The present application is related to U.S. patent application Ser. No. 12/707,788, filed on Feb. 18, 2010, (Docket Nos. TSMC2008-0432, T5057-R007U), titled MEMORY POWER GATING CIRCUIT AND METHODS; Ser. No. 12/758,426, filed on Apr. 12, 2010, (Docket Nos. TSMC2008-0582, T5057-Y048U), titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/731,325, filed on Mar. 25, 2010, (Docket Nos. TSMC2008-0597, T5057-B033U), titled ELECTRICAL FUSE AND RELATED APPLICATIONS; Ser. No. 12/724,556, filed on Mar. 16, 2010, (Docket Nos. TSMC2008-0598, T5057-K002U), titled ELECTRICAL ANTI-FUSE AND RELATED APPLICATIONS; Ser. No. 12/757,203, filed on Apr. 9, 2010, (Docket Nos. TSMC2009-0148, T5057-Y085U), titled STI STRUCTURE AND METHOD OF FORMING BOTTOM VOID IN SAME; Ser. No. 12/797,839, filed on Jun. 10, 2010, (Docket Nos. TSMC2009-0278, T5057-K099U), titled FIN STRUCTURE FOR HIGH MOBILITY MULTIPLE-GATE TRANSISTOR; Ser. No. 12/831,842, filed on Jul. 7, 2010, (Docket Nos. TSMC2009-0343, T5057-Y093U), titled METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SiGe STRESSOR; Ser. No. 12/761,686, filed on Apr. 16, 2010, (Docket Nos. TSMC2009-0442, T5057-Y125U), titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/766,233, filed on Apr. 23, 2010, (Docket Nos. TSMC2009-0444, T5057-K123U), titled FIN FIELD EFFECT TRANSISTOR; Ser. No. 12/757,271, filed on Apr. 9, 2010, (Docket Nos. TSMC2009-0445, T5057-Y113U), titled ACCUMULATION TYPE FINFET, CIRCUITS AND FABRICATION METHOD THEREOF; Ser. No. 12/694,846, filed on Jan. 27, 2010, (Docket Nos. TSMC2009-0646, T5057-Y165), titled INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME; Ser. No. 12/638,958, filed on Dec. 14, 2009, (Docket Nos. TSMC2009-0738, T5057-B166), titled METHOD OF CONTROLLING GATE THICKNESS IN FORMING FINFET DEVICES; Ser. No. 12/768,884, filed on Apr. 28, 2010, (Docket Nos. TSMC2010-0028, T5057-Y228), titled METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS; Ser. No. 12/731,411, filed on Mar. 25, 2010, (Docket Nos. TSMC2010-0057, T5057-B218), titled INTEGRATED CIRCUIT INCLUDING FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/775,006, filed on May 6, 2010, (Docket Nos. TSMC2010-0198, T5057-Y246), titled METHOD FOR FABRICATING A STRAINED STRUCTURE; Ser. No. 12/886,713, filed Sep. 21, 2010, (Docket Nos. TSMC2010-0646, T5057-B325), titled METHOD OF FORMING INTEGRATED CIRCUITS; Ser. No. 12/941,509, filed Nov. 8, 2010, (Docket Nos. TSMC2010-0561, T5057-B337), titled MECHANISMS FOR FORMING ULTRA SHALLOW JUNCTION; Ser. No. 12/900,626, filed Oct. 8, 2010, (Docket Nos. TSMC2010-0581, T5057-B330), titled TRANSISTOR HAVING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME; Ser. No. 12/903,712, filed Oct. 13, 2010, (Docket Nos. TSMC2010-0731, T5057-R350), titled FINFET AND METHOD OF FABRICATING THE SAME; 61/412,846, filed Nov. 12, 2010, (Docket Nos. TSMC2010-0839, T5057-B388PRO), 61/394,418, filed Oct. 19, 2010, (Docket Nos. TSMC2010-0926, T5057-Y351PRO), titled METHODS OF FORMING GATE DIELECTRIC MATERIAL and 61/405,858, filed Oct. 22, 2010, (Docket Nos. TSMC2010-0928, T5057-R368PRO), titled METHODS OF FORMING SEMICONDUCTOR DEVICES. All of the above applications are incorporated herein by reference in their entireties.
The disclosure relates to integrated circuit fabrication, and more particularly to a fin field effect transistor.
