This application claims priority to and the benefit of United Kingdom Application No. 1513415.8, filed on Jul. 30, 2015 and European Application No. 15002537.7, filed on Aug. 27, 2015, the entire disclosure of each is incorporated herein by reference.
The present invention relates to heat exchangers.
Modern internal combustion engines often use externally flowed and cooled exhaust gas recirculation (EGR) to aid emissions control and reduce fuel consumption. Modern gasoline and diesel engines can have high gas inlet temperatures into an exhaust gas recirculation system. These high gas temperatures can cause damage to EGR components for example the EGR valve or the main cooler.
It can be of significant advantage to reduce the exhaust gas recirculation gas temperature prior to contact with these potentially vulnerable components. A coaxial cooler is a component which can fulfill this function.
A coaxial cooler which is known in the art comprises a heat transfer tube positioned inside an outer tube. The heat transfer tube has a formed or corrugated surface which encourages heat exchange and gives some flexibility to the component.
Three major drawbacks of this type of prior art design are:
A pre cooler located upstream in the gas flow to a valve or main cooler in an EGR system needs to be compact and of the shortest possible length since space is at a premium in modern vehicle engine compartments.
On EGR systems in particular, a low gas pressure drop in the return gas path between exhaust and engine air intake is critical for engine function. As an ongoing objective, engineers are always looking to reduce pressure losses in EGR systems, as this allows a greater flow for the same differential pressure.
Further, boiling of coolant can cause damage to components, coolers, pre coolers or even damage to the engine itself.
A problem with prior art co-axial heat exchange tubes of the corrugated type having an inner heat exchange tube and an outer corrugated housing with a liquid filled cavity therebetween is that the rate of heat exchange per unit length of the heat exchanger is insufficient in some EGR applications.
Further, with the known corrugated heat exchanger, excessive boiling of coolant can occur.
There is a need for a compact coaxial cooler which has a high ratio of heat exchange per unit length to transfer more energy to the coolant with reduced EGR gas pressure drop whilst at the same time avoiding damaging levels of boiling within the cooler.
According to a first aspect of the present invention, there is provided a heat exchanger for cooling hot gas using a liquid coolant, the heat exchanger comprising:
a heat exchange tube for exchanging heat between the gas and the liquid coolant;
a tubular outer body surrounding at least part of the inner heat exchange tube;
wherein the gas flows through a passage in the heat exchange tube and the liquid coolant flows between the heat exchange tube and the tubular outer body; and
one or a plurality of fins located inside the inner heat exchange tube, and contacting with an inner surface of the heat exchange tube.
The fins may act to increase heat exchange between the gas and the liquid coolant by transferring heat from the centre of the gas flow to the inner walls of the heat exchange tube, whilst not significantly increasing the gas pressure drop along the heat exchange tube.
Each fin may comprise an inwardly extending fin wall extending between an inner surface of the heat exchange tube and towards a main central axis of the heat exchanger.
A first plurality of fins may extend substantially radially inwardly towards a central axis of the heat exchanger to a longer radial distance than to each of a second plurality of fins, so as not to cause one fin to be in close proximity to another fin.
The main planes of the fin walls preferably extend in a direction parallel to the main axial length of a section of the cooler in which they are fitted. Preferably the main planes of the fin walls extend radially towards the main central length axis of the tube in which they are located so as to provide a plurality of individual gas passages surrounding a central gas passage having its centre coincident with a main central axis of the heat exchange tube, so that gas flows along the main central passage and along each of the individual gas passages surrounding the main central gas passage.
The heat exchange tube may consist of a number of substantially straight sections separated by a bent or curve section. At least one of substantially straight sections will be over least part of its length plain or smooth. At least one fin will be attached to the heat exchange over a length of the substantially straight plain section. Other straight sections may have a profiled surface that is used without a fin.
A straight section of the heat exchange tube may be plain over its full length and have at least one fin attached to it over the majority of the length.
A straight section may be a combination of a plain section with at least one fin attached and a section of profiled tube without a fin attached.
The profiled section may comprise helical or annular corrugations or individual forms that improve heat exchange where there is no fin.
A corrugated straight section may also be used to give the heat exchange tube some thermal or vibrational compliance.
The bent sections of the heat exchange tube do not have fins. The bent section may be plain, helically or annularly corrugated or have a profiled geometry to improve heat exchange.
The embodiments include a heat exchanger for cooling a hot gas using a liquid coolant, by utilising a coaxial cooler with an inner heat exchange tube and an outer body surrounding at least part of the inner heat exchange tube;
the hot gas flowing through the heat exchange tube and the coolant flowing in an annulus between the heat exchange tube and the outer body tube;
the heat exchange tube being smooth over at least part of its length, and having a fin or a series of fins joined to the inner surface of the heat exchange tube to increase heat exchange, whilst not significantly increasing gas pressure drop.
There may be fins having at least two different lengths, so as not to cause one fin to be in close proximity to another fin.
A plurality of fins are preferably formed from a single strip of material.
A plurality of fins may be arranged as a plurality of segments, each segment comprising at least one fin.
A plurality of fins may be manufactured from a strip of material such that the plurality of fins are formed into an arc of substantially less than 360°, when unconstrained and wherein the plurality of fins form an arc of nearly 360°, when constrained by insertion into a tube.
