The present invention is generally directed to joint sealing systems, and more particularly, to systems for sealing structural expansion joint openings in roofs of structures.
In many construction projects involving materials such as concrete and steel, gaps are left between adjacent structural elements to allow for thermal expansion and contraction, wind sway, settlement, live load deflection, and/or seismic movements of the structural elements. By permitting expansion and contraction, the gaps prevent the structural materials and/or building cladding elements from cracking or buckling. These gaps are referred to as expansion joints or movement joints and are typically sealed to prevent them from allowing the passage of water, dirt, debris, or snow, etc. into the structure and/or between portions of the structure.
Current systems for sealing exterior expansion joints in the roofs of structures typically consist of a length of flexible material or membrane that spans a length and width of the joint between adjacent elements and is attached to each side of the joint by anchor bars that are screwed or bolted to the substrate. The membrane, usually a sheet of rubber or the like, is wider than the joint itself to seal the joint and to allow for movement of the structural materials with the joint. Two designs have been developed to address the issue of debris collecting on top of the membrane and straining the seal.
Problems may arise with either joint seal 10 and 20 in several areas. For example, the fasteners 16 and 26 are exposed to weather conditions and the seals may fail as they deteriorate and no longer effectively anchor the seals 10 and 20 about the joint J. Additionally, the seals 10 and 20 provide only a single layer of waterproofing, increasing the chances of failure of the seals. Finally, the shape of the membrane 12 and 22, whether hanging down or humped up, makes it difficult to transition from a horizontal roof expansion joint to a vertical wall expansion joint without compromising the continuity of the seals or undertaking significant modifications to the seals 10 and 20 in the field.
According to aspects illustrated herein, there is provided a watertight, integrated wall and roof expansion joint seal system comprising an expansion joint seal for a structure. The expansion joint seal comprises a central portion having an underside and at least one central chamber disposed around a centerline. The central portion is disposed within and fills a gap between a first substrate and a second substrate of a structure of interest such a roof. The expansion joint seal has a first flange portion extending outwardly from the centerline and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. The expansion joint seal also comprises a fold comprising a first fold portion and a second fold portion. The first fold portion of the first flange portion is attachable to a first surface of the first substrate and the second fold portion of the first flange portion is attachable to a second surface of the first substrate. The first fold portion of the second flange portion is attachable to a first surface of the second substrate and the second fold portion of the second flange portion is attachable to a second surface of the second substrate. The watertight integrated wall and roof expansion joint seal system also comprises a joint closure comprising a core and a layer of elastomer disposed on the core. The joint closure also comprises an end portion configured to match and integrate with the underside of the central portion to form the watertight, integrated wall and roof expansion joint system, wherein movement of one or both of the first or second substrates causes a response in the central portion to maintain the seal. In one embodiment, at least one of the first flange portion and the second flange portion is comprised of a flexible material such that the at least one of the first flange portion and the second flange portion may be affixed to the structure at an angle or an elevation that differs from the central portion. In one embodiment, at least one of the first flange portion and the second flange portion is bifurcated into an upper flange portion and a lower flange portion. The upper flange portion extends further in length from the centerline than the lower flange portion to facilitate interlaying the expansion joint seal with roofing materials to form a water tight seal of the structure.
According to embodiments, the expansion joint seal system further comprises a watertight barrier located beneath the central portion and between the first substrate and the second substrate forming a watertight seal between the first substrate and the second substrate. Movement of one or more of the first substrate and the second substrate causes a response in the central portion and in the watertight barrier to maintain the seal. According to further embodiments, the expansion joint seal system comprises an insulation batt and a looped membrane of roofing material located beneath the central portion and between the first substrate and the second substrate forming an insulating seal between the first substrate and the second substrate, wherein movement of one or more of the first substrate and the second substrate causes a response in the central portion to maintain the seal.
According to further aspects illustrated herein, there is provided a garden roof assembly. The garden roof assembly comprises an expansion joint seal for a structure, comprising a central portion having at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. The expansion joint seal also comprises a fold comprising a first fold portion and a second fold portion. The first fold portion of the first flange portion is attachable to a first surface of the first substrate and the second fold portion of the first flange portion is attachable to a second surface of the first substrate. The first fold portion of the second flange portion is attachable to a first surface of the second substrate and the second fold portion of the second flange portion is attachable to a second surface of the second substrate, the expansion joint seal being configured for a roof. The garden roof assembly further comprises at least one layer of roofing material located over the expansion joint seal and comprising a growing medium, thereby forming the garden roof assembly.
According to further aspects illustrated herein, there is provided an expansion joint seal system comprising an expansion joint seal for a structure. The seal comprises a central portion having at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. When installed on the structure the first flange portion is attachable to a first substrate of the structure and the second flange portion is attachable to a second substrate of the structure such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure; wherein movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. The expansion joint seal system further comprises at least one of i) a watertight barrier located beneath the central portion and between the first substrate and the second substrate forming a watertight seal between the first substrate and the second substrate, and ii) an insulation batt and a looped membrane of roofing material located beneath the central portion and between the first substrate and the second substrate forming an insulating seal between the first substrate and the second substrate.
According to further aspects illustrated herein, there is provided a garden roof assembly comprising an expansion joint seal for a structure. The expansion joint seal comprises a central portion having at least one central chamber disposed around a centerline; a first flange a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. When installed on the structure the first flange portion is attachable to a first substrate of the structure and the second flange portion is attachable to a second substrate of the structure such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure. Movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. The garden roof assembly further comprises at least one layer of roofing material located over the expansion joint seal and comprising a growing medium, thereby forming the garden roof assembly.
The present invention alleviates perceived problems associated with current rooftop expansion joint systems by including, for example, redundant levels of waterproofing, a dual flange apparatus, which protects the anchors and enhances the seal, and the ability to manufacture transitions that can be integrated into coplanar, perpendicular and other expansion joints.
Referring to
As described below, the expansion joint seals 100, 200, 300, 400 (
Referring again to
In one embodiment, as best illustrated in
Referring again to
As shown in
As shown in
Referring to
Referring to
Referring to
As illustrated in, e.g.,
Expansion joint seal 100 has been described above with respect to, e.g.,
According to embodiments, the inventors have solved the problem of how to obtain a watertight transition from a roof to a wall expansion joint. Advantageously, according to embodiments and as best seen in
As shown in
The expansion joint seal 100 of
Joint closure 810 can comprise any suitable shape, size and thickness. As shown in
The core 840 can be infused with a suitable material including, but not limited to, waterproofing material such as an acrylic, such as a water-based acrylic chemistry, a wax, a fire retardant material, ultraviolet (UV) stabilizers, and/or polymeric materials, and so forth. As an example, core 840 can comprise an open celled foam infused with a water-based acrylic chemistry, and/or a fire retardant material. One type of fire retardant material that may be used is a water-based aluminum tri-hydrate (also known as aluminum tri-hydroxide (ATH)). However, the present invention is not limited in this regard, as other fire retardant materials may be used. Such materials include, but are not limited to, metal oxides and other metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds, such as ferrocene, molybdenum trioxide, nitrogen-based compounds, phosphorus based compounds, halogen based compounds, halogens, e.g., fluorine, chlorine, bromine, iodine, astatine, combinations of the foregoing materials, and other compounds capable of suppressing combustion and smoke formation.
As shown in
As a non-limiting example, the amount of fire retardant material infused into the core 840, such as an open celled foam, is between 3.5:1 and 4:1 by weight in a ratio with the un-infused core itself. The resultant uncompressed core whether comprising a solid block or laminates, has a density of about 130 kg/m3 to about 150 kg/m3, specifically 140 kg/m3, according to embodiments. Further according to embodiments, the resultant uncompressed core has a density of about 50 kg/m3 to about 250 kg/m3, e.g., between about 100 kg/m3 to about 180 kg/m3.
The infused core 840, such as infused foam laminate, can be constructed in a manner which insures that substantially the same density of fire retardant is present in the product regardless of the final size of the product. For example, the starting density of the infused foam/core is approximately 140 kg/m3, according to embodiments. After compression, according to embodiments, the infused foam/core density is in the range of, e.g., about 160-800 kg/m3, 200-700 kg/m3. After installation, the laminate can cycle between densities of approximately 750 kg/m3 at the smallest size of the expansion joint to approximately 400-450 kg/m3 or less at the maximum size of the joint. This density of 400-450 kg/m3 is based upon experiments as a reasonable value which still affords adequate fire retardant capacity, such that the resultant composite can pass the UL 2079 test program. The present invention is not limited to cycling in the foregoing ranges, however, as the material may attain densities outside of the herein described ranges. It is further noted that UL 2079, developed by Underwriters Laboratories, is a further refinement of ASTM E-119 by adding a cycling regimen to the test. Additionally, UL 2079 stipulates that the design be tested at a maximum joint size. This test is more reflective of real world conditions, and as such, architects and engineers have begun requesting expansion joint products that meet it. Many designs which pass ASTME-119 without the cycling regime do not pass UL 2079. This may be adequate for non-moving building joints; however, most building expansion joint systems are designed to accommodate some movements as a result of thermal effects (e.g., expansion into the joint and contraction away from the joint) or as a result of seismic movement. Advantageously, embodiments of the systems disclosed herein meet and can pass UL 2079 testing. Thus, embodiments of the systems disclosed herein are capable of withstanding exposure to a temperature of at least of about 540° C. for about five minutes, capable of withstanding exposure to a temperature of about 1010° C. for about two hours, capable of withstanding exposure to a temperature of about 930° C. for about one hour, and capable of withstanding exposure to a temperature of about 1260° C. for about eight hours.
In any embodiment, for example when individual laminations 870 are used, several laminations, the number depending on the expansion joint size (e.g., the width, which depends on the distance between opposing substrates into which the expansion joint system 800 is to be installed), can be compiled and then compressed and held at such compression in a suitable fixture. The fixture, referred to as a coating fixture, is typically at a width slightly greater than that which the expansion joint will experience at the greatest possible movement thereof.
It is noted that in the fixture, the laminations 870 can be configured in any desired shape and size depending upon the desired application and end use. For example, the laminations 870 thus can be configured and factory fabricated, with use of a fixture, as a substantially straight portion of the elongated section 860 or in other configurations.
According to embodiments, in the fixture for instance, the assembled infused or un-infused core 840 is typically coated with waterproof elastomer 850 on, for example, one or more surface. The elastomer 850 may comprise, for example, at least one polysulfide, silicone, acrylic, polyurethane, poly-epoxide, silyl-terminated polyether, combinations and formulations thereof, and so forth, with or with or without other elastomeric components, coatings, liquid sealant materials, and so forth. Further examples of elastomer 850 for coating, e.g., laminations 870 include PECORA 301 (available from Pecora Corporation, Harleysville, Pa.), DOW 888 (available from Dow Corning Corporation, Midland, Mich.), DOW 790 (available from Dow Corning Corporation, Midland, Mich.), DOW 795 (also available from Dow Corning Corporation), PECORA 890 (available from Pecora Corporation, Harleysville, Pa.), and so forth. A primer may be used depending on the nature of the adhesive characteristics of the elastomer 850.
During or after application of the elastomer 850 to, e.g., laminations 870, the elastomer 850 can tooled or otherwise configured to create a “bellows,” “bullet,” or other suitable profile. The profile can be of any suitable size and dimension. As a non-limiting example, widths less than about 1 inch have a convex single bellows surface. As a further non-limiting example, widths between about 1 inch and about 4 inches have a dual bellow surface. It is noted that the layer of elastomer 850 also can be continuous or non-continuous over the elongated section 860.
