Related applications are listed in an application data sheet (ADS) filed herewith. Each of the applications listed in the ADS are hereby incorporated by reference herein.
The entireties of U.S. Pat. No. 7,617,643, U.S. Pat. No. 8,087,205, U.S. Pat. No. 7,752,817, U.S. Patent Publication No. 2009/0178363, U.S. Patent Publication No. 2009/0178369, and U.S. Patent Publication No. 2013/0031856 are each incorporated by reference herein.
1. Field of the Invention
This application is directed toward fire-rated wall construction components for use in building construction.
2. Description of the Related Art
Header tracks, including slotted header tracks, are commonly used in the construction industry as a portion of a wall assembly. A typical header track resembles a generally U-shaped (or some other similarly shaped) elongated channel capable of receiving or covering the ends of wall studs and holding the wall studs in place. The header track also permits the wall assembly to be coupled to an upper horizontal support structure, such as a ceiling, floor of a higher level floor of a multi-level building, or a support beam.
Header tracks generally have a web and at least one flange extending from the web. Typically, the header track includes a pair of flanges, which extend in the same direction from opposing edges of the web. Along the flanges of the slotted tracks generally is a plurality of slots. When the wall studs are placed into a slotted track, the plurality of slots accommodates fasteners to permit attachment of the wall studs to the slotted track. The slots allow the wall studs to move generally orthogonally relative to the track. In those areas of the world where earthquakes are common, movement of the wall studs is important. If the wall studs are rigidly attached to the slotted track and not allowed to move freely in at least one direction, the stability of the wall and the building might be compromised. With the plurality of slots, the wall studs are free to move. Even in locations in which earthquakes are not common, movement between the studs and the header track can be desirable to accommodate movement of the building structure due to other loads, such as stationary or moving overhead loads, for example.
Fire-rated wall construction components and assemblies are also commonly used in the construction industry. These components and assemblies are aimed at preventing fire, heat, and smoke from leaving one portion of a building or room and entering another, usually through vents, joints in walls, or other openings. The components often incorporate fire-retardant materials which substantially block the path of the fire, heat, or smoke for at least some period of time. Intumescent materials work well for this purpose, since they swell and char when exposed to flames, helping to create a barrier to the fire, heat, and/or smoke.
One example of a fire-rated wall construction component is a head-of-wall fire block device sold under the trademark Firestik®. The Firestik® fire block product incorporates a metal profile with a layer of intumescent material on its inner surface. The metal profile of the Firestik® fire block product is independently and rigidly attached to a wall component, such as the bottom of a floor or ceiling, and placed adjacent to the gap between the wallboard (e.g., drywall) and the ceiling. The intumescent material, which is adhered to the inner surface of the metal profile, faces the wallboard, stud and header track. The space created in between the wallboard and ceiling, and the space between the stud and header track, allows for independent vertical movement of the stud in the header track when no fire is present.
When temperatures rise, the intumescent material on the Firestik® fire block product expands rapidly. This expansion creates a barrier which fills the head-of-wall gap and substantially inhibits or at least substantially prevents fire, heat, and smoke from moving through the spaces around the stud and track and entering an adjacent room for at least some period of time.
Some fire-retardant wall systems include a header track that incorporates a fire-retardant material directly on the header track. For example, a header track sold by California Expanded Metal Products Company d/b/a CEMCO, the assignee of the present application, under the trade name FAS Track® includes intumescent material applied to the header track. Preferably, the track is configured to at least substantially prevent the passage of air through a head-of-wall gap in conditions prior to any expansion of a heat-activated expandable fire-retardant material or prior to complete expansion or expansion of the heat-activated expandable fire-retardant material sufficient enough to close the head-of-wall gap.
In some arrangements, a wall assembly includes a header track that incorporates an intumescent material applied to or carried by the header track. A compressible backer rod can be positioned within a deflection gap between an upper edge of the wallboard and a ceiling or other horizontal structural element. The gap can then be covered with a combination of joint compound and joint tape in a manner similar to other wallboard seams or gaps. With such an arrangement, the deflection gap can be covered at the same time and by the same work crew as the other wallboard seams or gaps, thus reducing the total time and cost for assembling the wall. The inventors have unexpectedly discovered that the combination of a compressible backer rod, joint tape and joint compound results in a fire-rated deflection wall assembly that meets current standards for a dynamic head-of-wall joint, such as UL-2079.