A plurality of fins may be manufactured from a single strip of material and may comprise a plurality of arcs wherein each arc has a radius greater than an internal radius of a tube into which the fin is designed to fit, so as to promote efficient heat transfer between the arcs of the fins and an internal surface of the tube. The tangent point of the radius of the corner of the fin may contact the heat exchange tube giving the shortest possible route for conduction of heat. When the fin is attached to the heat exchange tube with braze then the meniscus of the braze will further aid heat transfer by reducing the route for conduction and thickening the material width of the fin at its base.
The heat exchanger may comprise a compensation tube at one end of the heat exchanger to accommodate thermal growth and manufacturing tolerances.
The invention includes a gas to liquid heat exchanger comprising:
at least one tubular section having therein one or a plurality of heat exchange walls or fins extending into a gas passage of the tubular section, the walls extending along a main length of the tubular section; and an outer jacket surrounding at least a part of the at least one tubular section, there being a cavity between said tubular section and the outer jacket within which the liquid may pass.
The invention includes a heat exchanger for cooling hot gas using a liquid coolant, the heat exchanger comprising:
an inner heat exchange tube for exchanging heat between the gas and the liquid coolant;
a tubular outer body surrounding at least part of the inner heat exchange tube;
wherein the gas flows through the heat exchange tube and the liquid coolant flows between the inner heat exchange tube and the tubular outer body; and
a fin member which fits inside the inner heat exchange member, the fin member comprising a plurality of substantially radially extending walls each extending along a main length direction of at least a portion of the inner heat exchange tube, and a plurality of substantially circumferentially extending connecting portions, each extending between adjacent ones of the substantially radially extending walls, and each connecting portion connecting a pair of the substantially radially extending walls;
wherein the fin member is of dimensions such as to fit tightly within the inner heat exchange tube such that an outer surface of each the connecting portion is in contact with an inner surface of the inner heat exchange tube.
Other aspects are as set out in the claims herein.
For a better understanding of the invention and to show how the same may be carried into effect, there will now be described by way of example only, specific embodiments, methods and processes according to the present invention with reference to the accompanying drawings in which:
There will now be described by way of example a specific mode contemplated by the inventors. In the following description numerous specific details are set forth in order to provide a thorough understanding. It will be apparent however, to one skilled in the art, that the present invention may be practiced without limitation to these specific details. In other instances, well known methods and structures have not been described in detail so as not to unnecessarily obscure the description.
In this specification, the embodiments described are heat exchangers aimed at exchanging heat between a gas and a liquid. In various embodiments, the heat exchangers described are coolers which cool a hot gas using a liquid coolant. It will be understood by the skilled person that a cooler is a type of heat exchanger.
The coolers described herein are particularly although not exclusively aimed at providing pre-cooling prior to a valve component in an internal combustion exhaust gas recirculation circuit. In this application, the cooler is fitted in an EGR circuit between an exhaust manifold and an exhaust gas recirculation valve or an EGR cooler, from which the recirculated gas is fed back into an inlet manifold of the internal combustion engine. However, in other applications, the cooler embodiments described herein may be suitable for long route circuit exhaust gas recirculation systems, in which an exhaust gas is sampled downstream of a catalytic converter and is reintroduced into an air inlet of an internal combustion engine upstream of the compressor.
In the following description a flow of coolant is shown and described in a first direction as indicated by the arrows in
In the embodiments described herein, a hot gas flow is shown as passing centrally through a liquid coolant flow, where the liquid coolant flow is contained within an outer jacket which surrounds a central heat exchange tube through which the gas passes, and the gas and liquid are separated by the thin metal walls of the heat exchange tube
Referring to
One use of the cooler is to cool the exhaust gas flow immediately prior to entering the exhaust gas recirculation valve component. In use, the cooler component is fixed in an exhaust gas recirculation circuit of an internal combustion engine by connecting first and second ends of the cooler within the circuit. The cooler is inserted between an exhaust manifold of the internal combustion engine, and an exhaust gas recirculation valve.
The cooler 100 comprises: at a first end, a first flange 101 for connecting the first end of the cooler into a gas flow circuit; a liquid cooled section 102 having an inner tubular passage and an outer tubular jacket 103 in which a liquid coolant passes between the inner tubular passage and the outer tubular jacket in order to cool the inner tubular passage; an air cooled section 104 comprising a tubular bellows member 105; and at a second end of the cooler, a second flange 106 for connecting a second end of the cooler into said gas flow circuit.
The liquid cooled section outer coolant jacket 102 comprises a first straight substantially circular cylindrical section 107; a flexible corrugated central section 108 that has a straight and a bent portion; and a second straight substantially circular cylindrical section 109.
The first straight section 107 comprises a first outer substantially circular cylindrical tube 103; and a first inner substantially circular cylindrical tube. Extending transverse to the main axial length of the first section is provided a coolant outlet tube 110 for draining coolant from the first tubular section. A first end of the first outer tube is secured to the first flange 101 by welding or brazing the end of the outer tube to the flange at a position surrounding a circular aperture in the flange, and a first end of the first inner tube is also secured to the first outer tube 103 by welding or brazing to the inside of said circular aperture in the end of the flange, so that the inner and outer first tubes are coaxial with each other and have a substantially annular cavity therebetween. Liquid coolant enters the annular cavity at a second end of the straight section where the straight section joins with the flexible corrugated central section 108, and can pass through the annular cavity between the inside of the first outer tube and the outer surface of the first inner tube and can flow out of the coolant outlet tube 110.