As noted above, the joint closure 810 comprising core 840 and elongated section 860 can be constructed in any suitable shape and size depending upon application and use such as, e.g., depending upon whether the application is a solid to wall or a cavity to wall sealing application. For example,
As a non-limiting example, in the solid to wall roof closure applications describe above with respect to, e.g., the as installed embodiment of
Thus, advantageously, according to embodiments of the invention, continuity of seal is extended to roof-to-wall configurations. Additionally, according to embodiments, the continuity of seal can also extend to, e.g., crosses, tees, upturns, downturns, and other conditions typically found in constructions projects. Moreover, embodiments of the invention are also suited for use in sealing structural slabs beneath, e.g., green, vegetative roof layers 940, as shown in
A further advantage of embodiments of the invention is in providing insulation in the joint openings beneath a roof expansion joint to maintain energy efficiency in the structure. For example, as shown in
Thus, according to embodiments, disclosed is a fire and water resistant, integrated wall and roof expansion joint seal system. The system comprises: a) an expansion joint seal for a structure, the seal comprising: a central portion having an underside and at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion; and b) a joint closure comprising a core and a layer of a water resistant material disposed on the core, the joint closure further comprising an end portion configured to match and integrate with the underside of the central portion to form the fire and water resistant, integrated wall and roof expansion joint seal system. A fire retardant material is included in the core in an amount effective to pass testing mandated by UL 2079, and the core with the fire retardant material therein is configured to facilitate compression of the core when installed between the first substrate and the second substrate by repeatedly expanding and contracting to accommodate movement of the first substrate and the second substrate; and the core with the fire retardant material included therein is configured to pass the testing mandated by UL 2079; and movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. According to aspects of the invention, i) at least one of the first flange portion and the second flange portion is comprised of a flexible material such that the at least one of the first flange portion and the second flange portion may be affixed to the structure at an angle or an elevation that differs from the central portion; and/or ii) at least one of the first flange portion and the second flange portion is bifurcated into an upper flange portion and a lower flange portion, the upper flange portion extending further in length from the centerline than the lower flange portion, and the lower flange portion being substantially parallel to the upper flange portion, the thickness of each of the upper flange portion and the lower flange portion being planar and substantially the same as the thickness of the members of the sidewall; and/or iii) further including a bracket disposed between the upper flange portion and the lower flange portion to facilitate mounting of the expansion joint seal to the structure; and/or iv) wherein when installed the upper flange portion and the lower flange portion interlay with two or more layers of roofing materials; and/or v) wherein expansion of at least one of the first substrate and second substrate causes the central portion to deflect upward such that the central portion does not impinge on itself or prevent movement of one or both of the first substrate and the second substrate while maintaining the seal; and/or vi) wherein contraction of at least one of the first substrate and the second substrate causes the central portion to deflect downward such that the central portion does not impinge on itself or prevent movement of one or both of the first substrate and the second substrate while maintaining the seal; and/or vii) wherein the central portion includes a sidewall, the sidewall configured to define the at least one central chamber, the at least one central chamber being configured to be selectively collapsible in response to a force from movement of one or both of the first substrate and the second substrate; and/or viii) wherein the at least one central chamber is comprised of at least one pair of central chambers disposed about the centerline; and/or ix) wherein the at least one central chamber is comprised of an odd number of central chambers; and/or x) wherein the core comprises open celled foam comprising a plurality of individual laminations assembled to construct a laminate, one or more of the laminations being infused with the fire retardant material and an acrylic; and/or xi) wherein the core comprises an elongated section comprising a horizontal setback portion configured to bridge a gap between a structural wall and a façade; and/or xii) wherein the elongated section comprises a water resistant material coated 45 degree miter; and/or xiii) further comprising a fold comprising a first fold portion and a second fold portion, wherein the first fold portion of the first flange portion is attachable to a first surface of a first substrate of the structure and the second fold portion of the first flange portion is attachable to a second surface of the first substrate, and the first fold portion of the second flange portion is attachable to a first surface of a second substrate of the structure and the second fold portion of the second flange portion is attachable to a second surface of the second substrate, such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure; and/or xiv) wherein the core with the fire retardant material included therein has a density when compressed in a range of about 200 kg/m3 to about 700 kg/m3; and/or xv) wherein the core uncompressed has a density of about 130 kg/m3 to about 150 kg/m3; and/or xvi) wherein the core with the fire retardant material included therein has a density when compressed in a range of about 160 kg/m3 to about 800 kg/m3; and/or xvii) wherein the core uncompressed has a density of about 50 kg/m3 to about 250 kg/m3; and/or xviii) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 540° C. at about five minutes; and/or xix) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 930° C. at about one hour; and/or xx) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 1010° C. at about two hours.
While the invention has been described with reference to various exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. Moreover, the embodiments disclosed herein can be employed in any combination with each other. In addition, many modifications may be made to adapt a particular situation or matter to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The present application is a Continuation-in-Part Application of U.S. patent application Ser. No. 14/211,694, filed on Mar. 14, 2014, now U.S. Pat. No. which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/788,866, filed Mar. 15, 2013 and is a Continuation-in-Part Application of U.S. Non-Provisional patent application Ser. No 13/652,021 filed Oct. 15, 2012, now U.S. Pat. No. 9,322,163, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/547,476, filed Oct. 14, 2011, entitled “THERMOPLASTIC EXPANSION JOINT SEAL FOR ROOFS.” The present application is also a Continuation-in-Part Application of U.S. patent application Ser. No. 15/613,936, filed on Jun. 5, 2017, which is a Continuation Application of Ser. No. 13/729,500, filed on Dec. 28, 2012, now U.S. Pat. No. 9,670,666, which is a Continuation-in-part Application of U.S. Non-Provisional patent application Ser. No. 12/622,574, filed on Nov. 20, 2009, now U.S. Pat. No. 8,365,495, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/116,453, filed Nov. 20, 2008. The contents of all of the foregoing applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
517701 | Knower | Apr 1894 | A |
945914 | Colwell | Apr 1909 | A |
1357713 | Lane | Nov 1920 | A |
1371727 | Blickle | Mar 1921 | A |
1428881 | Dyar | Sep 1922 | A |
1691402 | Oden | Nov 1928 | A |
1716994 | Wehrle | Jun 1929 | A |
1809613 | Walker | Jun 1931 | A |
2010569 | Sitzler | Aug 1935 | A |
2016858 | Hall | Oct 1935 | A |
2035476 | Herwood | Mar 1936 | A |
2152189 | Henderson | Apr 1936 | A |
2069899 | Older | Feb 1937 | A |
2190532 | Lukomski | Feb 1940 | A |
2240787 | Kinzer | May 1941 | A |
2271180 | Brugger | Jan 1942 | A |
2277286 | Bechtner | Mar 1943 | A |
2544532 | Hill | Mar 1951 | A |
2701155 | Estel, Jr. | Feb 1955 | A |
2776865 | Anderson | Jan 1957 | A |
2828235 | Holland et al. | Mar 1958 | A |
2954592 | Parsons | Oct 1960 | A |
2995056 | Knox | Oct 1960 | A |
3024504 | Miller | Mar 1962 | A |
3080540 | McFarland | Mar 1963 | A |
3111069 | Farbish | Nov 1963 | A |
3124047 | Graham | Mar 1964 | A |
3172237 | Bradley | Mar 1965 | A |
3194846 | Blaga | Jul 1965 | A |
3232786 | Kellman | Feb 1966 | A |
3244130 | Hipple, Jr. | Apr 1966 | A |
3245328 | Fassbinder | Apr 1966 | A |
3255680 | Cooper et al. | Jun 1966 | A |
3262894 | Green | Jul 1966 | A |
3289374 | Metz | Dec 1966 | A |
3298653 | Omholt | Jan 1967 | A |
3300913 | Patry et al. | Jan 1967 | A |
3302690 | Hurd | Feb 1967 | A |
3335647 | Thorp, Jr. | Aug 1967 | A |
3344011 | Goozner | Sep 1967 | A |
3352217 | Peters et al. | Nov 1967 | A |
3355846 | Tillson | Dec 1967 | A |
3363383 | Barge | Jan 1968 | A |
3371456 | Balzer et al. | Mar 1968 | A |
3372521 | Thom | Mar 1968 | A |
3378958 | Parks et al. | Apr 1968 | A |
3394639 | Viehmann | Jul 1968 | A |
3410037 | Empson | Nov 1968 | A |
3435574 | Hallock | Apr 1969 | A |
3447430 | Gausepohl | Jun 1969 | A |
3470662 | Kellman | Oct 1969 | A |
3482492 | Bowman | Dec 1969 | A |
3543459 | Mills | Dec 1970 | A |
3551009 | Cammuso et al. | Dec 1970 | A |
3575372 | Emberson | Apr 1971 | A |
3582095 | Bogaert et al. | Jun 1971 | A |
3603048 | Hadfield | Sep 1971 | A |
3604322 | Koster | Sep 1971 | A |
3606826 | Bowman | Sep 1971 | A |
3629986 | Klittich | Dec 1971 | A |
3643388 | Parr et al. | Feb 1972 | A |
