Surfaces for touch screen applications are increasingly in demand. From both aesthetic and technological standpoints, touch screen surfaces which are resistant to the transfer or smudging of fingerprints are desired. For applications related to hand-held electronic devices, the general requirements for the user-interactive surface include high transmission, low haze, resistance to fingerprint transfer, robustness to repeated use, and non-toxicity. A fingerprint-resistant surface must be resistant to both water and oil transfer when touched by a finger of a user. The wetting characteristics of such a surface are such that the surface is both hydrophobic and oleophobic.
A glass substrate having at least one surface with engineered properties that include, but are not limited to, hydrophobicity (i.e., contact angle of water>90°), oleophobicity (i.e., contact angle of oil>90°), anti-stick or adherence of particulate or liquid matter found in fingerprints, durability, and transparency (i.e., haze<10%) is provided. The glass substrate has at least one set of topological features that provides hydrophobic and oleophobic properties.
Accordingly, one aspect of the disclosure is to provide a glass substrate that is optically transparent and has at least one surface that is finger-print resistant. The glass substrate is resistant to mechanical and chemical abrasion.
A second aspect of the disclosure is to provide a glass substrate having at least one surface that is hydrophobic and oleophobic. The at least one surface comprises at least one set of topological features an average dimension, wherein the topological features together have a re-entrant geometry that prevents a decrease in contact angle of drops comprising at least one of water and sebaceous oils.
A third of the disclosure is to provide a method of making a glass substrate having at least one surface that is hydrophobic and oleophobic. The method comprises the steps of: providing a glass substrate; and forming at least one set of topological features on at least one surface of the glass substrate. The at least one set of topological features has topological features of an average dimension, wherein the topological features together have a re-entrant geometry that prevents a decrease in contact angle of drops comprising at least one of water and sebaceous oils.
These and other aspects, advantages, and salient features will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
a is a schematic representation of the Wenzel model of wetting behavior of a fluid droplet on a roughened solid surface;
b is a schematic representation of the Cassie-Baxter model of wetting behavior of a fluid droplet on a roughened solid surface;
a is a cross-sectional view of the columnar structure of a sputtered SnO2 film before etching;
b is a top view of the columnar structure of a sputtered SnO2 film before etching;
c is a top view of the columnar structure of a sputtered SnO2 film after etching with concentrated HCl for 5 minutes;
a is a top view of the columnar structure of a sputtered ZnO film before etching;
b is a top view of the columnar structure of a sputtered ZnO film after etching with 0.1 M HCl for 15 seconds;
c is a top view of the columnar structure of a sputtered ZnO film after etching with 0.1M HCl for 45 seconds;
a is a schematic representation of second topography voids that act as sites for pinning of fingerprints;
b is a schematic representation of Teflon cusps formed to minimize pinning of fingerprints in second topography voids shown in
In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that, unless otherwise specified, terms such as “top,” “bottom,” “outward,” “inward,” and the like are words of convenience and are not to be construed as limiting terms. In addition, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other. Unless otherwise specified, a range of values, when recited, includes both the upper and lower limits of the range.
Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing particular embodiments and are not intended to limit the disclosure or appended claims thereto. The drawings are not necessarily to scale, and certain features and views of the drawings may be exaggerated in scale or in schematic in the interest of clarity and conciseness.
The primary characteristic of an article that resists or repels fingerprints is that the surface of the article must be non-wetting (i.e., the contact angle (CA) between a liquid drop and the surface is greater than 90°) with respect to the liquids that comprise such fingerprints. As used herein, the terms “anti-fingerprint,” “anti-fingerprinting,” and “fingerprint resistant” refer to the resistance of a surface to the transfer of fluids and other materials found in human fingerprints; the non-wetting properties of a surface with respect to such fluids and materials; the minimization, hiding, or obscuring of human fingerprints on a surface, and combinations thereof. Fingerprints comprise both sebaceous oils (e.g. secreted skin oils, fats, and waxes), debris of dead fat-producing cells, and aqueous components. Combinations and/or mixtures of such materials are also referred to herein as “fingerprint materials.” An anti-fingerprinting surface must therefore be resistant to both water and oil transfer when touched by a finger of a user. In one embodiment, the amount of fingerprint materials transferred from a human finger to the fingerprint resistant surfaces of the glass substrates described herein is less than 0.02 mg per touch of a human finger. In another embodiment, less than 0.01 mg per touch of such materials is transferred. In yet another embodiment, less than 0.005 mg per touch of such materials is transferred. The area of the fingerprint resistant surface covered by the droplets transferred per touch is less than 20% and, in one embodiment, less than 10% of the total area of the surface of the glass substrate contacted by a human finger. The wetting characteristics of such a surface are such that that the surface is both hydrophobic (i.e., the contact angle (CA) between water and the glass substrate is greater than 90°) and oleophobic (i.e., the contact angle (CA) between oils and the glass substrate is greater than 90°).
