Oct 2002 B1
6546175 Wagman et al. Apr 2003 B1
6567592 Gimblet et al. May 2003 B1
6599025 Deutsch Jul 2003 B1
6668127 Mahony Dec 2003 B1
6674966 Koonen Jan 2004 B1
6687437 Starnes et al. Feb 2004 B1
6714710 Gimblet Mar 2004 B2
6719461 Cull Apr 2004 B2
6738547 Spooner May 2004 B2
6755575 Kronlund et al. Jun 2004 B2
6758693 Inagaki et al. Jul 2004 B2
6785450 Wagman et al. Aug 2004 B2
6796821 Cairns et al. Sep 2004 B2
6847767 Hurley et al. Jan 2005 B2
6895185 Chung et al. May 2005 B1
6899467 McDonald et al. May 2005 B2
6931183 Panak et al. Aug 2005 B2
6965718 Koertel Nov 2005 B2
6983095 Reagan et al. Jan 2006 B2
7006740 Parris Feb 2006 B1
7035513 Mohler et al. Apr 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7120347 Blackwell, Jr. et al. Oct 2006 B2
7158703 Mjelstad Jan 2007 B2
7198409 Smith et al. Apr 2007 B2
7233731 Solheid et al. Jun 2007 B2
7264402 Theuerkorn et al. Sep 2007 B2
7269311 Kim et al. Sep 2007 B2
7272281 Stahulak et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7292608 Nowell et al. Nov 2007 B1
7292763 Smith et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7349605 Noonan et al. Mar 2008 B2
7362936 Stark et al. Apr 2008 B2
7369741 Reagan et al. May 2008 B2
7371014 Willis et al. May 2008 B2
7397997 Ferris et al. Jul 2008 B2
7400815 Mertesdorf et al. Jul 2008 B2
7401985 Aronson et al. Jul 2008 B2
7409127 Hurley et al. Aug 2008 B1
7418181 Zimmel et al. Aug 2008 B2
7428366 Mullaney et al. Sep 2008 B2
7445389 Aronson Nov 2008 B2
7489849 Reagan et al. Feb 2009 B2
7494287 Wang et al. Feb 2009 B2
7499616 Aronson et al. Mar 2009 B2
7512304 Gronvall et al. Mar 2009 B2
7539388 Mertesdorf et al. May 2009 B2
7565055 Lu et al. Jul 2009 B2
7572065 Lu et al. Aug 2009 B2
7591595 Lu et al. Sep 2009 B2
7627222 Reagan et al. Dec 2009 B2
7643713 Buthe et al. Jan 2010 B2
7680388 Reagan et al. Mar 2010 B2
7686519 Lu Mar 2010 B2
7692098 Wyatt, II et al. Apr 2010 B2
7712976 Aronson et al. May 2010 B2
7715679 Kowalczyk et al. May 2010 B2
7720343 Barth et al. May 2010 B2
7738789 Sulzberger et al. Jun 2010 B2
7740409 Bolton et al. Jun 2010 B2
7744288 Lu et al. Jun 2010 B2
7751672 Smith et al. Jul 2010 B2
7756379 Kowalczyk et al. Jul 2010 B2
7762727 Aronson Jul 2010 B2
7778510 Aronson et al. Aug 2010 B2
7805044 Reagan et al. Sep 2010 B2
7816602 Landry et al. Oct 2010 B2
7844158 Gronvall et al. Nov 2010 B2
7869681 Battey et al. Jan 2011 B2
7869682 Kowalczyk et al. Jan 2011 B2
7873255 Reagan et al. Jan 2011 B2
7876989 Aronson et al. Jan 2011 B2
7897873 Gemme et al. Mar 2011 B2
8019353 Smithey Sep 2011 B1
8041178 Lu et al. Oct 2011 B2
8068712 Reagan et al. Nov 2011 B2
8083417 Aronson et al. Dec 2011 B2
8116821 Le Pezennec et al. Feb 2012 B2
8155525 Cox Apr 2012 B2
8175433 Caldwell et al. May 2012 B2
8204348 Keller et al. Jun 2012 B2
8224145 Reagan et al. Jul 2012 B2
8244087 Sales Casals et al. Aug 2012 B2
8249410 Andrus et al. Aug 2012 B2
8254740 Smith et al. Aug 2012 B2
8265447 Loeffelholz et al. Sep 2012 B2
8270838 Cox Sep 2012 B2
8297854 Bickham et al. Oct 2012 B2
8301003 de los Santos Campos et al. Oct 2012 B2