3659390 | Balzer et al. | May 1972 | A |
3670470 | Thom | Jun 1972 | A |
3672707 | Russo et al. | Jun 1972 | A |
3677145 | Wattiez | Jul 1972 | A |
3694976 | Warshaw | Oct 1972 | A |
3712188 | Aiorson | Jan 1973 | A |
3720142 | Pare | Mar 1973 | A |
3724155 | Reeve | Apr 1973 | A |
3736713 | Flachbarth et al. | Jun 1973 | A |
3742669 | Mansfeld | Jul 1973 | A |
3745726 | Thom | Jul 1973 | A |
3750359 | Balzer et al. | Aug 1973 | A |
3760544 | Hawes et al. | Sep 1973 | A |
3797188 | Mansfeld | Mar 1974 | A |
3849958 | Balzer et al. | Nov 1974 | A |
3856839 | Smith et al. | Dec 1974 | A |
3871787 | Stegmeier | Mar 1975 | A |
3880539 | Brown | Apr 1975 | A |
3883475 | Racky et al. | May 1975 | A |
3896511 | Cuschera | Jul 1975 | A |
3907443 | McLean | Sep 1975 | A |
3911635 | Traupe | Oct 1975 | A |
3934905 | Lockard | Jan 1976 | A |
3944704 | Dirks | Mar 1976 | A |
3951562 | Fyfe | Apr 1976 | A |
3956557 | Hurst | May 1976 | A |
3974609 | Attaway | Aug 1976 | A |
4007994 | Brown | Feb 1977 | A |
4018017 | Schoop | Apr 1977 | A |
4018539 | Puccio | Apr 1977 | A |
4022538 | Watson et al. | May 1977 | A |
4030156 | Raymond | Jun 1977 | A |
4055925 | Wasserman et al. | Nov 1977 | A |
4058947 | Earle et al. | Nov 1977 | A |
4066578 | Murch et al. | Jan 1978 | A |
4129967 | Barlow | Dec 1978 | A |
4132491 | Scheffel | Jan 1979 | A |
4134875 | Tapia | Jan 1979 | A |
4140419 | Puccio | Feb 1979 | A |
4143088 | Favre et al. | Mar 1979 | A |
4146939 | Izzi | Apr 1979 | A |
4174420 | Anolick et al. | Nov 1979 | A |
4181711 | Ohashi et al. | Jan 1980 | A |
4204856 | Yigdall et al. | May 1980 | A |
4216261 | Dias | Aug 1980 | A |
4221502 | Tanikawa | Sep 1980 | A |
4224374 | Priest | Sep 1980 | A |
4237182 | Fulmer et al. | Dec 1980 | A |
4245925 | Pyle | Jan 1981 | A |
4246313 | Stengle, Jr. | Jan 1981 | A |
4258606 | Wilson | Mar 1981 | A |
4270318 | Carroll et al. | Jun 1981 | A |
4271650 | Lynn-Jones | Jun 1981 | A |
4288559 | Illger | Sep 1981 | A |
4290249 | Mass | Sep 1981 | A |
4290713 | Brown et al. | Sep 1981 | A |
4295311 | Dahlberg | Oct 1981 | A |
4305680 | Rauchfuss, Jr. | Dec 1981 | A |
4320611 | Freeman | Mar 1982 | A |
4359847 | Schukolinski | Nov 1982 | A |
4362428 | Kerschner | Dec 1982 | A |
4367976 | Bowman | Jan 1983 | A |
4374207 | Stone et al. | Feb 1983 | A |
4374442 | Hein et al. | Feb 1983 | A |
4401716 | Tschudin-Mahrer | Aug 1983 | A |
4424956 | Grant et al. | Jan 1984 | A |
4431691 | Greenlee | Feb 1984 | A |
4432465 | Wuertz | Feb 1984 | A |
4433732 | Licht et al. | Feb 1984 | A |
4447172 | Galbreath | May 1984 | A |
4453360 | Barenberg | Jun 1984 | A |
4455396 | Al-Tabacichall et al. | Jun 1984 | A |
4473015 | Hounsel | Sep 1984 | A |
4486994 | Fisher et al. | Dec 1984 | A |
4494762 | Geipel | Jan 1985 | A |
4533278 | Corsover et al. | Aug 1985 | A |
4558875 | Yamaji et al. | Dec 1985 | A |
4564550 | Tschudin-Mahrer | Jan 1986 | A |
4566242 | Dunsworth | Jan 1986 | A |
4576841 | Lingemann | Mar 1986 | A |
4589242 | Moulinie et al. | May 1986 | A |
4615411 | Breitscheidel et al. | Oct 1986 | A |
4620330 | Izzi, Sr. | Nov 1986 | A |
4620407 | Schmid | Nov 1986 | A |
4622251 | Gibb | Nov 1986 | A |
4637085 | Hartkorn | Jan 1987 | A |
4687829 | Chaffee et al. | Aug 1987 | A |
4693652 | Sweeney | Sep 1987 | A |
4711928 | Lee et al. | Dec 1987 | A |
4717050 | Wright | Jan 1988 | A |
4745711 | Box | May 1988 | A |
4751024 | Shu et al. | Jun 1988 | A |
4756945 | Gibb | Jul 1988 | A |
4767655 | Tschudin-Mahrer | Aug 1988 | A |
4773791 | Hartkorn | Sep 1988 | A |
4780571 | Huang | Oct 1988 | A |
4781003 | Rizza | Nov 1988 | A |
4784516 | Cox | Nov 1988 | A |
4791773 | Taylor | Dec 1988 | A |
4807843 | Courtois et al. | Feb 1989 | A |
4815247 | Nicholas | Mar 1989 | A |
4824283 | Belangie | Apr 1989 | A |
4835130 | Box | May 1989 | A |
4839223 | Tschudin-Mahrer | Jun 1989 | A |
4848044 | LaRoche et al. | Jul 1989 | A |
4849223 | Pratt et al. | Jul 1989 | A |
4866898 | LaRoche | Sep 1989 | A |
4879771 | Piskula | Nov 1989 | A |
4882890 | Rizza | Nov 1989 | A |
4885885 | Gottschling | Dec 1989 | A |
4893448 | McCormick | Jan 1990 | A |
4901488 | Murota et al. | Feb 1990 | A |
4911585 | Vidal et al. | Mar 1990 | A |
4916878 | Nicholas | Apr 1990 | A |
4920725 | Gore | May 1990 | A |
4927291 | Belangie | May 1990 | A |
4932183 | Coulston | Jun 1990 | A |
4942710 | Rumsey | Jul 1990 | A |
4952615 | Welna | Aug 1990 | A |
4957798 | Bogdany | Sep 1990 | A |
4965976 | Riddle | Oct 1990 | A |
4977018 | Irrgeher et al. | Dec 1990 | A |
4992481 | von Bonin et al. | Feb 1991 | A |
5007765 | Dietlein et al. | Apr 1991 | A |
5013377 | Lafond | May 1991 | A |
5024554 | Benneyworth et al. | Jun 1991 | A |
5026609 | Jacob et al. | Jun 1991 | A |
5035097 | Cornwall | Jul 1991 | A |
5053442 | Chu et al. | Oct 1991 | A |
5060439 | Clements et al. | Oct 1991 | A |
5071282 | Brown | Dec 1991 | A |
5072557 | Naka et al. | Dec 1991 | A |
5082394 | George | Jan 1992 | A |
5094057 | Morris | Mar 1992 | A |
5115603 | Blair | May 1992 | A |
5120584 | Ohlenforst et al. | Jun 1992 | A |
5121579 | Hamar et al. | Jun 1992 | A |
5129754 | Brower | Jul 1992 | A |
5130176 | Baerveldt | Jul 1992 | A |
5137937 | Huggard et al. | Aug 1992 | A |
5140797 | Gohike et al. | Aug 1992 | A |
5168683 | Sansom et al. | Dec 1992 | A |
5173515 | von Bonin et al. | Dec 1992 | A |
5190395 | Cathey et al. | Mar 1993 | A |
5209034 | Box et al. | May 1993 | A |
5213441 | Baerveldt | May 1993 | A |
5222339 | Hendrickson et al. | Jun 1993 | A |
5249404 | Leek et al. | Oct 1993 | A |
5270091 | Krysiak et al. | Dec 1993 | A |
5297372 | Nicholas | Mar 1994 | A |
5327693 | Schmid | Jul 1994 | A |
5335466 | Langohr | Aug 1994 | A |
5338130 | Baerveldt | Aug 1994 | A |
5354072 | Nicholson | Oct 1994 | A |
5365713 | Nicholas | Nov 1994 | A |
5367850 | Nicholas | Nov 1994 | A |
5380116 | Colonias | Jan 1995 | A |
5436040 | Lafond | Jul 1995 | A |
5441779 | Lafond | Aug 1995 | A |
5443871 | Lafond | Aug 1995 | A |
5450806 | Jean | Sep 1995 | A |
5456050 | Ward | Oct 1995 | A |
5472558 | Lafond | Dec 1995 | A |
5479745 | Kawai et al. | Jan 1996 | A |
5485710 | Lafond | Jan 1996 | A |
5489164 | Tusch et al. | Feb 1996 | A |
5491953 | Lafond | Feb 1996 | A |
5498451 | Lafond | Mar 1996 | A |
5501045 | Wexler | Mar 1996 | A |
5508321 | Brebner | Apr 1996 | A |
5528867 | Thompson | Jun 1996 | A |
RE35291 | Lafond | Jul 1996 | E |
5572920 | Kennedy et al. | Nov 1996 | A |
5607253 | Almstrom | Mar 1997 | A |
5611181 | Shreiner et al. | Mar 1997 | A |
5616415 | Lafond | Apr 1997 | A |
5628857 | Baerveldt | May 1997 | A |
5635019 | Lafond | Jun 1997 | A |
5649784 | Ricaud et al. | Jul 1997 | A |
5650029 | Lafond | Jul 1997 | A |
5656358 | Lafond | Aug 1997 | A |
5658645 | Lafond | Aug 1997 | A |
5664906 | Baker et al. | Sep 1997 | A |
5680738 | Allen et al. | Oct 1997 | A |
5686174 | Irrgeher | Nov 1997 | A |
5691045 | Lafond | Nov 1997 | A |
5744199 | Joffre | Apr 1998 | A |
5759665 | Lafond | Jun 1998 | A |
5762738 | Lafond | Jun 1998 | A |
5765332 | Landin et al. | Jun 1998 | A |
5773135 | Lafond | Jun 1998 | A |
5791111 | Beenders | Aug 1998 | A |
5806272 | Lafond | Sep 1998 | A |
5813191 | Gallagher | Sep 1998 | A |
5830319 | Landin | Nov 1998 | A |
5851609 | Baratuci et al. | Dec 1998 | A |
5875598 | Batten et al. | Mar 1999 | A |
5876554 | Lafond | Mar 1999 | A |
5878448 | Molter | Mar 1999 | A |
5887400 | Bratek et al. | Mar 1999 | A |
5888341 | Lafond | Mar 1999 | A |
5935695 | Baerveldt | Aug 1999 | A |
5957619 | Kinoshita et al. | Sep 1999 | A |
5974750 | Landin et al. | Nov 1999 | A |
5975181 | Lafond | Nov 1999 | A |
6001453 | Lafond | Dec 1999 | A |
6014848 | Hillburn, Jr. | Jan 2000 | A |
6035536 | Dewberry | Mar 2000 | A |
6035587 | Dressler | Mar 2000 | A |
6035602 | Lafond | Mar 2000 | A |
6039503 | Cathey | Mar 2000 | A |
D422884 | Lafond | Apr 2000 | S |
6088972 | Johanneck | Jun 2000 | A |
6102407 | Moriya et al. | Aug 2000 | A |
6115980 | Knak et al. | Sep 2000 | A |
6115989 | Boone et al. | Sep 2000 | A |
6128874 | Olson | Oct 2000 | A |
6131352 | Bames et al. | Oct 2000 | A |
6131364 | Peterson | Oct 2000 | A |
6131368 | Tramposch et al. | Oct 2000 | A |
6138427 | Houghton | Oct 2000 | A |
6148890 | Lafond | Nov 2000 | A |
6158915 | Kise | Dec 2000 | A |
6189573 | Ziehm | Feb 2001 | B1 |
6192652 | Goer et al. | Feb 2001 | B1 |
6207085 | Ackerman | Mar 2001 | B1 |
6207089 | Chuang | Mar 2001 | B1 |
6219982 | Eyring | Apr 2001 | B1 |
6237303 | Allen et al. | May 2001 | B1 |
6250358 | Lafond | Jun 2001 | B1 |
6253514 | Jobe et al. | Jul 2001 | B1 |
6329030 | Lafond | Dec 2001 | B1 |
6350373 | Sondrup | Feb 2002 | B1 |
6351923 | Peterson | Mar 2002 | B1 |
6355328 | Baratuci et al. | Mar 2002 | B1 |
6368670 | Frost et al. | Apr 2002 | B1 |
6419237 | More | Jul 2002 | B1 |
6439817 | Reed | Aug 2002 | B1 |
6443495 | Harmeling | Sep 2002 | B1 |
6460214 | Chang | Oct 2002 | B1 |
6491468 | Hagen | Dec 2002 | B1 |
6499265 | Shreiner | Dec 2002 | B2 |
6532708 | Baerveldt | Mar 2003 | B1 |
6544445 | Graf et al. | Apr 2003 | B1 |
6552098 | Bosch et al. | Apr 2003 | B1 |
6574930 | Kiser | Jun 2003 | B2 |
6581341 | Baratuci et al. | Jun 2003 | B1 |
6598634 | Pelles | Jul 2003 | B1 |
6665995 | Deane | Dec 2003 | B2 |
6666618 | Anaya et al. | Dec 2003 | B1 |
6685196 | Baerveldt | Feb 2004 | B1 |
6820382 | Chambers et al. | Nov 2004 | B1 |
6860074 | Stanchfield | Mar 2005 | B2 |
6862863 | McCorkle et al. | Mar 2005 | B2 |
6877292 | Baratuci et al. | Apr 2005 | B2 |
6897169 | Matsui et al. | May 2005 | B2 |
6905650 | McIntosh et al. | Jun 2005 | B2 |
6948287 | Kom | Sep 2005 | B2 |
6989188 | Brunnhofer et al. | Jan 2006 | B2 |
6996944 | Shaw | Feb 2006 | B2 |
7043880 | Morgan et al. | May 2006 | B2 |
7070653 | Frost et al. | Jul 2006 | B2 |
7090224 | Iguchi et al. | Aug 2006 | B2 |
7101614 | Anton et al. | Sep 2006 | B2 |
7114899 | Gass et al. | Oct 2006 | B2 |
7210557 | Phillips et al. | May 2007 | B2 |
7222460 | Francies, III et al. | May 2007 | B2 |
7225824 | West et al. | Jun 2007 | B2 |
7240905 | Stahl, Sr. | Jul 2007 | B1 |
7278450 | Condon | Oct 2007 | B1 |
7287738 | Pitlor | Oct 2007 | B2 |
7441375 | Lang | Oct 2008 | B2 |
7621731 | Armantrout et al. | Nov 2009 | B2 |
7665272 | Reen | Feb 2010 | B2 |