As the semiconductor industry has progressed into nanometer technology process nodes in pursuit of higher device density, higher performance, and lower costs, challenges from both fabrication and design issues have resulted in the development of three-dimensional designs, such as a fin field effect transistor (FinFET). A typical FinFET is fabricated with a thin vertical “fin” (or fin structure) extending from a substrate formed by, for example, etching away a portion of a silicon layer of the substrate. The channel of the FinFET is formed in this vertical fin. A gate is provided over (e.g., wrapping) the fin. Having a gate on both sides of the channel allows gate control of the channel from both sides. In addition, strained materials in recessed source/drain (S/D) portions of the FinFET utilizing selectively grown silicon germanium (SiGe) may be used to enhance carrier mobility.
However, there are challenges to implementation of such features and processes in complementary metal-oxide-semiconductor (CMOS) fabrication. For example, non-uniform distribution of strained materials causes non-uniformity of strains applied to the channel region of the FinFET, thereby increasing the likelihood of device instability and/or device failure.
Accordingly, what are needed are an improved device and a method for fabricating a strained structure.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Referring to
As employed in the present disclosure, the FinFET 200 refers to any fin-based, multi-gate transistor. The FinFET 200 may be included in a microprocessor, memory cell, and/or other integrated circuit (IC). It is noted that the method of
Referring to
In some alternative embodiments, the substrate 202 may be made of some other suitable elemental semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as gallium arsenide, silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. Further, the substrate 202 may include an epitaxial layer (epi-layer), may be strained for performance enhancement, and/or may include a silicon-on-insulator (SOI) structure.
The fins are formed by etching into the substrate 202. In one embodiment, a pad layer 204a and a mask layer 204b are formed on the semiconductor substrate 202. The pad layer 204a may be a thin film comprising silicon oxide formed, for example, using a thermal oxidation process. The pad layer 204a may act as an adhesion layer between the semiconductor substrate 202 and mask layer 204b. The pad layer 204a may also act as an etch stop layer for etching the mask layer 204b. In at least one embodiment, the mask layer 204b is formed of silicon nitride, for example, using low-pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD). The mask layer 204b is used as a hard mask during subsequent photolithography processes. A photo-sensitive layer 206 is formed on the mask layer 204b and is then patterned, forming openings 208 in the photo-sensitive layer 206.
In some embodiments, depth D of the trenches 210 may range from about 2100 Å to about 2500 Å, while width W of the trenches 210 ranges from about 300 Å to about 1500 Å. In an exemplary embodiment, the aspect ratio (D/W) of the trenches 210 is greater than about 7.0. In some other embodiments, the aspect ratio may even be greater than about 8.0. In yet some embodiments, the aspect ratio is lower than about 7.0 or between 7.0 and 8.0. One skilled in the art will realize, however, that the dimensions and values recited throughout the descriptions are merely examples, and may be changed to suit different scales of integrated circuits.
Liner oxide (not shown) is then optionally formed in the trenches 210. In an embodiment, liner oxide may be a thermal oxide having a thickness ranging from about 20 Å to about 500 Å. In some embodiments, liner oxide may be formed using in-situ steam generation (ISSG) and the like. The formation of liner oxide rounds corners of the trenches 210, which reduces the electrical fields, and hence improves the performance of the resulting integrated circuit.
The CMP process and the removal of the mask layer 204b and pad layer 204a produce the structure shown in FIGS. 5A/5B. As shown in
The remaining insulation regions 216 may comprise flat top surfaces 216t. The remaining insulation regions 216 may comprise first isolation region 216a and second isolation region 216b. Further, the upper portions 222 of the semiconductor fins 212 protruding over the flat top surfaces 216t of the remaining insulation regions 216 thus are used to form channel regions of the FinFETs 200. The upper portions 222 of the semiconductor fins 212 may comprise top surfaces 222t and sidewalls 222s. Height H of the upper portions 222 of the semiconductor fins 212 may range from 15 nm to about 50 nm. In some embodiments, the height H is greater than 50 nm or smaller than 15 nm. For simplicity, the upper portion 222 of the semiconductor fin 212 between the first and second insulation regions 216a, 216b is hereinafter referred to as channel fin 222a to illustrate each upper portion of the semiconductor fin 212, wherein the flat top surfaces 216t of the first and second insulation regions 216a, 216b are lower than the top surface 222t of the semiconductor fin 212.
The process steps up to this point have provided the substrate 202 having the first insulation region 216a and the second insulation region 216b having respective top surfaces 216t, and a fin 212 between the first and second insulation regions 216a, 216b, wherein the top surfaces 216t of the first and second insulation regions are lower than a top surface 222t of the fin 212.
