Claims
- 1. An electrophotographic imaging method comprising providing an imaging member comprising a substrate, a unitary electrophotographic insulating layer which is electrically insulating in the dark and electrically conductive when struck by activating radiation and a continuous, substantially transparent film forming polymer phase, said layer having a surface facing away from said substrate, said surface facing away from said substrate comprising imbibed dye molecules, providing said surface facing away from said substrate with at least two sets of internal preformed dye color filter patterns, one of said sets of internal preformed dye color filter patterns having a different colored dye from the other set, forming a uniform charge on said imaging member, exposing said uniform charge on said imaging member in a single step to a multi-colored light image to discharge said imaging member in the non-image areas and to form at least one electrostatic latent image corresponding to a first of said sets of internal preformed dye color filtered patterns and at least one electrostatic latent image corresponding to a second of said internal preformed dye color filtered patterns, developing said electrostatic latent image corresponding to said the first of said sets of internal preformed dye color filtered patterns with marking particles of a second color to form a second toned image, said first and second toned images being formed in a single pass, and transferring in a single step said first toned image and said second toned image to a receiving member, and affixing said toned images to a receiving member to complete an imaging cycle.
- 2. An electrophotographic imaging method according to claim 1 wherein one of said sets of internal dye color filter patterns appears as permanent background character image on a limited area of said surface and the other of said sets of internal preformed dye color filter patterns is uniformly distributed on said surface.
- 3. An electrophotographic imaging method according to claim 1 wherein said latent images corresponding to one of said two dye colors is only contacted with marking particles of said first color to form said first toned image and said latent images corresponding to said second color of said two dye colors is only contacted with marking particles of said second color to form said second toned image.
- 4. An electrophotographic imaging method according to claim 1 including providing said surface facing away from said substrate with at least three sets of internal dye color filter patterns, each of said sets of internal dye color filter patterns having a different colored dye from the other sets, forming a uniform charge on said imaging member, exposing said uniform charge on said imaging member in a single step to a multi-colored light image to discharge said imaging member in the non-image areas and to form at least one electrostatic latent image corresponding to a first of said sets of internal dye color filtered patterns, at least one electrostatic latent image corresponding to a second of said internal dye color filtered patterns, and at least one electrostatic latent image corresponding to a third of said sets of internal dye color filter patterns, developing said electrostatic latent image corresponding to said first of said sets of internal dye color filtered patterns with marking particles of a first color to form a first toned image, developing said second of said sets of internal dye color filtered patterns with marking particles of a second color to form a second toned image, developing an electrostatic latent image corresponding to said third of said set of internal dye color filtered patterns with marking particles of a third color to form a third toned image, said first, second and third toned images being formed in a single pass, and transferring in a single step said first toned image, said second toned image and said third toned image to a receiving member, and affixing said toned images to a receiving member.
- 5. An electrophotographic imaging method according to claim 4 wherein said three dye colors are cyan, magenta, and yellow.
- 6. An electrophotographic imaging method according to claim 5 wherein said first latent image corresponding to said first color of said three imbibed dye colors is only contacted with marking particles of said first color to form said first toned image, said latent image corresponding to said second color is only contacted with marking particles of said second color to form said second toned image, and said latent image corresponding to said third color is only contacted with marking particles of said third color to form said third toned image.
- 7. An electrophotographic imaging method according to claim 4 including subjecting said imaging member to at least one additional imaging cycle.
- 8. An electrophotographic imaging method comprising providing an imaging member comprising a substrate and a unitary electrophotographic insulating layer, said unitary electrophotographic insulating layer consisting essentially of a single charge generating layer and a single charge transport layer which is electrically insulating in the dark and electrically conductive when struck by activating radiation, said charge transport layer comprising a continuous, substantially transparent film forming polymer phase, said polymer phase having a surface facing away from said substrate, said surface facing away from said substrate defining an outer boundary of at least one region within said polymer phase, said region comprising a solid solution of from about 0.01 percent and about 5 percent by weight of an imbibed vaporized or sublimed dye molecules, based on the total weight of said film forming polymer in said region, and subjecting said imaging member to an imaging cycle comprising forming a uniform charge said imaging member exposing said uniform charge imaging member in a single step to a light image to form at least one electrostatic latent image, developing said latent image with marking particles to form a toned image, transferring said toned image to a receiving member in a single step, and fixing said toned image to said receiving member.
- 9. An electrophotographic imaging method according to claim 8 wherein said surface facing away from said substrate is an exposed surface.
- 10. An electrophotographic imaging method according to claim 8 wherein said film forming polymer phase comprises polycarbonate.
- 11. An electrophotographic imaging method according to claim 8 wherein said surface facing away from said substrate is overcoated with a transparent protective layer.
- 12. An electrophotographic imaging method according to claim 8 wherein said surface facing away from said substrate defining an outer boundary of at least one region within said polymer phase, said region comprising a solid solution of from about 0.01 percent and about 5 percent by weight of an imbibed vaporized or sublimed dye molecules, based on the total weight of said film forming polymer in said region, said unitary photoconductive layer being coated with an overcoating layer comprising said a continuous substantially transparent film forming polymer phase.
Parent Case Info
This is a division of application Ser. No. 07/602,586, filed Oct. 24, 1990, abandoned.
US Referenced Citations (15)
Non-Patent Literature Citations (3)
Entry |
Electrophotography, R. M. Schaffert, John Wiley & Sons, NY, pp. 466-472 (1975). |
New Riverside University Dictionary, Webster's, Riverside Pub. Co., "Unitary", p. 1262; 1984. |
"Fabrication of Color Filter Arrays for Solid-State Imagers by Laser Induced Dye Diffussion into Polymers", Journal of Imaging Science, 29/5), pp. 161-163, by R. O. Loutfy et al., Published Sep./Oct. 1985. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
602586 |
Oct 1990 |
|