7678453 | Ohnstad et al. | Mar 2010 | B2 |
7748310 | Kennedy | Jul 2010 | B2 |
7757450 | Reyes et al. | Jul 2010 | B2 |
7836659 | Barnes | Nov 2010 | B1 |
7856781 | Hillburn, Jr. | Dec 2010 | B2 |
7877958 | Baratuci et al. | Feb 2011 | B2 |
7941981 | Shaw | May 2011 | B2 |
8033073 | Binder | Oct 2011 | B1 |
8079190 | Hilburn, Jr. | Dec 2011 | B2 |
8171590 | Kim | May 2012 | B2 |
8172938 | Alright et al. | May 2012 | B2 |
8317444 | Hensley | Nov 2012 | B1 |
8333532 | Derrigan et al. | Dec 2012 | B2 |
8341908 | Hensley et al. | Jan 2013 | B1 |
8365495 | Witherspoon | Feb 2013 | B1 |
8397453 | Shaw | Mar 2013 | B2 |
8601760 | Hilburn, Jr. | Dec 2013 | B2 |
8720138 | Hilburn, Jr. | May 2014 | B2 |
8739495 | Witherspoon | Jun 2014 | B1 |
8813449 | Hensley et al. | Aug 2014 | B1 |
8813450 | Hensley et al. | Aug 2014 | B1 |
9068297 | Hensley et al. | Jun 2015 | B2 |
9200437 | Hensley et al. | Dec 2015 | B1 |
20020052425 | Kaku et al. | May 2002 | A1 |
20020088192 | Calixto | Jul 2002 | A1 |
20020095908 | Kiser | Jul 2002 | A1 |
20020113143 | Frost et al. | Aug 2002 | A1 |
20020193552 | Kiuchi et al. | Dec 2002 | A1 |
20030005657 | Visser et al. | Jan 2003 | A1 |
20030110723 | Baerveldt | Jun 2003 | A1 |
20030213211 | Morgan et al. | Nov 2003 | A1 |
20040020162 | Baratuci et al. | Feb 2004 | A1 |
20040024077 | Braun et al. | Feb 2004 | A1 |
20040045234 | Morgan et al. | Mar 2004 | A1 |
20040101672 | Anton et al. | May 2004 | A1 |
20040113390 | Broussard, III | Jun 2004 | A1 |
20040163724 | Trabbold et al. | Aug 2004 | A1 |
20050005553 | Baerveldt | Jan 2005 | A1 |
20050066600 | Moulton et al. | Mar 2005 | A1 |
20050095066 | Warren | May 2005 | A1 |
20050120660 | Kim et al. | Jun 2005 | A1 |
20050136761 | Murakami et al. | Jun 2005 | A1 |
20050155305 | Cosenza et al. | Jul 2005 | A1 |
20050193660 | Mead | Sep 2005 | A1 |
20050222285 | Massengill et al. | Oct 2005 | A1 |
20060010817 | Shull | Jan 2006 | A1 |
20060030227 | Hairston et al. | Feb 2006 | A1 |
20060117692 | Trout | Jun 2006 | A1 |
20060178064 | Balthes et al. | Aug 2006 | A1 |
20070059516 | Vincent et al. | Mar 2007 | A1 |
20070137135 | Shymkowich | Jun 2007 | A1 |
20070199267 | Moor | Aug 2007 | A1 |
20070261342 | Cummings | Nov 2007 | A1 |
20080172967 | Hilburn | Jul 2008 | A1 |
20080193738 | Hensley et al. | Aug 2008 | A1 |
20080268231 | Deib | Oct 2008 | A1 |
20090036561 | Nygren | Feb 2009 | A1 |
20090223150 | Baratuci et al. | Sep 2009 | A1 |
20090223159 | Colon | Sep 2009 | A1 |
20090246498 | Deiss | Oct 2009 | A1 |
20090315269 | Deiss | Dec 2009 | A1 |
20100058696 | Mills | Mar 2010 | A1 |
20100275539 | Shaw | Nov 2010 | A1 |
20100281807 | Bradford | Nov 2010 | A1 |
20100319287 | Shaw | Dec 2010 | A1 |
20110016808 | Hulburn, Jr. | Jan 2011 | A1 |
20110083383 | Hilburn, Jr. | Apr 2011 | A1 |
20110088342 | Stahl, Sr. et al. | Apr 2011 | A1 |
20110135387 | Derrigan et al. | Jun 2011 | A1 |
20110247281 | Pilz et al. | Oct 2011 | A1 |
20120117900 | Shaw | May 2012 | A1 |
20140151968 | Hensley et al. | Jun 2014 | A1 |
20140219719 | Hensley et al. | Aug 2014 | A1 |
20140360118 | Hensley et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1280007 | Apr 1989 | CA |
1334268 | Aug 1989 | CA |
1259351 | Sep 1989 | CA |
1280007 | Feb 1991 | CA |
2256660 | Feb 2000 | CA |
2296779 | Nov 2006 | CA |
2640007 | Mar 2009 | CA |
4436280 | Apr 1996 | DE |
19809973 | Jul 1999 | DE |
102005054375 | May 2007 | DE |
0976882 | Feb 1992 | EP |
0942107 | Sep 1999 | EP |
1118715 | Jul 2001 | EP |
1118726 | Jul 2001 | EP |
1540220 | Feb 2004 | EP |
1540220 | Aug 2006 | EP |
1983119 | Apr 2007 | EP |
1983119 | Oct 2008 | EP |
977929 | Dec 1964 | GB |
1359734 | Jul 1974 | GB |
1495721 | Dec 1977 | GB |
1519795 | Aug 1978 | GB |
2181093 | Apr 1987 | GB |
2251623 | Jul 1992 | GB |
2359265 | Aug 2001 | GB |
2377379 | Jan 2003 | GB |
200645950 | Feb 2006 | JP |
2003006109 | Jan 2003 | WO |
2007023118 | Mar 2007 | WO |
2007024246 | Mar 2007 | WO |
Entry |
---|
Schul International Co., LLC., Firejoint 2FR-H, Fire Rated Expansion Joint 2 Hour Fire Rated, labeled Copyright 2012, pp. 1-2. |
Willseal LLC, Product Data Sheet, Willseal FR-H, Horizontal 2 and 3 hour fire rated seal, labeled Copyright 2013, pp. 1-2. |
Schul International Co., LLC., Firejoint 2FR-V, Fire Rated Expansion Joint- 2 Hour Fire Rated, labeled Copyright 2012, pp. 1-2. |
Nillseal LLc, Product Data Sheet, Willseal FR-V, Vertical 2 and 3 hour fire rated seal, labeled Copyright 2013, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-0082, XHBN.FF-D-0082 Joint Systems, Jul. 29, 2013, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-1100, XHBN.FF-D-1100 Joint Systems, Sep. 24, 2012, pp. 1-2. |
UL Online Certifications Directory, System No. WW-D-2013, XHBN.WW-D-2013 Joint Systems, May 27, 2004, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-2008, XHBN.FF-D-2008 Joint Systems, Mar. 31, 2003, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-1053, XHBN.FF-D-1053 Joint Systems, Nov. 28, 2007, pp. 1-2. |
UL Online Certifications Directory, System No. WW-D-3005, XHBN.WW-D-3005 Joint Systems, Nov. 15, 1999, pp. 1-2. |
UL Online Certifications Directory, XHHW.R8196 Fill, Void or Cavity Materials, labeled Copyright 2014, pp. 1. |
UL Online Certifications Directory, XHBN.FF-D-0075 Joint Systems, Apr. 30, 2010, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-0075, XHBN.FF-D-0075 Joint Systems, Aug. 21, 2014, pp. 1-2. |
UL Online Certifications Directory, XHBN.FF-D-0094 Joint Systems, Sep. 11, 2013, pp. 1-2. |
UL Online Certifications Directory, XHBN.FF-D-1121 Joint Systems, Apr. 25, 2013, pp. 1-2. |
UL Online Certifications Directory, System No. FF-D-2006, XHBN.FF-D-2006 Joint Systems, Jun. 28, 2002, pp. 1-3. |
Underwriters Laboratories (UK) Ltd., Assessment Report, Project No. 12CA37234, Aug. 24, 2012, pp. 1-20. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint—concrete to concrete, Part No. SHH_2_WW_CONC, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint—gypsum to gypsum, Part No.: SHH_2_WW_GYP, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint at concrete wall to window, Part No. SHG_2_WW_CONC_TO_GLASS_INSIDE_CORNER, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint at Gypsum Wall to Window, Part No. SHG_2_WW_GL_INSIDE_CORNER_GYNP, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint—Concrete to Concrete at Head of Wall, Part No. SHH_2_HW_CONC_INSIDE_CORNER, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint—Gypsum to Concrete at Head of Wall, Part No. SHH_HW_GYP_CONC_INSIDE_CORNER, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., 2 inch Quietjoint at Wall Partition to Window, Part No. SHG_2_WW_GL_INSIDE_CORNER_WALL_PARTITION_WINDOW, Mar. 25, 2014, p. 1. |
Emseal Joint Systems, Ltd., Emshield DFR3 MSDS, last modified Sep. 3, 2014, p. 1. |
https://www.google.com/search, seismic colorseal 5130176 “5,130,176”, printed on Oct. 12, 2014, p. 1. |
http://www.amazon.com, search for emseal 8,739,495, 1-16 of 624 results for emseal 8,739,495, printed on Oct. 13, 2014, pp. 1-5. |
http://www.amazon.com/QuietJoint-Acoustic-Partition-Closure-2-sided, QuietJoint Acoustic Partition Closure for 3 inch (75mm) Joint, 10 foot (3m), printed on Sep. 29, 2014, pp. 1-3. |
http://www.amazon.com/QuietJoint-Acoustic-Partition-Closure-3-sided, QuietJoint Acoustic Partition Closure for 5/8 inch (15 mm) Joint, 10 foot (3m), printed on Oct. 13, 2014, pp. 1-3. |
Illbruck, Illmod 2d, Product Information, 2002, pp. 1-2. |
Emseal Joint Systems, Ltd., Laminations as a Build Choice—The Anatomy of Quality in Pre-Compressed Foam Sealants, last modified Jul. 30, 2013, pp. 1-3. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,395; printed in 2015, 48 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,428); printed in 2015, 23 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,472; printed in 2015, 22 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,473; printed in 2015, 22 pages. |
3M; Fire Barrier CP 25WB-FCaulk, Product Data Sheet, Copyright 3M 2001, 4 pages. |
Tremco Incorporated, “Firestop Submittal” Data Sheet collections, Certificate of Conformance dated Nov. 2004, 47 pages; publication date unknown from document. |
Snapshot of Final Office Action for U.S. Appl. No. 90/013,473; dated Nov. 6, 2015, 38 pages. |
ACI 504-R, Guide to Sealing Joint in Concrete Structures, ACI Committee 504, 1997, 44 pages. |
Decision Granting Ex Parte Reexamination on Control No. 90/013,565; Sep. 29, 2015, 19 pages. |
Emseal Joint Systems, Lt., Preformed Sealants and Expansion Joint Systems, May 2002, pp. 1-4. |
Emseal Joint System, Ltd., Tech Data DSH System, Jan. 2000, pp. 1-2. |
Emseal Joint Systems, Ltd., Emseal CAD.dwg, Oct. 2000, pp. 1-7. |
Emseal Joint Systems, Ltd., Installation Instructions: AST & IST Sealant Tapes, Dec. 1998, p. 1. |
Emseal Joint Systems, Ltd., Emshield WFR2, Fire-Rated Expansion Joint Product Data, Jun. 2009, pp. 1-2. |
Emseal Joint System, Ltd., 1/2 Inch Colorseal, Binary Seal System Components, document dated Nov. 24, 1992, p. 1. |
Snapshot of Office Action for U.S. Appl. No. 13/731,327; dated Jan. 4, 2017, 6 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/229,463; dated Jan. 5, 2017, 7 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 13/731,327; dated Feb. 10, 2017, 5 pages. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,395; dated Sep. 14, 2016, 16 pages. |
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,511; dated Sep. 21, 2016, 9 pages. |
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,395; dated Oct. 6, 2016, 9 pages. |
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,565; dated Oct. 7, 2016, 9 pages. |
Dow Coming 890 Self-Leveling Silicone Joint Sealant; Dow Coming Corporation; 1996, 1999. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,428; dated Sep. 8, 2016, 13 pages. |
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,428; dated Oct. 31, 2016, 7 pages. |
Snapshot of Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,511; dated Oct. 31, 2016, 3 pages. |
Snapshot of Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,565; dated Nov. 2, 2016, 3 pages. |
www.stifirestop.com, Specified Technologies, Inc., Product Data Sheet, Series ES Elastomeric Sealant, Copyright 2004, pp. 1-4. |