In
The gate electrode layer 220b is then formed on the gate dielectric layer 220a. In at least one embodiment, the gate electrode layer 220b covers the upper portion 222 of more than one semiconductor fin 212, so that the resulting FinFET 200 comprises more than one fin. In some alternative embodiments, each of the upper portions 222 of the semiconductor fins 212 may be used to form a separate FinFET 200. In some embodiments, the gate electrode layer 220b may comprise a single layer or multilayer structure. In the present embodiment, the gate electrode layer 220b may comprise poly-silicon. Further, the gate electrode layer 220b may be doped poly-silicon with the uniform or non-uniform doping. In some alternative embodiments, the gate electrode layer 220b may include a metal such as Al, Cu, W, Ti, Ta, TiN, TiAl, TiAlN, TaN, NiSi, CoSi, other conductive materials with a work function compatible with the substrate material, or combinations thereof. In the present embodiment, the gate electrode layer 220b comprises a thickness in the range of about 30 nm to about 60 nm. The gate electrode layer 220b may be formed using a suitable process such as ALD, CVD, PVD, plating, or combinations thereof.
Still referring to
In one embodiment, the tapered top surfaces 216u of the first and second insulation regions 216a, 216b comprise a flat portion and sloped or beveled sidewalls (shown in
In the present embodiment, the selective growth of the strained material 230 continues until the material 230 extends vertically a distance ranging from about 10 to 100 nm above the surface 202a of the substrate 202 and extends laterally over the tapered top surfaces 216u of the first and second insulation regions 216a, 216b. It should be noted that tapered top surfaces 216u of the first and second insulation regions 216a, 216b make it easier for growth precursors to reach the growth surface during selective growth of the strained material 230 from different recessed portions 226 of the semiconductor fins 212 to eliminate voids under the merged strained materials 230. In some embodiments, the voids under the merged strained materials 230 reduce strain efficiency of the strained materials 230, i.e., the strained materials 230 with voids provide less strain into channel region of the FinFET than the configuration having no void formed in the strained materials 230, thereby increasing the likelihood of device instability and/or device failure. In the present embodiment, the strained material 230 has a substantially flat surface as the strained materials 230 grown from different recessed portions 226 are merged. Accordingly, the present method of fabricating a FinFET 200 may fabricate a reduced-void strained structure to enhance carrier mobility and the device performance.
It is understood that the FinFET 200 may undergo further CMOS processes to form various features such as contacts/vias, interconnect metal layers, dielectric layers, passivation layers, etc. It has been observed that the modified insulation and strained structure provides a given amount of strain into channel region of a FinFET, thereby enhancing the device performance.
One aspect of this description relates to a fin field effect transistor including a first insulation region and a second insulation region over a top surface of a substrate. The first insulation region includes tapered top surfaces, and the second insulation region includes tapered top surfaces. The fin field effect transistor further includes a fin extending above the top surface between the first insulation region and the second insulation region. The fin includes a first portion having a top surface below the tapered top surfaces of the first insulation region. The fin includes a second portion having a top surface above the tapered top surfaces of the first insulation region.
Another aspect of this description relates to a fin field effect transistor including a first insulation region over a top surface of a substrate, the first insulation region includes a tapered top surface. The fin field effect transistor further includes a second insulation region over the top surface of the substrate. The fin field effect transistor further includes a fin extending from the substrate, the fin located between the first insulation region and the second insulation region. The fin field effect transistor further includes a gate stack covering a first portion of the fin, the gate stack exposing a second portion of the fin, wherein a top surface of the first portion of the fin is above the tapered top surface, and a top surface of the second portion of the fin is below the tapered top surface.
Still another aspect of this description relates to a method of fabricating a fin field effect transistor (FinFET). The method includes forming a first insulation region and a second insulation region having respective top surfaces. The method further includes forming a fin between the first and second insulation regions, wherein the top surfaces of the first and second insulation regions are below a top surface of the fin. The method further includes forming a gate stack over a portion of the fin and over a portion of the first and second insulation regions. The method further includes tapering the top surfaces of the first and second insulation regions not covered by the gate stack.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
The present application is divisional of U.S. application Ser. No. 14/337,494, filed Jul. 22, 2014, issuing on Dec. 8, 2015 as U.S. Pat. No. 9,209,300, which is a continuation of U.S. application Ser. No. 13/859,505, filed Apr. 9, 2013, now U.S. Pat. No. 8,809,940, which is a divisional of U.S. application Ser. No. 12/903,712, filed Oct. 13, 2010, now U.S. Pat. No. 8,440,517, all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 14337494 | Jul 2014 | US |
Child | 14960807 | US | |
Parent | 12903712 | Oct 2010 | US |
Child | 13859505 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13859505 | Apr 2013 | US |
Child | 14337494 | US |