The presence of surface roughness (e.g., protrusions, depressions, grooves, pore, pits, voids, and the like) can alter the contact angle between a given fluid and a flat substrate, and is frequently referred to as the “lotus leaf” or “lotus” effect. As described by Quéré (Ann Rev. Mater. Res. 2008, vol. 38, pp. 71-99), the wetting behavior of liquids on a roughened solid surface can be described by either the Wenzel (low contact angle) model or the Cassie-Baxter (high contact angle) model. In the Wenzel model, schematically shown in
The hyrodphobicity and oleophobicity of surfaces are also related to the surface energy γSV of the solid substrate. The contact angle θY of a surface with a fluid droplet is defined by the equation
where θY is the contact angle for a flat surface (also known as Young's contact angle), γSV is the surface energy of the solid, γSV is the interface energy between the liquid and solid, and γLV is the liquid surface tension. In order for θY>90°, the term cos θY must be negative, thereby constraining the surface energy γSV to values less than γSL. The interface energy between the liquid and solid γSL is typically not known and the contact angle θY is usually increased to greater than 90° (i.e., cos θY<0) in order to minimize the surface energy γSV of the solid and achieve hydrophobicity and/or oleophobicity. For example, traditional non-wetting unroughened or smooth surfaces, including fluorinated materials such as Teflon™ (polytetrafluoroethane), have surface energies as low as 18 dynes/cm. A Teflon surface is not oleophobic, as routinely studied oils such as oleic acid (γLV˜32 dyne/cm) exhibit contact angles on Teflon of about 80°.
Anti-fingerprinting surfaces that are hydrophobic and oleophobic can be achieved by creating rough surfaces having low surface energy. Accordingly, an optically transparent glass article or substrate (unless otherwise specified, the terms “glass article” and “glass substrate” are equivalent terms and are used interchangeably herein) that has a finger-print resistant surface, and is resistant to mechanical and chemical abrasion is provided. The glass substrate, in various embodiments, has at least one surface with engineered properties that include, but are not limited to, hydrophobicity and oleophobicity. Other properties, including anti-fingerprinting, anti-stick or anti-adherence of particulate matter, mechanical and chemical durability, transparency (e.g., haze<10%), and the like are also provided in various embodiments. These attributes are achieved by providing at least one surface of the substrate with at least one set of topological features that together have a reentrant geometry that prevents a decrease in contact angle of drops comprising least one of water, sebaceous oils, and fingerprint materials. In some embodiments, the at least one set of topological features has an average dimension in a range from about 50 nm up to about 1 μm. In some embodiments, the attributes listed above are achieved by providing the surface of the glass substrate with a plurality of different sets or levels of topological features that include, but are not limited to, bumps, protrusions, depressions, pits, voids, and the like. The topological features in one set or level of topological features has an average dimension that differs from the average dimensions of the topological features in the other sets or levels. The sets of topological features together form a re-entrant geometry that prevents a decrease in contact angle θY and pinning of drops comprising at least one of water and sebaceous oils.
A cross sectional view of an example of a glass substrate surface having multiple sets of topographies is schematically shown in
First topography 210 comprises a plurality of protrusions 212 and depressions 214. First topography 210 has the largest length scale of the topographies shown in
A second or intermediate length scale topography 220 is superimposed on first topography 210. Second topography 220 provides a reentrant geometry that prevents or slows the transition of fluid droplets 120 on a roughened surface from a Cassie-Baxter state (
As seen in
A third or smallest length scale topography 230 has topological features on the scale of a chemical bond (in a range from about 0.7 Angstrom up to about 3 Angstroms (70-300 pm). The third topography 230 is wax-like and has a low surface energy derivatization. In some embodiments, third topography 230 is a coating that covers at least a portion of the surface of first and second topography 210, 220 and comprises a low surface energy polymer or an oligomer, such as, but not limited to, Teflon™ or other commercially available fluoropolymers or fluorosilanes such as, but are not limited to Dow Corning 2604, 2624, 2634, DK Optool DSX, Shintesu OPTRON, heptadecafluoro silane (Gelest), FluoroSyl (Cytonix), and the like. To prevent pinning of droplet 120 in voids within second topography 210 upon application of pressure (e.g. pressure applied by a finger), third topography 230 is tailored to form cusps 230 at re-entrant voids or trench walls to minimize pinning, thus providing an additional effective re-entry impeding geometry.