www.stifirestop.com, Specified Technologies, Inc., Product Data Sheet, Pensil PEN300 Silicone Sealant, Copyright 2004, pp. 1-4. |
Snapshot of Office Action issued in U.S. Appl. No. 14/540,514; printed in 2015, 22 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 12/635,062; dated Oct. 9, 2015, 5 pages. |
Snapshot of Office Action for U.S. Appl. No. 90/013,511; dated Oct. 23, 2015, 28 pages. |
Snapshot of Non-Final Office Action for U.S. Appl. No. 13/731,327; dated Mar. 18, 2016, 27 pages. |
Snapshot of Final Office Action for U.S. Appl. No. 14/211,694; dated Mar. 21, 2016, 16 pages. |
Snapshot of Final Office Action for U.S. Appl. No. 14/455,398; dated Mar. 29, 2016, 12 pages. |
Snapshot of Ex Parte Reexamination Certificate No. U.S. Pat. No. 6,532,708C1 for U.S. Appl. No. 90/013,472; dated Mar. 23, 2016, 3 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/511,394, dated Feb. 17, 2017, 5 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/455,398; dated Mar. 13, 2017, 9 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 13/729,500; dated Mar. 15, 2017, 9 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/278,210; dated Mar. 13, 2017, 8 pages. |
Iso-Chemie, ISO BLOCO 600 solukumitiiviste, Finnish language, pp. 1-2; publication date unknown from document. |
Iso-Chemie, ISO BLOCO 600, Produktbeskrivelse, Norwegian language, pp. 1-2, publication date unknown from document. |
Ashida, Polyurethane and Related Foams, Chapter three: Fundamentals, p. 43, 45. pp. 1-3; publication date unknown from document. |
Merritt, Protection against Hazards, Section 3.30-3.31, 1994, pp. 1-4. |
Schultz, Fire and Flammability Handbook, p. 363, 1985, pp. 1-3. |
Netherlands Standards Institute, Fire resistance tests for non-loadbearing elements—Part 1: Walls, Aug. 1999, NEN-EN 1364-1, pp. 1-32. |
Troitzsch, Jurgen, International plastics flammability handbook, 1983, pp. 1-2. |
Polytite Manufacturing Company, Polytite “R” Colorized Joint Sealant, Jan. 7, 1998, pp. 1-2. |
Quelfire, Passive Fire Protection Products, catalog, pp. 1-68, publication date unknown from document. |
Quelfire, Intufoam, pp. 1-4, publication date unknown from document. |
Saint-Gobain Performance Plastics, Norseal V740, labeled Copyright 2001, pp. 1-2. |
Sandell Manufacturing Company, Inc., Polytite Sealant and Construction Gasket, p. 1, publication date unknown from document. |
Schul International Corporation, Hydrostop, Expansion Joint System, Jan. 17, 2001, pp. 1-2. |
Illbruck, Sealtite-willseal, Plant Bodenwohr, pp. 1-17, publication date unknown from document. |
Schul International Co., LLC., Sealtite “B” Type II, Part of the S3 Sealant System, Jan. 5, 2006, pp. 1-2. |
Sealtite-willseal Joint Sealants, Equivalency Chart for Joint Sealants, p. 1, publication date unknown from document. |
Schul International Co., LLC., Material Safety Data Sheet, Seismic Sealtite, revised date Oct. 23, 2002, pp. 1-3. |
Sealtite-Willseal, Installation Procedures for Seismic Sealtite/250C Joint Sealant, Mar. 4, 2001, p. 1. |
Tremco Illbruck Ltd., Technical Data Sheet, ALFASIL FR, Issue 3, pp. 1-2, Oct. 22, 2007. |
Product Data Sheet, Art. No. 4.22.01 Compriband MPA, pp. 1-2, publication date unknown from document. |
UL Online Certifications Directory, XHBN.Guidelnfo, Joint Systems, last updated Sep. 21, 2013, pp. 1-4. |
UL 1715 Fire Test of Interior Finish Material, http://ulstandardsinfonet.ul.com/scopes/1715.html[Oct. 7, 2014 3:27:15 PM], p. 1, publication date unknown from document. |
Williams Products, Inc., Williams Everlastic 1715 Fire Classified Closures Tech Data, Oct. 2005, p. 1. |
Williams Products, Inc., Everlastic Fire Classifed Closures 1715, http://williamsproducts.net/fire_classified_1715.html [Oct. 7, 2014 3:26:33 PM], pp. 1-3, publication date unknown from document. |
Williams Products, Inc., Installation for partion closures, p. 1, publication date unknown from document. |
Will-Seal Construction Foams, Will-seal is Tested to Perform, p. 1, publication date unknown from document. |
Will-Seal Precompressed Foam Sealant, How Will-Seal Works, p. 1, publication date unknown from document. |
Illbruck, Will-Seal, Basis of Acceptance, 3.0 Construction Requirements, Precompressed Foam Sealants, Section 07915, pp. 1-8, publication date unknown from document. |
Emseal Joint Systems, Ltd., Emseal Colorseal Tech Data, Jul. 2009, p. 1-2. |
Emseal Joint Systems, Ltd., Emseal Colorseal Tech Data, Mar. 2011, p. 1-2. |
Emseal Joint Systems, Ltd., Emseal Horizontal Colorseal Tech Data, Aug. 2014, p. 1-2. |
Emseal Joint Systems, Ltd., Emseal Seismic Colorseal Tech Data, Oct. 2009, pp. 1-2. |
Emseal Joint Systems, Ltd., Emseal Seismic Colorseal Tech Data, Jun. 2010, pp. 1-2. |
Emseal Joint Systems, Ltd., Emseal MST, Multi-Use Sealant Tape, Sep. 2008, pp. 1-2. |
Emseal Joint Systems, Ltd., Emseal MST, Multi-Use Sealant Tape, Oct. 2013, pp. 1-2. |
Emseal Joint Systems, Ltd., Emshield DFR2 System, Tech Data, Sep. 2014, pp. 1-4. |
Emseal Joint Systems, Ltd., Emshield DFR2, last modified Sep. 19, 2014, pp. 1-4. |
Emseal Joint Systems, Ltd., Emshield DFR3, last modified Sep. 4, 2014, pp. 1-5. |
Emseal Joint Systems, Ltd., Emshield WFR2 and WFR3, last modified Sep. 3, 2014, pp. 1-5. |
Emseal Joint Systems, Ltd., Colorseal-on-a-reel, last modified Nov. 10, 2014, pp. 1-3. |
Emseal Joint Systems, Ltd., Colorseal, last modified Oct. 9, 2014, pp. 1-3. |
Emseal GreyFlex Expanding Foam Sealant for Facades, p. 1, publication date unknown from document. |
Emseal Joint Systems, Ltd., QuietJoint, Tech Data, Nov. 2012, pp. 1-2. |
Emseal Corporation Ltd., Material Safety Data Sheet, QuietJoint, MSDS date May 13, 2014, pp. 1-2. |
Emseal Joint Systems, Ltd., QuietJoint CAD Details, last modified Oct. 31, 2014, pp. 1-3. |
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, last modified Oct. 9, 2014, pp. 1-4. |
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, last modified Jul. 29, 2014, pp. 1-4. |
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, No intumescent coating, last modified Sep. 19, 2014, pp. 1-4. |
http://williamsproducts.net/wide.html, Everlastic Wide Joint Seal, http://williamsproducts.net/wide.html[Oct. 7, 2014 3:37:39 PM], pp. 1-3, publication date unknown from document. |
Baerveldt, Konrad, The Applicator—Dear Tom: Emseal has two EIFS Expansion Joint Answers for you, Jun. 1991, pp. 1-4. |
Salamander Industrial Products, Inc., blocoband HF—interior sealant, publication date unknown from document, 4 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,428; printed in 2015, 14 pages. |
Snapshot of Notice of Allowance issued in U.S. Appl. No. 14/080,960; printed in 2015, 5 pages. |
Decision Granting Ex Parte Reexamination on Control No. 90/013,473, dated May 19, 2015, 13 pages. |
U.S. Appl. No. 60/953,703, filed Aug. 3, 2007 underlying U.S. Pat. No. 8,397,453, 24 pages. |
Snapshot of Decision Granting Ex-Parte Reexamination issued in U.S. Appl. No. 90/013,472; printed in 2015; 25 pages. |
Snapshot of Notice of Allowance issued in U.S. Appl. No. 14/229,463; printed in 2015; 8 pages. |
Snapshot of Notice of Allowance issued in U.S. Appl. No. 13/731,327; printed in 2015, 8 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/211,694; printed in 2015, 14 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 13/652,021; printed in 2015, 13 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,511; printed in 2015, 24 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/278,210; printed in 2015, 11 pages. |
Report on the Filing or Determination of an Action Regarding a Patent or Trademark, Docket No. 1:14-cv-358-SM, Filed Aug. 13, 2014 regarding U.S. Pat. No. 8,739,495, p. 1. |
Report on the Filing or Determination of an Action Regarding a Patent or Trademark, Docket No. 1:14-cv-359-Pb, Filed Aug. 13, 2014 regarding U.S. Pat. No. 8,739,495, p. 1. |
Plashes Flammability Handbook, pp. 52, 59, and 60, 3 pages; publication date unknown from document. |
Defendants' Answer, Counterclaims, Affirmative Defenses, and Jury Demand, 1:14-cv-00359-PB, Doc. 11, filed Oct. 3, 2014, 20 pages. |
Defendants' Objection to Plaintiffs Partial Motion to Dismiss, 1:14-cv-00358-SM, Doc. 24, tiled Nov. 10, 2014, pp. 1-3. |
Defendants' Objection to Plaintiffs Motion to Strike Defendants' Tenth Affirmative Defense, 1:14-cv-00358-SM, Doc. 25, filed Nov. 12, 2014, pp. 1-3. |
Defendants' Answer, Counterclaims, and Affirmative Defenses to Plaintiffs Consolidated Complaint, 1:14-cv-00358-SM, Doc. 38, filed Dec. 9, 2014, pp. 1-48. |
Defendants' Objection to Plaintiffs Partial Motion to Dismiss Count III of Defendants' Counterclaim, 1:14-cv-00358-SM, Doc. 50, filed Jan. 16, 2015, pp. 1-15. |
Defendants' Surreply to Plaintiffs Partial Motion to Dismiss Count II of Defendants' Counterclaims, 1:14-cv-00358-SM, Doc. 55, filed Feb. 13, 2015, pp. 1-6. |
Joint Claim Construction and Prehearing Statement, 1:14-cv-00358-SM, Doc. 56, filed Mar. 3, 2015, pp. 1-9. |
Lester Hensley, “Where's the Beef in Joint Sealants? Hybrids Hold the Key AWCI's Construction Dimensions”, Jan. 2006, 3 pgs. |
IsoChemie, Iso-Bloco 600, Correspondence of Jun. 8, 2006, 13 pages. |
Shul International Company, Invoice #18925 to P. J. Spillane, Sep. 14, 2007, 5 pages. |
Illbruck Inc., Tested Physical Properties, 1994, 1 page. |
Andrea Frangi, Zum Brandverhalten von Holzdecken aus Hohlkasten-elementen; Jun. 1999; 125 pages (English Translation). |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, 1:14-cv-00358-SM, 25 pgs. total. |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix A, 6 pgs. |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix B, 270 pgs. |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix B, 376 pgs. |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix C, 125 pgs. |
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix D, 4 pgs. |
IBMB, Test Report No. 3263/5362, Jul. 18, 2002, English Translation, 14 pgs. |
IBMB, Test Report No. 3263/5362, Jul. 18, 2002, German, 13 pgs. |
IBMB, Test Certificate No. 3002/2719, Mar. 22, 2000, English Translation, 14 pgs. |
IBMB, Test Certificate No. P-3568/2560-MPA BS, Sep. 30, 2000, English Translation, 22 pgs. |
IBMB, Test Certificate No. P-3568/2560-MPA BS, Sep. 30, 2000, German, 14 pgs. |