Within the first straight inner tube there is provided a first finned insert member 111 which separates the interior of the first straight inner tube into a plurality of radially extending gas passages extending along a length of the first straight section.
The flexible corrugated central section 108 comprises a first outer corrugated tubular bellows member 112, the inner tube member being inside and concentric with the outer bellows member so that there is a cavity therebetween which completely surrounds the inner member and through which liquid coolant can flow. The corrugated central section 108 is sufficiently flexible to absorb thermal growth of the inner member during use of the cooler. A first end of the central corrugated section 108 is fixed to the second end of the first straight section 107, and a second end of the central corrugated section is attached to a first end of the second straight section 109.
The second straight section 109 comprises a second outer substantially circular cylindrical tube 113; a second inner substantially circular cylindrical tube located coaxially within the second outer cylindrical tube 113; and a coolant inlet tube 114 through which coolant can be passed into the second straight section 109. The inner heat exchange tube has a finned section that is not visible. A first end 115 of the second straight section 109 is fixed to a second end of the central corrugated section 108 and a second end 116 of the second straight section 109 is connected to a first end of the second section 104. The corrugated section 108 has the second ends of its respective inner and outer corrugated tubes connected in gas and liquid tight manner to the corresponding respective first ends of the second straight inner and outer tubes. The second ends 116 of the second inner and outer tubes are welded or brazed together so that the two tubes are located coaxially with each other and with an annular cavity there between through which liquid coolant passes.
Inside the inner tube of the second straight section 109 there is provided a second finned member which separates the interior of the second straight inner tube into a plurality of radially extending gas passages extending along a length of the second straight section, similarly to the first finned member 111 in the first straight section 107.
Within the first and second straight portions 107, 109, there is provided said first and second finned members, however the bent section of the central corrugated section 108 does not contain an internal finned member. The corrugated section 108 has a degree of thermal compliance due to the outer corrugated bellows part which is capable of absorbing thermal growth during operation of the cooler.
The air cooled section 104 is primarily aimed at providing a compensation portion to absorb differences in manufacturing tolerances, vibration and thermal growth of the cooled section 102. The gas cooled section 104 comprises a single wall corrugated bellows member 105, a first end of which is connected to a second end of the second straight section 109, and a second end of which is connected to the second flange member 106. The second section 104 has a degree of flexibility due to the corrugated bellows part 105 which is capable of absorbing vibration and thermal growth during operation of the cooler.
The cooler heat exchange tube therefore comprises alternating straight sections and bent sections along its length, wherein the straight sections have internal finned structures providing heat transfer surfaces which are aligned in an axial direction along the flow of gas.
In a variation, the second section 104 may be deleted and instead a corrugated bend and short length of straight on the heat exchange tube may be used. This, together with the corrugated outer tube give a component capable of absorbing build tolerances, vibration and thermal growth.
Referring to
Referring to
Referring to
Referring to
As seen in
Internal Fins
In the first embodiment cooler, the internal fins each comprise a substantially radially extending wall extending between an inner wall of the substantially straight inner tube and a position near the centre of the gas passage through the inner tube. The walls extend axially along a length of the inner tube, and project inwardly into the central gas passage.
A plurality of said internal fins may be provided as part of a fin member. Each fin member comprises a plurality of substantially radially extending walls joined together at their radially outermost positions by a plurality of substantially arced cylindrical walls.
In a conventional tubular gas to liquid heat exchanger, having passage of a gas through a tubular member, heat exchange occurs only on the inner facing wall of the tubular member, this being the only place where gas comes into contact with the material of the tubular member. However, by providing a plurality of fins as described herein, this provides further heat exchange surfaces which the gas may come into contact with. Heat transferred from the gas to the fins passes by conduction along the material of the fin, heating up the whole fin and reaches a position where the fin contacts the inner wall of the tubular member. Heat is transferred by conduction from the fin member to the inner wall of the tubular member, through the material of the tubular member, and to the coolant on the other side of the tubular member, where the outer surface of the tubular member comes into contact with the liquid coolant.
Hence, the overall surface area in the central passage of the tubular heat exchange member which comes into contact with the gas flow and through which heat can be exchanged between the material of the heat exchanger and the gas is increased by provision of the fins in the heat exchange tube.
Referring to
The inwardly facing surfaces of the first inner connecting walls, facing inwardly towards the central axis of the fin member, lie substantially on a first circular cylinder. The inwardly facing surfaces of the second inner connecting walls, facing inwardly to a central axis of the fin member, lie substantially on a second circular cylinder. The inwardly facing surfaces of the second inner connecting walls lie radially inwardly relative to the inwardly facing surfaces of the first inner connecting walls, so that the plurality of first fin walls extend radially further inwards from an outer circumference of the fin member compared to the plurality of second fin walls.