The topographical features of the first and second length scales can be ordered, disordered, “self-affined” or fractal, or any combination thereof. Irrespective of the actual topological and/or micro-structural nature of the topological textures, certain mean geometric conditions need to be fulfilled for the article surface to be fingerprint resistant, oleophobic, and/or super-oleophobic.
For oleophobicity, the following requirement must be met between the surface roughness fraction (rf) and the solid-liquid fractional area (f) of the substrate according to the equation:
For super-oleophobicity (contact angle≧150°), therefore, the following requirement must be met between the surface roughness fraction (rf) and the solid-liquid fractional area (f) of the substrate:
For an intermediate level of oleophobicity—e.g., contact angle greater than 125°—the following requirement between the surface roughness fraction (rf) and the solid-liquid fractional area (f) of the substrate must be satisfied:
The relationship between the solid-liquid area fraction f and the roughness factor rf that is needed to achieve a fingerprint resistant surface is plotted in
For the purpose of optical transparency, the length-scales of the textures should be constrained within a selected range. The length scale constraint also arises due to the fact that fingerprint droplets have a finite size distribution with mean diameter of the order of 2-5 μm. In the anti-fingerprint surface and substrate described herein, the textures have a root mean square (RMS) amplitude of between 1 nm and 2 μm. In one embodiment the RMS amplitude of the textures is between 1 nm and 500 nm and, in another embodiment, between 1 nm and 300 nm. The textures have auto-correlation length scales of between 1 nm and 10 nm. In some embodiments, the autocorrelation is between 1 nm and 1 μm and, in another embodiment, is between 1 nm and 500 nm.
In order to create negative Laplace pressure that would stop the penetration of the liquid meniscus, especially the oil meniscus, into the space between adjacent asperities, at least 10% of the texture of the second topography has an orientation angle (angle a in
In some embodiments, the glass substrate is a planar or three dimensional sheet having two major surfaces. At least one major surface of the glass substrate has a plurality of different sets or levels of topological features as described herein. In some embodiments both major surfaces of the substrate have a plurality of levels of topographical features. In other embodiments, a single major surface of the glass substrate has such features.
A method of making a glass substrate having a surface that is hydrophobic and oleophobic is also provided. The method comprises the steps of providing a glass substrate having a surface; and forming at least one set of topological features having topological features of an average dimension on at least one surface of the glass substrate. The topological features together have a re-entrant geometry that prevents a decrease in contact angle of drops comprising at least one of water and sebaceous oils. In one embodiment, a plurality of sets of topological features is formed on the surface of the substrate. Each of the sets has topological features of an average dimension that differs from average dimensions of topological features in the other sets. Together the sets of topological features have a re-entrant geometry that prevents a decrease in contact angle θY and pinning of drops comprising at least one of water and sebaceous oils.
In various embodiments, the plurality of sets of topological features comprises at least one of first topography 210, second topography 220, and third topography 230, previously described hereinabove.
In one embodiment, first topography 210 can be formed by sandblasting the surface of the glass substrate 200. In one non-limiting example, the surface of the glass substrate 200 is sandblasted with 50 μm alumina grit for differing amounts of time to achieve desired roughness parameters. The sandblasted surface is then coated with inorganic oxide via deposition methods described herein to achieve first topography 210.
In another embodiment, first topography 210 is formed by depositing a thin oxide film through a shadow mask onto the surface of glass substrate 200 using physical or chemical vapor deposition methods known in the art. In one embodiment, a shadow mask is placed on a surface of the glass substrate. ZnO is then sputtered onto the glass substrate through a mask, resulting in a first topography 210 that mimics the mask features.