IFT Rosenheim, Evidence of Performance Test Report 105 324691/e U, Apr. 19, 2006, 8 pgs. |
Lester Hensley, “Where's the Beef in Joint Sealants? Hybrids Hold the Key,” Applicator, vol. 23, No. 2, Spring 2001, pp. 1-5. |
Emseal Joint Systems, LTD, Seismic Colorseal, Tech Data, Apr. 1998, pp. 1-2. |
Schul International Co., LLC, Sealtite VP Premium Quality Pre-compressed Joint Sealant for Weather tight, Vapor Permeable, Vertical Applications, Technical Data, dated Oct. 28, 2005, pp. 1-2. |
ISO-CHEMIE GmbH, Product Data Sheet, ISO-FLAME Kombi F 120, pp. 1-2, UK-F010514; publication date unknown from document. |
Schul International Co., LLC, Seismic Sealtite II, Colorized, Pre-compressed Joint Sealant for Vertical Applications, Technical Data, dated Sep. 20, 2006, pp. 1-2. |
Dow Corning Corporation, Dow Corning 790 Silicone Building Sealant, copyright date 1995, 1999, pp. 1-5. |
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Nov. 2008, pp. 1-2. |
Emseal Joint Systems, LTD, Seismic Colorseal, Tech Data, Jul. 2009, pp. 1-2. |
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Jul. 2009, pp. 1-2. |
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Jun. 2010, pp. 1-2. |
Schul International Co., LLC, Sealtite “B”, Pre-compressed Joint Sealant, Premium Quality for Secondary Sealant Applications, Technical Data, dated Oct. 28, 2005, pp. 1-2. |
ISO-Chemie Gmbh, ISO-FLAME Kombi F 120, 2006, German, pp. 1-2. |
ISO-Chemie GmbH, Order Confirmation Sheet, dated Apr. 26, 2007, pp. 1-3. |
ISO-Flame Kombi F 120, Net Price List, Schul International Co., dated Jun. 27, 2006, pp. 1. |
Tremco Illbruck Limited, Compriband Super FR, Fire Rated Acrylic Impregnated Foam Sealant Strip, Issue 3, dated Apr. 12, 2007, pp. 1-2. |
Figure 1: The BS 476; Part 20 & EN 1363-1 time temperature curve, pp. 1; publication date unknown from document. |
Schul International Co., LLC, Sealtite, Premium Quality Pre-compressed Joint Sealant for Waterproof Vertical Applications, pp. 1; publication date unknown from document. |
Schul International Co., LLC, Sealtite 50N, Premium Quality Pre-compressed Joint Sealant for Horizontal Applications, dated Oct. 28, 2005, pp. 1-2. |
Will-Seal, Signed, Sealed & Delivered, pp. 1; publication date unknown from document. |
Illbruck/USA, Will-Seal 150 Impregnanted Precompressed Expanding Foam Sealant Tape, Spec-Data Sheet, Joint Sealers, dated Nov. 1987, pp. 1-2. |
Illbruck, Inc., Will-Seal 250 Impregnanted Precompressed Expanding Foam Sealant Tape, Spec-Data Sheet, Joint Sealers, dated Aug. 1989, pp. 1-2. |
U.S. Department of Labor, Material Safety Data Sheet, Identity: Willseal 150/250 and/or E.P.S., date prepared Jul. 21, 1986, pp. 1-2. |
Illbruck, TechSpec Division Facade & Roofing Solutions, ALFAS compriband, Mar. 2005, pp. 1-10. |
Salamander Industrial Products, Inc., blocoband HF—interior sealant, pp. 1; publication date unknown from document. |
Dow Corning Corporation, Dow Corning 790 Silicone Building Sealant, copyright 2000-2005, pp. 1-2. |
Grace Fireproofing Products. Monokote Z-146T. 2007, pp. 1-2. |
Polyurethane Foam Field Joint Infill Systems, Sep. 23, 2007 (via Snagit), PIH, pp. 1-5. |
International Search Report and Written Opinion for PCT/US2014/032212, dated Aug. 25, 2014, pp. 1-13. |
Grunau Illertissen Gmbh, Fir-A-Flex, Fire Protection for Linear Gaps in Walls and Ceilings, dated Aug. 1996, pp. 1-4. |
UL Standard for Safety for Rests for Fire Resistance of Building Joint Systems, UL 2079, Underwriters Laboratories Inc. (UL); Fourth Edition; dated Oct. 21, 2004. |
Emseal “Pre-cured-Caulk-and-Backerblock” Not New, Not Equal to Emseal's Colorseal, Jul. 19, 2012. |
Emseal Drawing Part No. 010-0-00-00 dated Dec. 6, 2005. |
Emseal Horizontal Colorseal Tech Data, dated Jun. 1997. |
Emseal Joint Systems, Drawing SJS-100-CHT-N, Nov. 20, 2007. |
Emseal Technical Bulletin, Benchmarks of Performance for High-Movement Acrylic-Impregnated, Precompressed, Foam Sealants when Considering Substitutions, Jul. 3, 2012. |
Emseal, Colorseal & Seismic Colorseal, May 1997, Install Data Colorseal & Seismic Colorseal, p. 1-2. |
Emseal, Colorseal, Jan. 2000, Colorseal TechData, p. 1-2. |
Emseal, Is there a gap in your air barrier wall design?, Jul. 19, 2012. |
Manfredi, L. “Thermal Degradation and Fire Resistance of Unsaturated Polyester, Modified Acrylic Resins and their Composites with Natural Fibres”; Science Direct, 2005. |
Stein et al., “Chlorinated Paraffins as Effective Low Cost Flame Retardants for Polyethylene”; publication date unknown from document. |
DIN 4102, Part 2, Fire Behaviour of Building Materials and Building Components, Sep. 1977. |
Emseal Joint Systems, Ltd., Material Safety Data Sheet for AST-HI-ACRYLIC, pp. 1-2, date issued Apr. 2002. |
ISO-Chemie, GmbH., Iso-Bloco 600, pp. 1-2, EN-B010706; publication date unknown from document. |
ISO-Chemie, GmbH., Iso-Flame Kombi F 120, pp. 1-2., 2006. |
Underwriters Laboratories Inc., UL Standard for Safety for Fire Tests of Building Construction and Materials, UL 263, Thirteenth Edition, Apr. 4, 2003, pp. 1-40. |
Snapshot of Notice of Intent to Issue Ex Patent Reexamination Certificate for U.S. Appl. No. 90/013,472; dated Feb. 19, 2016, 8 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/927,047; dated Mar. 16, 2018, 26 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/583,239; dated Mar. 21, 2018, 8 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/950,930; dated Mar. 21, 2018, 7 pages. |
DIN 4102-1, Fire Behaviour of Building Materials and Elements, Part 1, May 1998, pp. 1-33. |
DIN 4102-2, Fire Behaviour of Building Materials and Building Components, Part 2, Sep. 1977, pp. 1-11. |
DIN 4102-15, Fire Behaviour of Building Materials and Elements, Part 15, May 1990, pp. 1-15. |
DIN 18542, Impregnated Cellular Plastics Strips for Sealing External Joints, Jan. 1999, pp. 1-10. |
ASTM International, Standard Test Method for Surface Burning Characteristics of Building Materials, Designation: E-84-04, Feb. 2004, pp. 1-19. |
Illbruck Bau-Technik GmbH, Illbruck Illmod 600, Jan. 2002, pp. 1-2. |
Illbruck Sealant Systems, Inc., Illbruck Willseal 600, 2001, pp. 1-2. |
Iso-Chemie GmbH., Iso-Bloco 600, pp. 1-2, publication date unknown from document. |
Iso-Chemie GmbH., Iso-Flame Kombi F 120, pp. 1-2, copyright 2001. |
Schul International, Co., LLC., Seismic Sealtite II, Colorized, Pre-compressed Joint Sealant for Vertical Applications, Technical Data, 2006, pp. 1-2. |
Underwriters Laboratories, Inc., Standard for Safety, Tests for Fire Resistance of Building Joint Systems, UL-2079, Fourth Edition, Dated Oct. 21, 2004, Revisions through and including Jun. 30, 2008, pp. 1-38. |
MM Systems Corp., MM DSS Expansion Joint, Dual Seal Self-Expanding Seismic System, Feb. 18, 2008, pp. 1-2. |
Order Granting Request for Ex Parte Reexamination for U.S. Pat. No. 8,739,495, Dec. 12, 2014, Control No. 90/013,395, pp. 1-19. |
Emseal Joint Systems, Ltd., Fire-Rating of Emseal 20H System, Feb. 17, 1993, p. 1. |
c:\wp\slsmtg\20hdbj.tbl Apr. 18, 1993, 20H—Description, Benefits, Justification, p. 1. |
Order Granting Request for Ex Parte Reexamination for U.S. Pat. No. 8,813,449, Feb. 11, 2015, Control No. 90/013,428, pp. 1-19. |
Snapshot of Office Action issued in U.S. Appl. No. 90/013,395; printed in 2015, 27 pages. |
DIN 4102-16, Fire Behaviour of Building Materials and Elements, Part 16, May 1998, pp. 1-12. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,565; dated Jul. 19, 2016, 5 pages. |
Mercury et al., “On the Decomposition of Synthetic Gibbsite Studied by Neutron Thermodiffractometry”, J. Am. Ceram, Soc. 89, (2006), pp. 3728-3733. |
Brydon et al., “The Nature of Aluminum Hydroxide-Montmorillonite Complexes”, The American Minerologist, vol. 51, May-Jun. 1966, pp. 875-889. |
Huber, Alumina Trihydrate (ATH), A Versatile Pigment for Coatings, Inks, Adhesives, Caulks and Sealants Applications, Dec. 2005, 5 pgs. |
3.3.3.8 Thermal Stability/Loss on Ignition/Endotheric Heat, Figure 3.9, 1 pg. |
2000 Fire Resistance Directory, p. 1012; publication date unknown from document. |
Firestop Submittal Package, Fire Resistive Joint Systems—Waterproofing, SpecSeal Firestop Products, Specified Technologies, Inc, Somerville NJ; p. 1-37, publication date unknown from document. |
Specified Technologies Inc., Product Data Sheet, Series ES, Elastomeric Sealant, Copyright 2000, p. 1-4. |
Specified Technologies Inc., Product Data Sheet, PEN200 Silicone Foam, Copyright 2003, p. 1-2. |
ISO-Chemie GmbH, Schul International Co., Order Confirmation, Doc. No. 135652, Customer No. 38012, Date, Apr. 26, 2007, p. 1-3. |
Watson Bowman ACME, Wabo Seismic Parking Deck Exp. Joints, Sales Drawing, Feb. 6, 1988, 3 pgs. |
Emseal Corp., Horizontal Colorseal Data Sheet, Jun. 1997, 3 pgs. |
Emseal Corp., Horizontal Colorseal Beneath Coverplate Product Design Drawing, Oct. 2000, 1 pg. |
Emseal Corp., 20H System Data Sheet, Sep. 1996, pp. 1-2. |
Watson Bowman Acme, Product Catalog, Feb. 1993, pp. 1-8. |
Emseal Joint Systems, Watertight by Design, Buyline 0339, Copyrighted 1996 and marked Jan. 1999, 8 pgs. |
Dow Corning, Dow Coming 790 Silicone Building Sealant Data Sheet, Copyrighted 1995, 1999, 6 pgs. |
Emseal Joint Systems, Sealing Joints in the Building Envelope: Principles, Products & Practices, Copyright date of 1999, 39 pgs. |
Emseal Joint Systems, Product Catalog, Copyright date of 1987, 16 pgs. |
Emseal Joint Systems, 20H-Compression Seal Comparison, Apr. 12, 1994, 1 pg. |
Emseal Joint Systems, Ltd., Emseal Joint Systems, Marketing Brochure, Jan. 1997, 8 pgs. |
City of San Diego, CWP Guidelines, Feb. 1992, pp. 1-13. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix A, 7 pgs. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix B-1, 346 pgs. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix B-2, 314 pgs. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix C, 159 pgs. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix D, 5 pgs. |
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, 1:14-cv-00358-SM, 27 pgs. total. |
Snapshot of Office Action for U.S. Appl. No. 90/013,428; dated May 6, 2016, 22 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/950,923; dated May 6, 2016, 13 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/730,896; dated May 9, 2016, 18 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/229,463; dated May 12, 2016, 14 pages. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,511; dated May 9, 2016, 12 pages. |