8328433 Furuyama Dec 2012 B2
8532490 Smith et al. Sep 2013 B2
8665845 O'Keeffe et al. Mar 2014 B2
8837940 Smith et al. Sep 2014 B2
8842954 Burris et al. Sep 2014 B2
8929740 Smith et al. Jan 2015 B2
8948557 Islam Feb 2015 B2
9057862 Strasser et al. Jun 2015 B2
9069151 Conner Jun 2015 B2
9078287 Khemakhem et al. Jul 2015 B2
9553669 Khemakhem et al. Jan 2017 B2
9888524 Khemakhem et al. Feb 2018 B2
10292206 Khemakhem et al. May 2019 B2
10736179 Khemakhem et al. Aug 2020 B2
11259364 Khemakhem et al. Feb 2022 B2
20020136510 Heinz et al. Sep 2002 A1
20030215197 Simon et al. Nov 2003 A1
20040198451 Varghese Oct 2004 A1
20050094959 Sibley et al. May 2005 A1
20050172328 Park et al. Aug 2005 A1
20050213921 Mertesdorf et al. Sep 2005 A1
20050220421 Keenum et al. Oct 2005 A1
20050259928 Elkins, II et al. Nov 2005 A1
20060127026 Beck Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060291787 Seddon Dec 2006 A1
20070065089 Matsuoka et al. Mar 2007 A1
20070110026 Sinha et al. May 2007 A1
20070269170 Easton et al. Nov 2007 A1
20080025725 Jette et al. Jan 2008 A1
20080037941 Mallya et al. Feb 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080159744 Soto et al. Jul 2008 A1
20080181182 Carichner et al. Jul 2008 A1
20080218947 Atkinson Sep 2008 A1
20080310796 Lu Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20090060531 Biegert et al. Mar 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090162016 Lu et al. Jun 2009 A1
20090245805 Akasaka et al. Oct 2009 A1
20090269013 Durand et al. Oct 2009 A1
20090317047 Smith Dec 2009 A1
20100014868 McGlynn et al. Jan 2010 A1
20100021164 Luk et al. Jan 2010 A1
20100200270 Gemme et al. Aug 2010 A1
20100277286 Burkart Nov 2010 A1
20100322583 Cooke et al. Dec 2010 A1
20110044599 Kowalczyk et al. Feb 2011 A1
20110280527 Tamura Nov 2011 A1
20110293227 Wu Dec 2011 A1
20110311191 Hayashishita et al. Dec 2011 A1
20120008904 Han et al. Jan 2012 A1
20120008905 Han et al. Jan 2012 A1
20120008906 Han et al. Jan 2012 A1
20120057821 Aronson et al. Mar 2012 A1
20120080225 Kim et al. Apr 2012 A1
20120114288 Wu May 2012 A1
20120191997 Miller Jul 2012 A1
20120281952 McColloch Nov 2012 A1
20120281953 Choi et al. Nov 2012 A1
20120288245 Hurley et al. Nov 2012 A1
20130011106 Congdon, II et al. Jan 2013 A1
20130022318 Fingler et al. Jan 2013 A1
20130146355 Strasser et al. Jun 2013 A1
20130294735 Burris et al. Nov 2013 A1
20140199079 Smith et al. Jul 2014 A1
20140219621 Barnette, Jr. et al. Aug 2014 A1
20140241670 Barnette, Jr. et al. Aug 2014 A1
Foreign Referenced Citations (16)
Number Date Country
201352702 Nov 2009 CN
100 08 613 Sep 2001 DE
0 189 609 May 1990 EP
1 534 027 May 2005 EP
1 959 614 Aug 2008 EP
2 253 980 Nov 2010 EP
2 330 707 Jun 2011 EP
60-169813 Sep 1985 JP
63-180915 Jul 1988 JP
63-287916 Nov 1988 JP
WO 2006113726 Oct 2006 WO
WO 2007062606 Jun 2007 WO
WO 2008009421 Jan 2008 WO
WO 2008088762 Jul 2008 WO
WO 2010135546 Nov 2010 WO
WO 2014123940 Aug 2014 WO
Non-Patent Literature Citations (22)
Entry
Above Ground Level (AGL) magazine; dated Jul. 2006 (vol. 3, No. 4) and Aug./Sep. 2006 (vol. 3, No. 5); pp. 1-8.