An embodiment involves a fire-retardant wall system including a horizontal ceiling element, a plurality of vertical wall studs, and a header track for receiving the wall studs. The track is connected to the horizontal ceiling element and includes a web and a pair of spaced-apart flanges extending in the same direction from opposite edges of the web. Each of the flanges has a first planar portion proximal the web and a second planar portion distal the web. At least one surface on the web is adapted to accept a fire-retardant material strip thereon. At least a first fire-retardant material strip is attached to the at least one surface on the web and is configured to expand when exposed to elevated heat. The first fire-retardant material strip is positioned between and contacts both the web and the horizontal ceiling element to create at least a substantial seal inhibiting the passage of air from one side of the track to the other side of the track through a gap between the horizontal ceiling element and the web when the fire-retardant material strip is in an unexpanded state. At least one piece of wallboard is supported by the wall studs. The wallboard is in direct contact with the first planar portion of the flange and the second planar portion of the flange is recessed inwardly from the first portion such that the wallboard is not in direct contact with the second portion. The wallboard has an upper edge that is spaced from the horizontal ceiling element to define a deflection gap therebetween. A compressible backer rod is positioned within the deflection gap between the upper edge of the wallboard and the horizontal ceiling element and a combination of joint compound and joint tape is applied to the wallboard and covers the deflection gap to enclose the compressible backer rod between an outwardly-facing surface of one of the pair of flanges and the combination of joint compound and joint tape.
In some arrangements, the compressible backer rod has a semi-circular cross-sectional shape. The backer rod can be oriented such that a flat surface of the compressible backer rod faces outwardly and a rounded surface of the compressible backer rod faces inwardly toward the header track.
In some arrangements, the at least one piece of wallboard comprises a first piece of wallboard and a second piece of wallboard layered on top of one another and the compressible backer rod has a circular cross-sectional shape.
In some arrangements, the compressible backer rod is constructed from an open cell polyurethane foam.
In some arrangements, the first fire-retardant material strip is positioned on the outside edge or corner between the web and the at least one flange.
In some arrangements, the web defines a recess and the first fire-retardant material strip is positioned in the recess.
In some arrangements, each one of a plurality of fasteners attaches one of the plurality of studs to the track, and the plurality of fasteners are located within the second planar portion of the at least one flange. A plurality of vertical slots can be formed within the second planar portion and spaced along a length of the track, and each one of the plurality of fasteners can be passed through one of the plurality of vertical slots.
An embodiment involves a fire-retardant wall system including a horizontal ceiling element, a plurality of vertical wall studs and a header track for receiving the wall studs. The header track is connected to the horizontal ceiling element and includes a web and a pair of flanges extending in the same direction from opposite edges of the web. At least one surface on the header track is adapted to accept a fire-retardant material strip thereon. At least a first fire-retardant material strip is attached to the at least one surface on the header track and is configured to expand when exposed to elevated heat. At least one piece of wallboard is supported by the wall studs. The wallboard has an upper edge that is spaced from the horizontal ceiling element to define a deflection gap therebetween. A compressible backer rod is positioned within the deflection gap between the upper edge of the wallboard and the horizontal ceiling element. A combination of joint compound and joint tape is applied to the wallboard and covers the deflection gap to enclose the compressible backer rod between an outwardly-facing surface of one of the pair of flanges and the combination of joint compound and joint tape.
In some arrangements, the compressible backer rod has a semi-circular cross-sectional shape. The backer rod can be oriented such that a flat surface of the compressible backer rod faces outwardly and a rounded surface of the compressible backer rod faces inwardly toward the header track.
In some arrangements, the at least one piece of wallboard includes a first piece of wallboard and a second piece of wallboard layered on top of one another, and the compressible backer rod has a circular cross-sectional shape.