Snapshot of Ex Parte Reexamination Certificate No. U.S. Pat. No. 6,532,708C2 for U.S. Appl. No. 90/013,683; Jun. 7, 2016, 2 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/278,210; dated May 19, 2016, 12 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/511,394; dated May 13, 2016, 6 pages. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,395; dated May 20, 2016, 4 pages. |
Snapshot of Office Action for U.S. Appl. No. 90/013,395; dated Apr. 7, 2016, 37 pages. |
Snapshot of Office Action for U.S. Appl. No. 90/013,565; dated Apr. 8, 2016, 48 pages. |
Emseal Joint Systems, Ltd., BEJS System Tech Data, Mar. 2009, 2 pages. |
Emseal's new Universal-90 expansion joints, Buildingtalk, Pro-Talk Ltd., Mar. 27, 2009, 2 pages. |
Emseal Joint Systems, Ltd., Emseal Emshield DFR2 System DFR3 System Tech Data, May 2010, 4 pages. |
Emseal Seismic Colorseal, Aug. 21, 2007, 4 pages. |
Emseal Joint Systems, Ltd., Emseal New Universal 90's Watertight, Factory Fabricated Upturn/Downturn Transition Pieces for Ensuring Continuity of Seal, Aug. 4, 2009, 4 pages. |
Notification of Transmittal of International Preliminary Report on Patentability in PCT/US14/32212; dated Mar. 13, 2015; 4 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 13/729,500); printed in 2015; 35 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 14/278,210; printed in 2015; 27 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 12/635,0621; printed in 2015; 88 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 13/731,327; printed in 2015; 42 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/455,398; printed in 2015; 9 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 13/652,021; printed in 2015; 34 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 14/080,960; printed in 2015; 10 pages. |
Snapshot of Office Actions issued in U.S. Appl. No. 14/084,930; printed in 2015; 7 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/229,463; printed in 2015; 20 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/455,403; printed in 2015; 12 pages. |
Snapshot of Office Action issued in U.S. Appl. No. 14/211,694; printed in 2015; 6 pages. |
List of several Emseal pending patent applications and patents, and Examiners assigned thereto; Apr. 2015; 2 pages. |
Snapshot of Advisory Action for U.S. Appl. No. 90/013,472-U.S. Appl. No. 90/013,473; dated Dec. 28, 2015,13 pages. |
Snapshot of Non-Final Office Action for U.S. Appl. No. 90/013,428; dated Jan. 5, 2016, 14 pages. |
Snapshot of Non-Final Office Action for U.S. Appl. No. 90/013,565; dated Jan. 8, 2016, 20 pages. |
Snapshot of Ex Parte Reexamination Certificate for U.S. Appl. No. 90/013,428; Nov. 23, 2016, 3 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/540,514; dated Nov. 25, 2016, 4 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/278,210; dated Nov. 30, 2016, 12 pages. |
Snapshot of Examinees Interview Summary for U.S. Appl. No. 90/013,511; dated Aug. 26, 2016, 9 pages. |
Emseal, BEJS System—Bridge Expansion Joint System, May 26, 2010, 5 pages |
Emseal, Emseal Acrylic Log Home Tape Installation Instructions, Jun. 2011, 1 page. |
Snapshot of Notice of Allowance for U.S. Appl. No. 13/652,021; dated Jan. 8, 2016, 7 pages. |
Snapshot of Non-Final Office Action for U.S. Appl. No. 14/084,930; dated Jan. 12, 2016, 11 pages. |
Snapshot of Office Action in Ex Parte Reexamination for U.S. Appl. No. 90/013,395; Jan. 20, 2016, 26 pages. |
Snapshot of Final Office Action for U.S. Appl. No. 14/540,514; dated Mar. 31, 2016, 18 pages. |
Emseal Corporation, Seismic Colorseal by Emseal, “Last Modified”: Aug. 21, 2007, 4 pages. |
Emseal Joint Systems, Ltd., Backerseal (Greyflex), Sep. 2001, 2 pages. |
Emseal Joint Systems, Ltd., Install Data—Horizontal Colorseal—With Expoxy Adhesive, Jun. 2006, 2 pages. |
Schul International Co., LLC., Sealtite VP (600) Technical Data, Premium Quality Pre-compressed Joint Sealant for Weather tight, Vapor Permeable, Vertical Applications, labeled Copyright 1997-2002, pp. 1-2. |
Schul International Co., LLC., Seismic Sealtite, Technical Data, Colorized, Pre-compressed Joint Sealant for Vertical Applications, 2005, pp. 1-2. |
Schul International Co., LLC., Sealtite 50N, Technical Data, Premium Quality Pre-compressed Joint Sealant for Horizontal Applications, labeled Copyright 2002, pp. 1-2. |
Schul International Co., LLC., HydroStop, Expansion Joint System, 2005, pp. 1-2. |
Schul International Co., LL., Sealtite, the Most Complete Line of Pre-compressed Sealants, web archive.org, wayback machine, printed 2014, pp. 1-3. |
Sealant, Waterproofing & Restoration Institute, Sealants: The Professional Guide, labeled Copyright 1995, Chapter II—Sealants, p. 26, pp. 1-3. |
Tremco Illbruck, Cocoband 6069, 2007, p. 1 with English translation. |
Tremco Illbruck, Alfacryl FR Intumescent Acrylic, Fire Rated, Emulsion Acrylic, Intumescent Sealant, 2007, pp. 1-2. |
Tremco Illbruck, Alfasil FR, Fire Rated, Low Modulus, Neutral Cure Silicone Sealant, 2007, pp. 1-2. |
Tremco Illbruck, Compriband 600, Impregnated Joint Sealing Tape, 2007, pp. 1-2. |
Tremco Illbruck, Compriband Super FR, Fire Rated Acrylic Impregnated Foam Sealant Strip, 2007, pp. 1-2. |
Tremco Illbruck, Ltd., Technical Data Sheet, Compriband Super FR, Issue 2, Oct. 18, 2004, pp. 1-4. |
Tremco Illbruck, Ltd., Technical Data Sheet, Compriband Super, Issue 1, Sep. 29, 2004, pp. 1-3. |
Illbruck, TechSpec Division Facade & Roofing Solutions, Mar. 2005, pp. 1-10. |
Tremco Illbruck, Alfas Bond FR, 2007, pp. 1-2. |
Tremco Illbruck, Illmod 600, Jun. 2006, pp. 1-2. |
Tremco Illbruck, the Specification Product Range, 2007, pp. 1-36. |
Tremco Illbruck, Webbflex B1 PU Foam, Fire Rated Expanding Polyurethane Foam, Sep. 11, 2006, pp. 1-2. |
UL Online Certifications Directory, System No. WW-S-0007, XHBN.WW-S-0007, Joint Systems, Dec. 5, 1997, pp. 1-3. |
UL Online Certifications Directory, BXUV.Guidelnfo, Fire-Resistance Ratings ANSI/UL 263, last updated Jun. 26, 2014, pp. 1-24. |
Frangi et al., German language, Zum Brandverhalten von Holzdecken aus Hohlkasten-elementen, Institut fur Baustatik and Konstrucktion, Jun. 1999, pp. 1-130. |
ASTM International, Designation: E 1966-01, Standard Test Method for Fire-Resistive Joint Systems, current edition approved Oct. 10, 2001. Published Jan. 2002, pp. 1-15. |
www.businesswire.com, Celanese Introduces Mowilith Nano Technology Platform for the Next General of Exterior Coatings, Nurnberg, Germany, May 8, 2007, pp. 1-3. |
Illbruck, Willseal firestop applied in the joints of the new Pfalz Theater in Kaiserlautern, pp. 1-2; publication date unknown document. |
Dayton Superior Chemical & Cement Products, Marketing Update, Fall 2005, pp. 1-2. |
Dow Coming Case Study EU Parliament, Brussels, p. 1; publication date unknown from document. |
Dow Coming Silicone Sealants, Dow Coming 790 Silicone Building Sealant, Ultra-low-modulus sealant for new and remedial construction joint sealing applications, labeled Copyright 2000-2005, pp. 1-2. |
Dow Coming, John D. Farrell Letter to Emseal USA, Wilford Brewer, reference: Emseal Greyflex, Oct. 4, 1984, p. 1. |
Dow Coming letter to Customer, Reference: Sealant Certification for Dow Coming 790 Silicone Building Sealant, p. 1; publication date unknown from document. |
Emseal Joint Systems, Ltd., Greyflex & Backerseal Wet Sealant Compatibility Chart, Test Data, Sep. 1991, p. 1. |
Emseal Joint Systems, Emseal preformed expanding foam sealant, 07920/MAN, pp. 1-2; publication date unknown from document. |
Colorseal by Emseal Specification Sections 07 90 00/ 07 95 00, pp. 1-4, publication date unknown from document. |
Emseal Joint Systems, Ltd., Emseal Color-seal, Tech Data, pp. 1-2, publication date unknown from document. |
Emseal Joint Systems, Ltd., Emseal Color-Seal, p. 1, publication date unknown from document. |
www.emseal.com/products, Horizontal Colorseal by Emseal Expansion Joints and Pre-Compressed Sealants, last modified Sep. 19, 2014. |
Horizontal Colorseal by Emseal, Specification Sections 07 90 00/ 07 95 00, pp. 1-4; publication date unknown document. |
Emseal Material Safety Data Sheet, Acrylic Loghome Tape, pp. 1-2, issued Apr. 2002. |
Seismic Colorseal by Emseal Specification Sections 07 90 00/ 07 95 00, pp. 1-4; publication date unknown from document. |
Emseal Joint Systems, Ltd., Summary Guide Specification, p. 1; publication date unknown from document. |
Emseal Joint Systems, the complete package for all joint requirements, 1988, pp. 1-6. |
Envirograf, Cavity Barriers Fire Seal Range, Technical Data, pp. 1-32; publication date from unknown from document. |
web.archive.org, www.envirogratcom, Product 40: Intumescent-Coated Fireproof Sponge (patented), labeled copyright 2007, pp. 1-2. |
web.archive.org, www.envirogratcom, Product 5: Intumescent-Coated Non-Fibrous Slabs (patented), labeled Copyright Apr. 10, 2007, p. 1. |
Afk Yapi Elemanlari, Hannoband-BSB BG1, Fire prevention tape Flame resistand pursuant to DIN 4102 T1, Technical Data Sheet, pp. 1-4; publication date unknown document. |
Hanno Dicht-und Dammsysteme, Hannoband-BG1, High Performance am Bau, German language, 2000, pp. 1-6. |
Illbruck, willseal firestop fur die Brandschutz-Fuge, Information,German language, pp. 1-2; publication date unknown from document. |
Illbruck Sealant Systems, Cocoband 6069, Productinfomatie, Dutch language, 2003, pp. 1-2. |
Illbruck Sealant Systems, Inc., Sealant Products and Systems, 2002, pp. 1-12. |
Illbruck, Will-Seal, 3.0 Construction Requirements, pp. 1-8; publication date unknown from document. |
Sealtite Joint Sealants, What is the material used in the U-Channel? pp. 1-4; publication date unknown from document. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/950,930; dated Apr. 25, 2018, 10 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 14/950,923; dated May 7, 2018, 10 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/494,069; dated Jul. 6, 2018, 14 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/494,809; dated Jul. 6, 2018, 6 pages. |