Second topography 220 can be formed using those physical (e.g., sputtering, evaporation, laser ablation, or the like) or chemical vapor deposition methods (e.g., CVD, plasma assisted or enhanced CVD, or the like) known in the art. In one embodiment, second topography 220 is achieved by etching a sputtered metal oxide thin film or by anodizing an evaporated metal film. Sputtering parameters (e.g., sputtering pressure and substrate temperature) can be correlated with etching behavior to produce a desired topography. The modified Thornton model of O. Kluth, et al. (“Modified Thornton Model for Magnetron Sputtered Zinc Oxide: Film Structure and Etching Behavior,” Thin Solid Films, 2003, vol. 442, pp. 80-85), the contents of which are incorporated by reference herein in their entirety, describes the correlation between sputter parameters (sputter pressure and glass substrate temperature), structural film properties, and etching behavior of RF sputtered films on glass substrates. Appropriate adjustment of sputtering conditions is used to select and form a sputtered columnar or granular morphology that is subsequently etched.
a-c and 5a-c are scanning electron microscopy (SEM) images showing two examples of how 10-100 nm surface features of second topography 220 are formed by etching. The individual surface features shown in
a-c show the effect of mild etching upon sputtered ZnO films having a columnar structure similar to that shown for SnO2 in
The third topography comprises a low surface energy polymer or an oligomer, such as, but not limited to, fluoropolymers or fluorosilanes previously described herein. The third topography is formed following formation of the first and second topography layers. The oligomers or polymer comprising the third topography are deposited onto the surface of the glass substrate 200 by sputtering, spray coating, spin-coating, dip-coating, or the like.
Teflon adheres well to alkali aluminosilicate glass surfaces, whether or not those surfaces are ion exchanged, and is easy to sputter. Teflon deposition rates are as high as about 7 nm/minute for argon sputtering (50 W, 1-5 millitorr conditions). Sputtered Teflon exhibits little change in hydrophobicity when treated with O2 plasma (5-15 min, 200 W); the contact angle for water did not exceed about 100° contact angle. However, O2 plasma-treatment of sputtered Teflon increases the oleophobicity threefold from 20° to 60°.
A non-limiting example of a third topography comprising a low surface energy surface of sputtered Teflon is schematically shown in
In one embodiment, the glass substrates described herein are transparent, having a transmittance through that substrate and anti-fingerprint surface of greater than 70%. In some embodiments, the transmittance through the glass substrate and anti-glare surface is greater than 80% and, in other embodiments, greater than 90%.
As used herein, the terms “haze” and “transmission haze” refer to the percentage of transmitted light scattered outside an angular cone of ±4.0° in accordance with ASTM procedure D1003, the contents of which are incorporated herein by reference in their entirety. For an optically smooth surface, transmission haze is generally close to zero. The anti-fingerprint surface of the glass substrate describe has a haze of less than about 80%. In a second embodiment, the anti-glare surface has a haze of less than 50% and, in a third embodiment, the transmission haze of the anti-fingerprint surface is less than 10%.
As used herein, the term “gloss” refers to the measurement of specular reflectance calibrated to a standard (such as, for example, a certified black glass standard) in accordance with ASTM procedure D523, the contents of which are incorporated herein by reference in their entirety. The anti-fingerprint surface of the glass substrates described herein has a gloss (i.e.; the amount of light that is specularly reflected from sample relative to a standard at 60) of greater than 60%.
The combination of different surface topographies as described herein provides, in one embodiment, the surface of the glass substrate with enhanced durability when rubbed with a fabric or other instrument such as, for example, a human finger, or when exposed to chemical abrasion such as attack by acids or bases. Coating durability (also referred to as Crock Resistance) refers to the ability of the coated glass sample to withstand repeated rubbing with a cloth. The Crock Resistance test is meant to mimic the physical contact between garments or fabrics with a touch screen device and to determine the durability of the coating after such treatment.
A Crockmeter is a standard instrument that is used to determine the Crock resistance of a surface subjected to such rubbing. The Crockmeter subjects a glass slide to direct contact with a rubbing tip or finger mounted on the end of a weighted arm. The standard finger supplied with the Crockmeter is a 15 mm diameter solid acrylic rod. A clean piece of standard crocking cloth is mounted to this acrylic finger. The finger then rests on the sample with a pressure of 900 g and the arm is moved repeatedly back and forth across the sample in an attempt to observe a change in the durability/crock resistance. The Crockmeter used in the tests described herein is a motorized model that provides a uniform stroke rate of 60 revolutions per minute. The Crockmeter test is described in ASTM test procedure F1319-94, entitled “Standard Test Method for Determination of Abrasion and Smudge Resistance of Images Produced from Business Copy Products.”