The fin member is manufactured from a single elongate substantially flat smooth sided piece of metal which is formed into the substantially flower shaped cross-sectional form as shown in
The fin member may be formed of a resilient metal material, such that once formed, it has a resilience and a tendency to expand into its as—formed shape, such that when fitted inside a heat exchange tube and therefore compressed to a slightly smaller diameter circular cylinder, the the outer circumferential surfaces 613-618 of fin member contact with, and are urged radially outwardly against, the inner circular cylindrical surface of a heat exchange tube, thereby ensuring good thermal contact between the fin member and the wall of the heat exchange tube.
In order to fit the fin member into a substantially straight circular cylindrical heat exchange tube, the fin member will be compressed from its more open form to the diameter of the heat exchange tube and then may be slightly compressed in the circumferential direction, slid into the inside of the heat exchange tube, and released. The resilience of the metal material of the fin member causes the fin to expand outwards on to the heat exchange tube diameter and retain itself by friction inside the heat exchange tube. However, as a further stage of manufacture, the circumferentially extending faces 613-618 may be brazed, welded or soldered to the inner facing wall of the heat exchange tube, either at the axial ends of the fin member, and/or along the edges between the first radially extending fins 601-607 and a corresponding respective outer circumferential surface 613-618.
Having alternate pairs of relatively longer and relatively shorter radially extending fins prevents adjacent pairs of fins being located in too close proximity to each other, and thereby minimizes the effect of resistance to gas flow, thereby minimizing the effect of pressure drop and improving heat exchange, and minimizes the incidence of the inward tips or edges of the fins and the inner circumferential extending surfaces becoming clogged with exhaust gas solid/liquid pollutants.
In the case of the first fin assembly, there are provided a first plurality of gas passages between the fin assembly and the inner walls of the heat exchange tube which extend in a circumference around the second circular cylinder. A central gas passage is formed in a substantially flower petal shape when viewed along a main axis of the heat exchange tube, said central gas passage comprising a substantially circular cylindrical central passage having a plurality of radially extending segments arranged around said substantially circular cylindrical central passage.
Referring to
The inwardly facing surfaces of the inner connecting walls 719-721, face inwardly towards a main central axis of the fin member and lie substantially on a first circular cylinder. The outer surfaces of the outer connecting walls 713-718 face outwardly radially away from the main central axis and lie on a second outer circular cylinder. In use, these outer surfaces are in contact with the inner surface of the central heat exchange tube so that heat can exchange between the fin member and the wall of the inner heat exchange tube.
Along the axial length of each fin, the fin wall is formed into a plurality of protruding dimples or mounds which protrude circumferentially into the gas flow between adjacent fins. Each fin wall comprises alternating dimples formed successively to one side and then to another of the main plane of the fin wall, so that as gas flows along the passage bounded by the thin walls, the dimples or mounds cause turbulent gas flow within the passages. In the embodiment shown, the dimples are substantially square shaped frusto—pyramids, but in other embodiments the dimples may be hemispherical, semi ovoid, frusto—conical, or elongate ridges/troughs. Provision of the protrusions has the effect of providing additional resistance to gas flow, and therefore has the penalty of increasing the gas pressure drop through the fin member, but has an advantage of increasing turbulence in the gas flow, and increasing the surface area of the fin per unit length of the fin member which comes into contact with the gas and therefore enhances heat transfer rate per unit length of fin member.
The second fin member is manufactured from a single elongate substantially smooth sided piece of metal which is initially flat and is formed into the substantially flower shaped cross-sectional form as shown in
The fin member may be formed of a resilient metal material, such that once formed it has a resilience and a tendency to expand into its as—formed shape, such that when fitted inside a heat exchange tube and therefore compressed to a slightly smaller diameter circular cylinder, such that the outer circumferential surfaces 713-718 contact and are urged radially outwardly against the inner circular cylindrical surface of a heat exchange tube, thereby ensuring good thermal contact between the fin member and the wall of the heat exchange tube.
In order to fit the fin member into a substantially straight circular cylindrical heat exchange tube, the fin member may be slightly compressed in the circumferential direction, slid into the inside of the heat exchange tube, and released. The resilience of the metal material of the fin member causes the fin to retain itself by friction inside the heat exchange tube.
The second fin assembly may be inserted inside a heat exchange tube and retained inside the heat exchange tube either by friction, or by welding, brazing or soldering similarly as described herein before with reference to the first fin assembly.
Each of the first and second fin assemblies described hereinabove, when manufactured and unrestrained may form a first arc of less than 360°. When the first and/or second fin assembly is inserted into a heat exchange tube, the assembly may be compressed such that it extends over a greater angle of arc than in its uncompressed state. In the installed state the fin will extend over an angle of just under 360°.
The second fin assembly provides a plurality of radially extending elongate passages along a main length of the heat exchange tube, each said passage having a substantially truncated segment shape having an outer arcuate wall and an inner arcuate wall, said elongate passages being provided between the fin member and the inner wall of the heat exchange tube. There is also provided a central gas passage comprising a central circular cylindrical passage and a plurality of radially and circumferentially extending second passages, being substantially segment shaped in cross-section, wherein the second segment shaped portions alternate with the first set of substantially truncated segment shaped passages. The plurality of radially extending first elongate passages are separated from the main central passage by the fin walls. On passing through the second fin member, a single flow of gas is divided into a plurality of parallel gas passages by the fin member, and once passed through the fin member, the gas flow re-converges into a single gas flow.