In some arrangements, the compressible backer rod is constructed from an open cell polyurethane foam.
In some arrangements, the first fire-retardant material strip is positioned on the web of the header track.
In some arrangements, the first fire-retardant material strip is positioned on one of the pair of flanges of the header track.
In some arrangements, each one of a plurality of fasteners attaches one of the plurality of studs to one of the pair of flanges of the track. A plurality of vertical slots can be formed within the one of the pair of flanges and spaced along a length of the track, and each one of the plurality of fasteners can be passed through one of the plurality of vertical slots.
An embodiment involves a method of assembling a fire-rated wall having a head-of-wall deflection gap. The method includes attaching a footer track to a horizontal floor element and attaching a header track to a horizontal ceiling element. The header track includes a web and a pair of flanges extending in the same direction from opposing edges of the web. A heat-expandable fire-retardant material strip is attached to the header track. A plurality of studs is positioned between the footer track and the header track and each of the studs is attached to the footer track and the header track. At least one piece of wallboard is attached to the plurality of studs such that an upper edge of the wallboard is spaced below the horizontal ceiling element to create a deflection gap between the upper edge and the horizontal ceiling element. A compressible backer rod is positioned in the deflection gap. The deflection gap is covered with a combination of joint compound and joint tape, which is adhered to the wallboard.
In some embodiments, a first piece of wallboard is attached to the studs and a second piece of wallboard is attached on top of the first piece of wallboard to create a double-layer of wallboard. In such embodiments, the compressible backer rod can have a circular cross-section.
The present application describes numerous embodiments of fire-rated wall construction components and systems for use in building construction. The term “wall,” as used herein, is a broad term, and is used in accordance with its ordinary meaning. The term may include, but is not limited to, vertical walls, ceilings, and floors.
These and other features, aspects and advantages of the various devices, systems and methods presented herein are described with reference to drawings of certain embodiments, which are intended to illustrate, but not to limit, such devices, systems, and methods. It is to be understood that the attached drawings are for the purpose of illustrating concepts of the embodiments discussed herein and may not be to scale.
a illustrates an enlarged cross-sectional view of the header track of
Several embodiments of an improved fire-rated wall system 10 and individual components of the wall system 10 are disclosed herein. The embodiments disclosed herein often are described in the context of a wall system 10 for use in the interior of a building and configured for preventing passage of smoke and/or fire between adjacent rooms in an elevated-temperature environment. The system 10 can include, for example, a metal header track and at least one metal stud nested within the track, with at least one layer of fire-retardant material applied on the header track. However, the embodiments herein can be applied to wall systems configured for other types of environments as well, such as for exterior wall applications, and can include different and/or additional components and types of materials other than those described herein.
For the purpose of providing context to the present disclosure, it is noted that in 2006 a revision was made to Underwriters Laboratory UL 2079 “Test for Fire Resistance of Building Joints”. The revision recommended a new test to determine the amount of air or smoke that can pass through a wall joint (e.g. the area or gap generally between the top of a wallboard and a ceiling component in a fire rated framed wall) in both an ambient condition, as well as at 400 degrees Fahrenheit (F). It had been determined that smoke is as dangerous, or more dangerous, than flames in a fire event. Thus, there was a desire to begin testing for movement of smoke through wall joints. Specifically, there was a desire to test for two vulnerable points or locations in a wall assembly where air or smoke can pass from one room to another. The first of these points or locations is at the intersection between the top header track and the ceiling element (e.g., the ceiling deck or floor deck of the floor above). The second point or location is at the intersection between the header track and the drywall, where a deflection gap is often located. Maintaining a consistent air tight seal of these two points or locations is thus required for passing all components of the UL 2079 test.
However, this new test has since proven to be problematic for some building components because of certain characteristics of current building products and assembly methods. For example, drywall gypsum board is the most common product used in fire rated framed walls. The typical size for drywall gypsum board is 4′×8′ sheets. The drywall can lay relatively flat when up against a flat substrate (e.g., a framed wall). However, if there is any type of protrusion in the substrate, that protrusion can transfer through the drywall, creating a hump or a gap on the other side of the drywall. If the protrusion is around the perimeter of the sheet of drywall, the protrusion can often create a separation gap between the framed wall substrate and the edge of the drywall.