Crock Resistance or durability of the coatings and surfaces described herein is determined by optical (e.g., haze or transmittance) or chemical (e.g., water and/or oil contact angle) measurements after a specified number of wipes as defined by ASTM test procedure F1319-94, where a wipe is defined as two strokes or one cycle, of the rubbing tip or finger. In one embodiment, the contact angle of oil on the fingerprint resistant surfaces described herein of the substrate is within 20% of its initial value after 50 wipes. In some embodiments, the contact angle of oil on the fingerprint resistant surfaces is within 20% of its initial value after 1000 wipes and, in some embodiments, the contact angle of oil on the fingerprint resistant surfaces is within 20% of its initial value after 5000 wipes. Similarly, the contact angle of water on the surface of the substrate remains within 20% of its initial value after 50 wipes. In other embodiments, the contact angle of water on the surface of the substrate remains within 20% of its initial value 1000 wipes and, in other embodiments, remains within 20% of its initial value after 5000 wipes. The anti-fingerprint surfaces described herein also retains a low level of haze after such repeated wiping. In one embodiment, the glass substrate has a haze of less than 10% after at least 100 wipes as defined by ASTM test procedure F1319-94.
The contact angle (θY), previously described herein, is frequently used as a metric for assessing anti-fingerprinting oleophobic and hydrophobic properties. As previously discussed, the contact angle is a measure of the degree of wetting between hydrophilic and/or oleophilic fingerprint components and the engineered surface of the glass substrate. The less wetting (i.e., the higher the contact angle), the less adhesion to the surface. For anti-fingerprinting and anti-adhesive properties, the contact angle, in one embodiment, is greater than 90° C. for both oleophilic and hydrophilic materials.
In one non-limiting example, water (hydrophilic) and oleic acid (oleophilic) contact angles were measured on alkali aluminosilicate glass samples having surfaces with the topographies described herein. Each glass surface was prepared for ZnO sputtering by first subjecting each glass surface to plasma treatment with O2 plasma at 200 Watts for 5 minutes. ZnO was then deposited on the glass surface by sputtering ZnO targets for 60 minutes using 50 Watts RF power in a 1 millitorr argon chamber. The samples were etched for either 15, 30, 45, or 90 seconds in 0.05 M HCl, and the contact angles for water and oleic acid were then measured. The samples were then dip-coated in a fluorosilane solution comprising EZ-Clean™ (Dow Corning DC2604), followed by another contact angle measurement. Water and oleic contact angles for each sample are listed in Table 1. As seen in Table 1, hydrophilic contact angles measured before coating the textured samples with EZ-clean (“Without EZ-clean” in Table 1) are low, ranging from about 15° (sample D) to slightly less than 30° (sample 1). Following dip coating in EZ clean (“With EZ-clean” in Table 1), the hydrophilic contact angle for each sample was substantially increased to values that are greater than the 90° threshold for hydrophobicity, and in a range from about 131° up to 139°. Similarly, the contact angle for oleic acid measured for each sample exceeded the threshold for oleophobic behavior, and ranged from about 93° up to about 96. The glass surfaces that had been provided with the surfaces having multiple topographies (including the third topography provided by EZ-clean) as described herein exhibit both hydrophobic and oleophobic behavior, as evidenced by the results of the contact angle measurements presented in Table 1.