Broadband Properties You Don 't Know Jack?; dated Jun. 2005; pp. 26-29.
Corning Cable Systems Evolant® Solutions for Wireless Networks; dated Sep. 2006; pp. 1-6.
European Patent Office, Communication, Extended European Search Report for Application No. 10749387.6 dated Nov. 12, 2014; 9 pp.
Fanout/Breakout Cables, http://www.fibertronics-store.com/Fanout-Breakout-Cables_c35.htm, 4 pages (Copyright 2011-2015).
FTTA Fiber to the Antenna Brochure, 4 pages (2012).
International Search Report and Written Opinion for Application No. PCT/US2010/026354 dated Sep. 27, 2010.
International Search Report for International Application No. PCT/IB2014/060209 dated Jul. 23, 2014 (2 pages).
International Written Opinion for International Application No. PCT/IB2014/060209 dated Jul. 23, 2014 (4 pages).
MPO Connector Family (Multifiber Push-On), 4 page (Copyright 2014).
MPO Connector Patch Cord, http://www.furukawa.co.jp/connector/mpo.htm, 3 pages (Copyright 2011).
MPO Patch Cord/Fan-out Cord, http://web.archive.org/web/20020602154736/http:/www.furukawa.co.jp/connector/mpo.htm, 4 pages (Copyright 2001).
Siecor Back-fed Cable Stub Installation, Siecor Recommended Procedure SRP-009-002 Issue 1, pp. 1-3 (Jan. 1993).
Siecor Front-fed Cable Stub Installation, Siecor Recommended Procedure SRP-009-003 Issue 1, pp. 1-4 (Apr. 1993).
Webopedia “CO”; dated Apr. 23, 2008; pp. 1-4.
Wikipedia “Fiber to the premises (FTTP)”; dated Apr. 15, 2008; pp. 1-4.
Wikipedia “Fiber to the x (FTTX)”; Dated Apr. 15, 2008; pp. 1-4.
Wikipedia “local loop”; dated Apr. 16, 2008; pp. 1-2.
Wikipedia “Local-Area Network”; dated Apr. 18, 2008; pp. 1-3.
Wikipedia “Voice over Internet Protocol (VoIP)”; dated Apr. 18, 2008; pp. 1-14.
Wikipedia “Wireless local loop (WLL)”; dated Apr. 16, 2008; pp. 1-6.
Wikipedia Network Operations Center; dated Apr. 23, 2008; pp. 1-2.
Related Publications (1)
Number Date Country
20220279622 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
61324245 Apr 2010 US
Continuations (6)
Number Date Country
Parent 16940457 Jul 2020 US
Child 17676434 US
Parent 16410608 May 2019 US
Child 16940457 US
Parent 15879159 Jan 2018 US
Child 16410608 US
Parent 15408034 Jan 2017 US
Child 15879159 US
Parent 14749213 Jun 2015 US
Child 15408034 US
Parent 13087022 Apr 2011 US
Child 14749213 US