In each of the first and second fin assemblies described herein, the fin assembly provides a plurality of fin walls which extend inwardly from an inner surface of said inner heat exchange tube towards a main central axis of said heat exchange tube, and which form a plurality of axially extending gas passages which occupy a substantially annular region in a direction perpendicular to said main central axis of said heat exchange tube.
Referring to
Referring to
A gap 902 between the two ends of the formed fin assembly is required. If the two ends touched or over lapped when the fin assembly was in its installed condition, part of the fin assembly may not have the correct contact with the heat exchange tube. The gap does not affect heat exchange. Heat conducted from the fin to the heat exchange tube is transferred at or near the interface 903 at the transition between the substantially radially extending fin walls 904, 905 and the arced perimeter portions 906. The fin assembly in its as manufactured state tends to have a greater external radius than the internal radius of the heat exchange tube into which it is designed to fit and needs to be compressed slightly in order to fit inside the heat exchange tube. The resilience of the material of which the fin assembly is made cause fin assembly to press against inner surface of the heat exchange tube when fitted therein.
Referring to
The difference in radii r1 and r2 should not be so great as to cause an excessive gap between the outer fin connecting portion 906 and the heat exchange tube. An excessive gap in this region would cause loss of heat exchange.
Referring to
As shown schematically in
Referring to
The heat exchange tube 1103 comprises a single tubular metal member having a first substantially straight portion 1105; a curved or angled portion 1106; and a second substantially straight portion 1107. An end of the second substantially straight portion 1107 is connected to a first end of the corrugated end tube 1104. The entire heat exchange tube comprising the first and second straight sections 1105, 1107 and the curved section 1106 is in use surrounded by liquid coolant which is encased in a cavity between the heat exchange tube 1103 and first and second outer straight tubular sections and an outer corrugated section.
The tubular wall of the heat exchange tube is formed with a plurality of outwardly projecting mounds or dimples which project into the cavity in which the liquid coolant flows. The projecting dimples or mounds on the outside of the heat exchange tube correspond with respective recesses on the otherwise smooth internal heat exchange tube wall on the inside of the tube. The projections provide a relatively increased surface area for heat transfer between the gas on one side of the surface, and the liquid coolant on the other side of the surface, compared to a straight circular cylindrical tube.
The effect of the dimples on the heat exchange tube was found to cause only a low increase in the turbulence of the exhaust gas. The dimples can be used on the straight portions of the heat exchange only, on the curved portion of the heat exchange tube only, or on both the straight and the curved portion.
Referring to
Corrugated sections 1204, 1206 and 1208 each have a small straight section either side of a bent section.
The heat exchange tube 1212 has a dimpled section (as illustrated in
It is apparent to one skilled in the art that the gas could flow in the opposite direction entering the cooler at the flange 1211. This may be a preferred gas flow regime if there was a concern with boiling at the corrugated bend. The first finned section within the fourth straight section 1209 would have already substantially cooled the gas prior to the bend 1208 in the third corrugated section. All designs will be variations and dependant on the required cooling application and boundary conditions.
Referring to
Once assembled the first corrugation at 1204 is bent. This action causes both the outer tube and the inner heat exchange tube to bend together. The assembly is then bent at the second corrugated section 1206 and finally at the third corrugated section 1208. By virtue of the dimples' outer diameter being nominally the same diameter as the inner diameter of the outer tube the heat exchange tube is maintained in a substantially concentric condition during bending.
Referring to
Referring to
Referring to
Fin Materials
In various embodiments, the internal fin members may be constructed of ferritic stainless steel. Ferritic stainless steel has a significantly higher thermal conductivity than 300 series stainless steel and was found to give a reduced gas out temperature of 18° C. lower than the corresponding gas out temperature using equivalent fins made of stainless steel 321. The use of ferretic stainless steel fins compared to using stainless steel 321 reduced the gas out temperature by up to 18° C. under equivalent operating conditions.
The fins may be manufactured from 309, 310 or Inconel.
Effect of Relative Flow Direction
The embodiment coolers herein can be connected in circuit so that the gas flow and liquid coolant flow can be changed so that the gas coolant are in contra flow (in the opposite direction to each other), or in parallel flow (in the same direction as each other). Computer modelling tests found that by connecting the gas flow and liquid coolant flow in parallel a significant reduction in the boiling index could be achieved, without any significant difference in rate of heat exchange. Therefore, in some applications, connection of the gas flow and liquid coolant flow in parallel may be preferred.
Other Variations
In various embodiments disclosed herein, and variations thereof within the scope of this disclosure, a coaxial cooler having a heat transfer tube, comprises at least in part, one or more straight sections having a plain or smooth surface. The plain surface ensures good coolant flow over the heat exchange surface. Eddies of low coolant flow present in the roots of the corrugations may be eliminated, and boiling may thereby be very significantly reduced. Further, as the heat exchange surfaces may be plain or smooth, the drag caused by those surfaces on passing gas may be much reduced, and so gas pressure drop may be significantly reduced in comparison to a conventional corrugated heat exchange tube.