In one embodiment, the glass article comprises, consists essentially of, or consists of a soda lime glass. In another embodiment, the glass article comprises, consists essentially of, or consists of any glass that can be down-drawn, such as, but not limited to, an alkali aluminosilicate glass. In one embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 60-72 mol % SiO2; 9-16 mol % Al2O3; 5-12 mol % B2O3; 8-16 mol % Na2O; and 0-4 mol % K2O, wherein the ratio
where the alkali metal modifiers are alkali metal oxides. In another embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 61-75 mol % SiO2; 7-15 mol % Al2O3; 0-12 mol % B2O3; 9-21 mol % Na2O; 0-4 mol % K2O; 0-7 mol % MgO; and 0-3 mol % CaO. In yet another embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 60-70 mol % SiO2; 6-14 mol % Al2O3; 0-15 mol % B2O3; 0-15 mol % Li2O; 0-20 mol % Na2O; 0-10 mol % K2O; 0-8 mol % MgO; 0-10 mol % CaO; 0-5 mol % ZrO2; 0-1 mol % SnO2; 0-1 mol % CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; wherein 12 mol %≦Li2O+Na2O+K2O≦20 mol % and 0 mol %≦MgO+CaO≦10 mol %. In still another embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 64-68 mol % SiO2; 12-16 mol % Na2O; 8-12 mol % Al2O3; 0-3 mol % B2O3; 2-5 mol % K2O; 4-6 mol % MgO; and 0-5 mol % CaO, wherein: 66 mol %≦SiO2+B2O3+CaO≦69 mol %; Na2O+K2O+B2O3+MgO+CaO+SrO>10 mol %; 5 mol %≦MgO+CaO+SrO≦8 mol %; (Na2O+B2O3)−Al2O3≦2 mol %; 2 mol % Na2O−Al2O3≦6 mol %; and 4 mol %≦(Na2O+K2O)−Al2O3≦10 mol %. In a third embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 50-80 wt % SiO2; 2-20 wt % Al2O3; 0-15 wt % B2O3; 1-20 wt % Na2O; 0-10 wt % Li2O; 0-10 wt % K2O; and 0-5 wt % (MgO+CaO+SrO+BaO); 0-3 wt % (SrO+BaO); and 0-5 wt % (ZrO2+TiO2), wherein 0 (Li2O+K2O)/Na2O 0.5.
In one particular embodiment, the alkali aluminosilicate glass has the composition: 66.7 mol % SiO2; 10.5 mol % Al2O3; 0.64 mol % B2O3; 13.8 mol % Na2O; 2.06 mol % K2O; 5.50 mol % MgO; 0.46 mol % CaO; 0.01 mol % ZrO2; 0.34 mol % As2O3; and 0.007 mol % Fe2O3. In another particular embodiment, the alkali aluminosilicate glass has the composition: 66.4 mol % SiO2; 10.3 mol % Al2O3; 0.60 mol % B2O3; 4.0 mol % Na2O; 2.10 mol % K2O; 5.76 mol % MgO; 0.58 mol % CaO; 0.01 mol % ZrO2; 0.21 mol % SnO2; and 0.007 mol % Fe2O3.
The alkali aluminosilicate glass is, in some embodiments, substantially free of lithium, whereas in other embodiments, the alkali aluminosilicate glass is substantially free of at least one of arsenic, antimony, and barium. In some embodiments, the glass article is down-drawn, using those methods known in the art such as, but not limited to fusion-drawing, slot-drawing, re-drawing, and the like.
Non-limiting examples of such alkali aluminosilicate glasses are described in U.S. patent application Ser. No. 11/888,213, by Adam J. Ellison et al., entitled “Down-Drawable, Chemically Strengthened Glass for Cover Plate,” filed on Jul. 31, 2007, which claims priority from U.S. Provisional Patent Application 60/930,808, filed on May 22, 2007, and having the same title; U.S. patent application Ser. No. 12/277,573, by Matthew J. Dejneka et al., entitled “Glasses Having Improved Toughness and Scratch Resistance,” filed on Nov. 25, 2008, which claims priority from U.S. Provisional Patent Application 61/004,677, filed on Nov. 29, 2007, and having the same title; U.S. patent application Ser. No. 12/392,577, by Matthew J. Dejneka et al., entitled “Fining Agents for Silicate Glasses,” filed Feb. 25, 2009, which claims priority from U.S. Provisional Patent Application No. 61/067,130, filed Feb. 26, 2008, and having the same title; U.S. patent application Ser. No. 12/393,241 by Matthew J. Dejneka et al., entitled “Ion-Exchanged, Fast Cooled Glasses,” filed Feb. 26, 2009, which claims priority from U.S. Provisional Patent Application No. 61/067,732, filed Feb. 29, 2008. and having the same title; U.S. patent application Ser. No. 12/537,393, by Kristen L. Barefoot et al., entitled “Strengthened Glass Articles and Methods of Making,” filed Aug. 7, 2009, which claims priority from U.S. Provisional Patent Application No. 61/087,324, entitled “Chemically Tempered Cover Glass,” filed Aug. 8, 2008; U.S. Provisional Patent Application No. 61/235,767, by Kristen L. Barefoot et al., entitled “Crack and Scratch Resistant Glass and Enclosures Made Therefrom,” filed Aug. 21, 2009; and U.S. Provisional Patent Application No. 61/235,762, by Matthew J. Dejneka et al., entitled “Zircon Compatible Glasses for Down Draw,” filed Aug. 21, 2009; the contents of which are incorporated herein by reference in their entirety.