Snapshot of Final Office Action for U.S. Appl. No. 90/013,511; dated Feb. 26, 2016, 45 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/950,923; dated Jan. 10, 2018, 7 pages. |
Snapshot of Notice of Allowability for U.S. Appl. No. 14/730,896; dated Jan. 16, 2018, 3 pages. |
Underwriters Laboratories Inc., System WW-D0001, Fire Resistance Directory, vol. 2, Copyright 2000, 3 pages. |
Underwriters Laboratories Inc., System FF-D-1010, 2000 Fire Resistance Directory, 2000, 1 page. |
Emseal Joint Systems, Ltd., Seismic Colorseal—DS (Double-Sided), 2006, 3 pages. |
Emseal Joint Systems, Ltd., BEJS System, Bridge Expansion Joint System, last modified Jul. 29, 2009, 5 pages. |
Emseal Joint Systems, Ltd., AST Hi-Acrylic Metal Roof and Multi-Use Building Sealant, 2005, 2 pages. |
Emseal Joint Systems, Ltd., BEJS System Install Data, Internet archive dated Sep. 22, 2010, 1 page. |
Emseal Joint Systems, Drawing SJS-100 in Recessed Block With Header Material, Jun. 7, 2006, 1 page. |
Specified Technologies, Inc., Firestop Products for Construction Joint Applications, Copyright 2004 indicated on last page, 20 pages. |
Adolf Wurth GmbH & Co., KG, Elastic Joint Sealing Tape, labeled Copyright 2000-2003, pp. 1-7. |
Expanding PU Foam, Technical Data Sheet, Feb. 1997, pp. 1-2. |
ASTM International, Designation: E 84-04, Standard Test Method for Surface Burning Characteristics of Building Materials, Feb. 2004, pp. 1-19. |
ASTM International, Designation: E 176-07, Standard Terminology of Fire Standards, Oct. 2007, pp. 1-20. |
Aubum Manufacturing Company, Auburn Product News, Flame Retardant Silicone Sponge, 2007, p. 1. |
British Board of Agrement, Agrement Certificate No. 97/3331, Second Issue, Compriband Super, 2005, pp. 1-4. |
British Board of Agrement, Agrement Certificate No. 96/3309, Third Issue, Illmod 600 Sealing Tapes, 2003, pp. 1-8. |
Nederland Normalistie-Instituut, Experimental Determination of the Fire Resistance of Elements of Building Construction, NEN 6069, Oct. 1991, English Translation, pp. 1-30. |
British Standards Institution, Fire Tests on Building Materials and Structures, BS 476: Part 20: 1987, pp. 1-44. |
DIN Deutsches Institut for Normung e.V., DIN 18542, Impregnated Cellular Plastics Strips for Sealing External Joints, Requirements and Testing, Jan. 1999, pp. 1-10. |
www.BuildingTalk.com, Emseal Joint Systems, Choosing a Sealant for Building Applications, Hensley. May 21, 2007, pp. 1-6. |
Netherlands Organization for Applied Scientific Research (TNO), Determination of the Fire Resistance According to NEN 6069 of Joints in a Wall Sealed with Cocoband 6069 Impregnated Foam Strip, Nov. 1996, pp. 1-19. |
DIN Deutsches Institut fur Normung e.V., Fire Behaviour of Building Materials and Elements, Part 1: Classification of Building Materials, Requirements and Testing, DIN 4102-1, May 1998, pp. 1-33. |
DIN Deutsches Institut fur Normung e.V., Fire Behaviour of Building Materials and Elements, Overview and Design of classified Building Materials, Elements and Components, DIN 4102-4, Mar. 1994, pp. 1-144. |
DOW Coming Corporation, Dow Coming 790, Silicone Building Sealant, labeled Copyright 2000, pp. 1-6. |
DOW Coming Corporation, Dow Coming 790, Silicone Building Sealant, Product Information, labeled Copyright 2000-2004, pp. 1-4. |
DOW Coming Corporation, Dow Coming Firestop 400 Acrylic Sealant, 2001, pp. 1-4. |
DOW Coming Corporation, Dow Coming Firestop 700 Silicone Sealant, 2001, pp. 1-6. |
Emseal Joint Systems, Horizontal Colorseal, Aug. 2000, pp. 1-2. |
Emseal Joint Systems, Ltd., Colorseal PC/SA Stick STD/001-0-00-00, 1995, p. 1. |
Emseal Joint Systems, Ltd., 20H System, Tech Data, Jun. 1997, pp. 1-2. |
Emseal Joint Systems, Ltd., Colorseal, Aug. 2000, pp. 1-2. |
Emseal Joint Systems, Ltd., DSH System, Watertight Joint System for Decks, Tech Data, Nov. 2005, pp. 1-2. |
Emseal Joint Systems, Ltd., Fire-Rating of Emseal 20H System, Feb. 17, 1993, p. 1-2. |
Emseal Joint Systems, Ltd., Preformed Sealants and Expansion Joint Systems, May 2002, pp. 1-4. |
Emseal Joint Systems, Ltd., Pre-Formed Sealants and Expansion Joints, Jan. 2002, pp. 1-4. |
Emseal Joint Systems, Ltd., Seismic Colorseal, Aug. 2000, pp. 1-2. |
Emseal Joint Systems, Ltd., Seismic Colorseal-DS (Double-Sided) Apr. 12, 2007, pp. 1-4. |
Environmental Seals, Ltd., Envirograf, Fire Kills: Stop it today with fire stopping products for building gaps and openings, 2004, pp. 1-8. |
Fire Retardants, Inc., Fire Barrier CP 25WB+Caulk, labeled Copyright 2002, pp. 1-4. |
Illbruck Bau-Produkte GmbH u. CO. KG., willseal firestop, Product Information Joint Sealing Tape for the Fire Protection Joint, Sep. 30, 1995, pp. 1-9. |
Illbruck, willseal, The Joint Sealing Tape, 1991, pp. 1-19. |
Illbruck, willseal 600, Product Data Sheet, 2001, pp. 1-2. |
Material Safety Data Sheet, Wilseal 150/250 and/or E.P.S., Jul. 21, 1986, pp. 1-2. |
ISO 066, Technical Datasheet, blocostop F-120, 2002 p. 1. |
MM Systems, ejp Expansion Joints, Expanding Impregnated Foam System, intemet archive, wayback machine, Nov. 16, 2007, pp. 1-2. |
MM Systems, ejp Expansion Joints, Colorjoint/SIF—Silicone Impregnated Foam System, intemet archive, wayback machine, Nov. 16, 2007, pp. 1-2. |
MM Systems, ColorJoint/SIF Series, Silicone Seal & Impregnated Expanding Foam, Spec Data, 2007, pp. 1-3. |
Norton Performance Plastics Corporation, Norseal V740FR, Flame Retardant, UL Recognized Multi-Purpose Foam Sealant, labeled Copyright 1996, pp. 1-2. |
Promat Intemational,Ltd., Promaseal FyreStrip, Seals for Movement Joints in Floors/Walls, labeled Copyright 2006, pp. 1-4. |
Promat International, Ltd., Promaseal Guide for Linear Gap Seals and Fire Stopping Systems, Jun. 2008, pp. 1-20. |
Promat International, Ltd., Promaseal IBS Foam Strip, Penetration Seals on Floors/Walls, labeled Copyright 2004, pp. 1-6. |
Promat International, Ltd., Safety Data Sheet, Promaseal IBS, May 25, 2007, pp. 1-3. |
Schul International, Co., LLC., Color Econoseal, Technical Data, Premium Quailty Joint Sealant for Waterproof Vertical and Horizontal Applications, 2005, pp. 1-2. |
Schul International, Co., LLC., Sealtite Airstop FR, Air and Sound Infiltration Barrier, labeled Copyright 1997-04, p. 1. |
Schul International, Co., LLC., Sealtite Standard, Pre-compressed Joint Sealant, High Density, Polyurethane Foam, Waterproofs Vertical Applications, 2007. |
Snapshot of Office Action for U.S. Appl. No. 14/950,930; dated Jun. 16, 2017, 6 pages. |
Illbruck Construction Products, “Worldwide solutions to joint-sealing and acoustic problems”, Apr. 9, 1998, 77 pages, Illbruck Construction Products, Wrexham, United Kingdom. |
Snapshot of Office Action for U.S. Appl. No. 16/115,858; dated Mar. 15, 2019, 7 pages. |
Snapshot of Notice of Allowance for U.S. Appl. No. 16/115,861; dated May 15, 2019, 5 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,196; dated Apr. 30, 2019, 17 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/386,907; dated May 13, 2019, 8 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/386,907; dated Nov. 1, 2018, 8 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/589,329; dated Nov. 1, 2018, 13 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,196; dated Nov. 1, 2018, 17 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,176; dated Nov. 1, 2018, 15 pages. |
Snapshot of Office Action for U.S. Appl. No. 14/927,047; dated Nov. 13, 2018, 32 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/1589,329; dated Apr. 4, 2019, 11 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,176; dated Apr. 8, 2019, 15 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/613,936; dated Jun. 26, 2019, 28 pages. |
Snapshot of Office Action for U.S. Appl. No. 16/243,250; dated Jun. 27, 2019, 25 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/589,329; dated Jul. 25, 2019, 9 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,176; dated Jul. 29, 2019, 12 pages. |
Snapshot of Office Action for U.S. Appl. No. 16/115,858; dated Jul. 30, 2019, 7 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,196; dated Aug. 15, 2019, 13 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/589,329; dated Nov. 20, 2019, 10 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/613,936; dated Nov. 21, 2019, 23 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,176; dated Nov. 21, 2019, 13 pages. |
Snapshot of Office Action for U.S. Appl. No. 16/243,250; dated Jan. 2, 2020, 22 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,196; dated Jan. 2, 2020, 13 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/613,936; dated Jan. 29, 2020, 4 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/589,329; dated Jan. 29, 2020, 3 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/633,176; dated Jan. 29, 2020, 4 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/494,809; dated Dec. 11, 2018, 11 pages. |
Snapshot of Office Action for U.S. Appl. No. 15/613,936; dated Jan. 24, 2019, 7 pages. |
Snapshot of Office Action for U.S. Appl. No. 16/115,861; dated Jan. 24, 2019, 5 pages. |
Notice of Allowance for U.S. Appl. No. 14/927,047; dated Feb. 6, 2019, 8 pages. |
System No. WW-D-0001, 2000N Fire Resistance Directory,p. 1149, 2000, Underwriters Laboratories, Inc., USA. |
81 Elastic Joint Sealing Tape, 4 pages, Aug. 5, 2005, Adolf Wurth GmbH & Co., KG\. |
UL 2079 Tests for Fire Resistance of Building Joint Systems, 38 pages, Jun. 30, 2008, Underwriters Laboratories Inc., Northbrook, Illinois. |
Pensil PEN300 Silicone Sealant, 4 pages, Specified Technologies, Inc., USA. |
System No. FF-D-1010, 2000 Fire Resistance Directory, p. 1018, 2000, Underwriters Laboratories, Inc., USA. |
Sealtite B Technical Data; Oct. 28, 2005; 2 pages, Schul International Co., LLC;USA. |
Number | Date | Country | |
---|---|---|---|
20170342708 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61788866 | Mar 2013 | US | |
61547476 | Oct 2011 | US | |
61116453 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13729500 | Dec 2012 | US |
Child | 15613936 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15613936 | Jun 2017 | US |
Child | 15681622 | US | |
Parent | 14211694 | Mar 2014 | US |
Child | 15613936 | US | |
Parent | 13652021 | Oct 2012 | US |
Child | 14211694 | US | |
Parent | 12622574 | Nov 2009 | US |
Child | 13729500 | US |