In general, providing a smooth heat exchange surface reduces turbulence, but also reduces heat exchange. To achieve a relatively high heat exchange per unit length, a plurality of fins are joined to an inner surface of a heat exchange tube. The heat transfer tube may be a plain or smooth surface over its whole length, including any bends in the tube.
Alternatively, the heat exchange tube may have corrugations on the bend portion, or on a section of the straight portion, or on both. The corrugations may be either annular or helical. The corrugated section may have a varying pitch, which improves performance of the heat exchanger, or facilitates improved assembly of the heat exchanger.
Adapter tubes for the coolant inlet and outlet which join the main heat exchanger body may be pressed, cast, machined, sintered or 3-D printed in order to minimise their size. For cost reasons, the adapters may be formed.
These exchangers may operate with the gas flow in contraflow to the liquid coolant, or with the gas flow coincident or parallel with the liquid coolant flow.
An outer tube which is positioned around a central heat exchange tube may be partially corrugated or may be plain and smooth. Where corrugated, the corrugations may be either annular or helical. The corrugated section may comprise a varying pitch along its length, to improve performance, or to improve assembly.
The fin components may be made of austenitic or ferritic stainless steel. Ferritic stainless steel has a high thermal conductivity which may make the fins more effective for heat transfer. For very high temperature applications, an Inconel fin may be used.
The fins may be attached to the inside of the heat exchange tube by a brazing process or by a welding process. The fins may be formed in a rolled strip forming an arc between 0° and 350°. The natural resilience of the strip material when inserted into the inside of a heat exchange tube increases the angle of the arc, pushing the fin out to contact the heat exchange tube surface.
Successive fins may be of the same length or differing lengths. Where fins are all of the same length, then as the fins extend towards the centre of the tube, the gap between the fins may become small, causing increased drag on gases passing in the vicinity of those parts of the fin, leading to low velocities and relatively poor heat exchange. To ensure that the fins are as efficient as possible, the fins may be attached to the heat exchange tube as near to right angles to the inner circular cylindrical surface of the tube as possible. This can be achieved by having a sharp radius of curvature on the fin on the transition from the circumferential part of the fin to the radially extending part of the fin which extends radially into the heat exchange tube. Having a good braze meniscus on the joint between the fin and the heat exchange tube also helps to achieve high heat transfer efficiency between the fin and the tube.
There may be between 1 and 30 individual radially extending fins inside the inner tube. The cooler may optimally have a heat exchange tube inner diameter of between 5 mm and 50 mm in preferred embodiments.
Any of the individual fins structures and fin assemblies disclosed herein may be used with any one of the heat exchanger embodiments disclosed herein in any combination.
Dimples formed outward from the heat exchange tube may be used to improve heat exchange and to centre the heat exchange tube inside the outer tube. The dimples aid concentricity of the inner tube to the outer casing or tube, especially when a cooler has more than one bend.
Number | Date | Country | Kind |
---|---|---|---|
1513415 | Jul 2015 | GB | national |
15002537 | Aug 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
813918 | Schmitz | Feb 1906 | A |
1005441 | Lovekin | Oct 1911 | A |
1024436 | Cartault | Apr 1912 | A |
1246583 | Fulweiler | Nov 1917 | A |
1400179 | Pfeiffer | Dec 1921 | A |
1529190 | Kettering | Mar 1925 | A |
1744074 | Gortner | Jan 1930 | A |