The glass article or substrate is chemically or thermally strengthened before forming the roughened glass substrate surface described herein. In one embodiment, the glass article is strengthened either before or after being cut or separated from a “mother sheet” of glass. The strengthened glass article has strengthened surface layers extending from a first surface and a second surface to a depth of layer below each surface. The strengthened surface layers are under compressive stress, whereas a central region of the glass article is under tension, or tensile stress, so as to balance forces within the glass. In thermal strengthening (also referred to herein as “thermal tempering”), the glass article is heated up to a temperature that is greater than the strain point of the glass but below the softening point of the glass and rapidly cooled to a temperature below the strain point to create strengthened layers at the surfaces of the glass. In another embodiment, the glass article can be strengthened chemically by a process known as ion exchange. In this process, ions in the surface layer of the glass are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In those embodiments in which the glass article comprises, consists essentially of, or consists of an alkali aluminosilicate glass, ions in the surface layer of the glass and the larger ions are monovalent alkali metal cations, such as Li+ (when present in the glass), Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like.
Ion exchange processes typically comprise immersing a glass article in a molten salt bath containing the larger ions to be exchanged with the smaller ions in the glass. It will be appreciated by those skilled in the art that parameters for the ion exchange process including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass and the desired depth of layer and compressive stress of the glass to be achieved by the strengthening operation. By way of example, ion exchange of alkali metal-containing glasses may be achieved by immersion in at least one molten salt bath containing a salt such as, but not limited to, nitrates, sulfates, and chlorides of the larger alkali metal ion. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 16 hours. However, temperatures and immersion times different from those described above may also be used. Such ion exchange treatments typically result in strengthened alkali aluminosilicate glasses having depths of layer ranging from about 10 μm up to at least 50 μm with a compressive stress ranging from about 200 MPa up to about 800 MPa, and a central tension of less than about 100 MPa.
Non-limiting examples of ion exchange processes are provided in the U.S. patent applications and provisional patent applications that have been previously referenced hereinabove. Additional non-limiting examples of ion exchange processes in which glass is immersed in multiple ion exchange baths, with washing and/or annealing steps between immersions, are described in U.S. patent application Ser. No. 12/500,650, by Douglas C. Allan et al., entitled “Glass with Compressive Surface for Consumer Applications,” filed Jul. 10, 2009, which claims priority from U.S. Provisional Patent Application No. 61/079,995, filed Jul. 11, 2008, and having the same title, in which glass is strengthened by immersion in multiple, successive, ion exchange treatments in salt baths of different concentrations; and U.S. patent application Ser. No. 12/510,599, by Christopher M. Lee et al., entitled “Dual Stage Ion Exchange for Chemical Strengthening of Glass,” filed Jul. 28, 2009, which claims priority from U.S. Provisional Patent Application No. 61/084,398 filed Jul. 29, 2008, and having the same title, in which glass is strengthened by ion exchange in a first bath is diluted with an effluent ion, followed by immersion in a second bath having a smaller effluent ion concentration than the first bath. The contents of U.S. patent application Ser. Nos. 12/500,650 and 12/510,599 are incorporated herein by reference in their entirety.
The glass substrate described herein can be used as a protective cover for display and touch applications, such as, but not limited to, portable communication and entertainment devices such as telephones, music players, video players, or the like; and as display screens for information-related terminals (IT) (e.g., portable or laptop computers) devices; as well as in other applications.
While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the disclosure or appended claims. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present disclosure or appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/625,020, filed Nov. 24, 2009, which claims the benefit of U.S. Provisional Patent Application No. 61/175,909, filed May 6, 2009.
Number | Date | Country | |
---|---|---|---|
61175909 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12625020 | Nov 2009 | US |
Child | 12763649 | US |