1838105 | Murray | Dec 1931 | A |
1881771 | Lyman | Oct 1932 | A |
1929540 | Trane | Oct 1933 | A |
1960305 | Emmons | May 1934 | A |
2079144 | Appa | May 1937 | A |
2197243 | Moran | Apr 1940 | A |
2220726 | Newcum | Nov 1940 | A |
2259433 | Kitto | Oct 1941 | A |
2308319 | Stanton | Jan 1943 | A |
2372795 | Rodeck | Apr 1945 | A |
2386159 | Elder | Oct 1945 | A |
2662749 | Buschow | Dec 1953 | A |
2703921 | Brown, Jr. | Mar 1955 | A |
2712438 | Brown, Jr. | Jul 1955 | A |
2731709 | Gaddis | Jan 1956 | A |
2756032 | Dowell | Jul 1956 | A |
2778610 | Bruegger | Jan 1957 | A |
2870999 | Soderstrom | Jan 1959 | A |
2929408 | Smith | Mar 1960 | A |
2960114 | Hinde | Nov 1960 | A |
3000495 | Downing | Sep 1961 | A |
3033651 | Latham, Jr. | May 1962 | A |
3083662 | Zeidler | Apr 1963 | A |
3104735 | Ludlow | Sep 1963 | A |
3120868 | Ballantine | Feb 1964 | A |
3158122 | De Give | Nov 1964 | A |
3177936 | Gustave | Apr 1965 | A |
3197975 | Boling | Aug 1965 | A |
3200848 | Takagi | Aug 1965 | A |
3259206 | Straw | Jul 1966 | A |
3323586 | Burne | Jun 1967 | A |
3332446 | Mann | Jul 1967 | A |
3339260 | Burne | Sep 1967 | A |
3397440 | Dalin | Aug 1968 | A |
3412787 | Muligan | Nov 1968 | A |
3455379 | Habdas | Jul 1969 | A |
3468371 | Menze | Sep 1969 | A |
3474513 | Allingham | Oct 1969 | A |
3482626 | Weisberg | Dec 1969 | A |
3550235 | Boose | Dec 1970 | A |
3595299 | Weishaupt | Jul 1971 | A |
3730229 | D'Onofrio | May 1973 | A |
3732921 | Hilicki | May 1973 | A |
3763930 | Frost | Oct 1973 | A |
3777343 | D'Onofrio | Dec 1973 | A |
3828566 | Wetzel | Aug 1974 | A |
3828851 | Takayasu | Aug 1974 | A |
3831247 | Degroote | Aug 1974 | A |
3864937 | Asher | Feb 1975 | A |
3887004 | Beck | Jun 1975 | A |
3902552 | McLain | Sep 1975 | A |
4004634 | Habdas | Jan 1977 | A |
4059882 | Wunder | Nov 1977 | A |
4086959 | Habdas | May 1978 | A |
4090559 | Megerlin | May 1978 | A |
4096616 | Coffinberry | Jun 1978 | A |
4154296 | Fijas | May 1979 | A |
4163474 | MacDonald | Aug 1979 | A |
4184544 | Ullmer | Jan 1980 | A |
4194560 | Matsuzaki | Mar 1980 | A |
4254081 | Streczyn | Mar 1981 | A |
4284133 | Gianni | Aug 1981 | A |
4305457 | Cozzolino | Dec 1981 | A |
4306619 | Trojani | Dec 1981 | A |
4314587 | Hackett | Feb 1982 | A |
4326582 | Rosman | Apr 1982 | A |
4336838 | Ely | Jun 1982 | A |
4345644 | Dankowski | Aug 1982 | A |
4351389 | Guarnaschelli | Sep 1982 | A |
4352378 | Bergmann | Oct 1982 | A |
4372374 | Lee | Feb 1983 | A |
4373578 | Saperstein | Feb 1983 | A |
4402359 | Carnavos | Sep 1983 | A |
4425942 | Hage | Jan 1984 | A |
4432485 | Smith | Feb 1984 | A |
4475584 | Martin | Oct 1984 | A |
4648441 | van de Sluys | Mar 1987 | A |
4778002 | Allgauer | Oct 1988 | A |
4794983 | Yoshida | Jan 1989 | A |
4844153 | Mellsjo | Jul 1989 | A |
4862955 | Itakura | Sep 1989 | A |
4869230 | Fletcher | Sep 1989 | A |
4893670 | Joshi | Jan 1990 | A |
4899812 | Altoz | Feb 1990 | A |
4924838 | McCandless | May 1990 | A |
4938036 | Hodgkins | Jul 1990 | A |
4964459 | Stenlund | Oct 1990 | A |
4986349 | Ono | Jan 1991 | A |
4991643 | Price | Feb 1991 | A |
4995454 | Thompson | Feb 1991 | A |
4996029 | Martin | Feb 1991 | A |
5031694 | Lloyd | Jul 1991 | A |
5050668 | Peterson | Sep 1991 | A |
5062474 | Joshi | Nov 1991 | A |
5098514 | Held | Mar 1992 | A |
5107922 | So | Apr 1992 | A |
5167275 | Stokes | Dec 1992 | A |
5181560 | Burn | Jan 1993 | A |
5215144 | May | Jun 1993 | A |
5251603 | Watanabe | Oct 1993 | A |
5337807 | Ryan | Aug 1994 | A |
5341769 | Ueno | Aug 1994 | A |
5375654 | Hougland | Dec 1994 | A |
5429112 | Rozzi | Jul 1995 | A |
5497824 | Rouf | Mar 1996 | A |
5558069 | Stay | Sep 1996 | A |
5560424 | Ogawa | Oct 1996 | A |
5575066 | Cocchi | Nov 1996 | A |
5575067 | Custer | Nov 1996 | A |
5623989 | Kroger | Apr 1997 | A |
5625229 | Kojima | Apr 1997 | A |
5690167 | Rieger | Nov 1997 | A |
5732769 | Staffa | Mar 1998 | A |
5735342 | Nitta | Apr 1998 | A |
RE35890 | So | Sep 1998 | E |
5950716 | Appelquist | Sep 1999 | A |
6009908 | Hartnagel | Jan 2000 | A |
6019168 | Kinnersly | Feb 2000 | A |
6070657 | Kunkel | Jun 2000 | A |
6085738 | Robinson | Jul 2000 | A |
6095236 | Kuhler | Aug 2000 | A |
6098704 | Tsuchiya | Aug 2000 | A |
6131615 | Hartnagel | Oct 2000 | A |
6220344 | Beykirch | Apr 2001 | B1 |
6244196 | Kimberlin | Jun 2001 | B1 |
6253573 | Schwitters | Jul 2001 | B1 |
6283159 | Tada | Sep 2001 | B1 |
6404637 | Hutchison | Jun 2002 | B2 |
6438936 | Ryan | Aug 2002 | B1 |
6533030 | Mitrovic | Mar 2003 | B2 |
6557626 | O'Sullivan | May 2003 | B1 |
6585034 | Oswald | Jul 2003 | B2 |
6672377 | Liu | Jan 2004 | B2 |
6675746 | Gerstmann | Jan 2004 | B2 |
6729388 | Emrich | May 2004 | B2 |
6904961 | Ayres | Jun 2005 | B2 |
6920917 | Inoue | Jul 2005 | B2 |
6944394 | Long | Sep 2005 | B2 |
6990806 | Kinsel | Jan 2006 | B1 |
6997246 | Visser | Feb 2006 | B2 |
7044210 | Usui | May 2006 | B2 |
7063131 | Northrop | Jun 2006 | B2 |
7191824 | Wu | Mar 2007 | B2 |
7225859 | Mochizuki | Jun 2007 | B2 |
7293603 | Cox | Nov 2007 | B2 |
7303002 | Usui | Dec 2007 | B2 |
7322403 | Agee | Jan 2008 | B2 |
7438122 | Hawranek | Oct 2008 | B2 |
7458222 | Orr | Dec 2008 | B2 |
7614443 | Usui | Nov 2009 | B2 |
7770602 | Buschhoff | Aug 2010 | B2 |
7845338 | Smith | Dec 2010 | B2 |
7866378 | Nakamura | Jan 2011 | B2 |
8047451 | McNaughton | Nov 2011 | B2 |
8047686 | Dahm | Nov 2011 | B2 |
8122856 | Franke | Feb 2012 | B2 |
8162040 | Briselden | Apr 2012 | B2 |
8171985 | Valensa | May 2012 | B2 |
8261816 | Ambros | Sep 2012 | B2 |
8425656 | Ciora, Jr. | Apr 2013 | B2 |
8474515 | Burgers | Jul 2013 | B2 |
8516699 | Grippe | Aug 2013 | B2 |
8550147 | Lansinger | Oct 2013 | B2 |
8590604 | Higashiyama | Nov 2013 | B2 |
8729751 | Telakowski | May 2014 | B2 |
9091487 | Byon | Jul 2015 | B2 |
9097470 | Chen | Aug 2015 | B2 |
9395121 | Meshenky | Jul 2016 | B2 |
9459052 | Kinder | Oct 2016 | B2 |
9472489 | Nakamura | Oct 2016 | B2 |
9494063 | Dupmeier | Nov 2016 | B2 |
9664451 | Rockenfeller | May 2017 | B2 |
9791074 | Hoglund | Oct 2017 | B2 |
9897387 | Glass | Feb 2018 | B2 |
9897398 | Jarmon | Feb 2018 | B2 |
9915184 | Han | Mar 2018 | B2 |
9939211 | Hoglund | Apr 2018 | B2 |
9945322 | Wood | Apr 2018 | B2 |
9982954 | Jarmon | May 2018 | B1 |
10557671 | Mironets | Feb 2020 | B2 |
20030010480 | Shibagaki | Jan 2003 | A1 |
20040007350 | Wu | Jan 2004 | A1 |
20040050538 | Sunder | Mar 2004 | A1 |
20040178627 | Takasaki | Sep 2004 | A1 |
20050045315 | Seager | Mar 2005 | A1 |
20050121179 | Shibagaki | Jun 2005 | A1 |
20060096314 | Nakamura | May 2006 | A1 |
20070187067 | Horiguchi | Aug 2007 | A1 |
20090193804 | Ohno | Aug 2009 | A1 |
20090260586 | Geskes | Oct 2009 | A1 |
20100043415 | Capelle | Feb 2010 | A1 |
20110036544 | Shirai | Feb 2011 | A1 |
20110099973 | Smith | May 2011 | A1 |
20110168369 | Kim | Jul 2011 | A1 |
20110174412 | Jebasinski | Jul 2011 | A1 |
20130089413 | Fujimoto et al. | Apr 2013 | A1 |
20130192804 | Matsuda | Aug 2013 | A1 |
20150159957 | Baxi | Jun 2015 | A1 |
20150300757 | Yang | Oct 2015 | A1 |
20190353427 | Johnson | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
1621370 | Dec 1971 | AU |
2869738 | Feb 2007 | CN |
103742298 | Apr 2014 | CN |
106197120 | Dec 2016 | CN |
1096131 | May 2001 | EP |
1388720 | Feb 2004 | EP |
H10170172 | Jun 1998 | JP |
H11108578 | Apr 1999 | JP |
2000111277 | Apr 2000 | JP |
2001227413 | Aug 2001 | JP |
2002054511 | Feb 2002 | JP |
2010078233 | Apr 2010 | JP |
Entry |
---|
European Search Report issued on EP15002537.7, completed Jan. 9, 2017, 2 pages. |
European Search Opinion issued on EP15062537.7, completed Jan. 9, 2017, 2 pages. |
Intellectual Property Office, Office Action issued in Application No. GB1701501.7, dated Jun. 28, 2019, 5 pgs. |
Intellectual Property Office, Office Action issued in Application No. GB1903719.1, dated Jun. 28, 2019, 8 pgs. |
United States Patent and Trademark Office, Non-Final Office Action issued in U.S. Appl. No. 15/419,758, Notification dated Apr. 6, 2020, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20170030652 A1 | Feb 2017 | US |