As described above, metal stud framing (e.g. use of a header and/or footer track to hold metal studs) is a very common component of fire-rated framed wall construction. This type of framing can consist of a U-shaped or generally U-shaped track to receive a C-shaped or generally C-shaped stud. The tracks are generally placed along both a floor and a ceiling element, with studs nested into the tracks, one end of each stud nested in a track along the floor, and the other end of each stud nested in a track along the ceiling. In order for the stud to nest into the track, the outside dimension of the stud can be the same as the inside dimension of the track. However, by virtue of the thickness of the steel forming a track, this can often create a slight offset between the track and the drywall, because the drywall can extend along both the track and the stud extending below or above the track. Furthermore, a fastening screw is often used to attach the stud to the track. This additional protrusion or obstacle, combined with the offset described above, can for example create up to a ⅛″ or greater gap between portions the framed wall and the sheet of drywall.
To conceal these gaps, and particularly to seal these gaps in joint areas (e.g. between the top a header track and ceiling element and/or between a stud and drywall near the header track) most fire-rated wall systems attempt to utilize fire resistant sealant. But this has proven to be difficult in many conditions, because the fire resistant sealant is applied after the drywall installation. By the time the drywall is installed over the framed wall, much of the mechanical equipment can already be in place, making it difficult to access and apply the fire resistant sealant over the joints located at the top of wall. Also adding to the problem is the limited working space often caused by mechanical equipment that is typically as close to the ceiling element as possible.
Furthermore, these wall joints can also be difficult for inspectors to see and evaluate whether or not the joint was properly treated for a fire-rated condition. Because of this, inspectors have often become creative in the way they perform their inspections, using small mirrors on the end of an expandable steel rod or probes that can bend around obstructions and take a photograph of the wall joint and fire-retardant sealant. This only illustrates how difficult it can be to properly treat a joint area for fire and smoke protection after drywall installation. This difficulty can be avoided if the fire and smoke protection is done during the initial wall framing. One or more embodiments disclosed herein provide fire and/or smoke protection elements on a framing member (e.g., the header or footer track) such that the fire and/or smoke protection can be completely or at least partially installed during the wall framing process.
With reference to
The track 12 can include, or can be configured to receive, at least one layer of fire-retardant material 20. The fire-retardant material 20 can include paint, intumescent tape, cured sealant, and/or any other suitable types of fire-retardant material. For example, the tracks 12 can include strips of BlazeSeal™ intumescent tape available from the RectorSeal® Corporation of Houston, Tex., or other suitable intumescent materials used in the industry. The intumescent tape can expand up to 35 times its original size when introduced to heat levels above 370 degrees Fahrenheit caused by fire.
The fire-retardant material 20 can be applied (e.g. by adhesion) in the factory or on-site to the header track 12, such that the fire-retardant material 20 remains in contact with the header track 12 when the header track 12 is exposed to elevated levels of heat. The fire-retardant material 20, once expanded, can substantially or completely inhibit smoke or fire passage through a wall joint.
The term “wall joint,” as used herein, generally includes any area of connection and/or gap defined between a first wall system component, such as the top header track 12 or drywall 18, and another wall system component, such as the ceiling element 14. In particular, the term “wall joint” used herein primarily refers to the gaps and/or connections formed between ceiling elements 14 and header tracks 12, between ceiling elements 14 and drywalls 18, and/or between header tracks 12 and drywalls 18, but may extend to other joints as well.
With continued reference to
Each of the flanges 24 can comprise a first segment 32 and a second segment 34. Preferably, the first and second segments 32 define planar portions or are each substantially entirely planar. As illustrated in
In some embodiments, the second segments 34 can have a greater height (i.e. height being in a direction generally perpendicular to the web 22) than the first segments 32. For example, in some embodiments, the first segments 32 can have a height of approximately 1¼″, while the second segments 34 can have a height of approximately 2″. Other heights and ranges of heights are also possible. The height of the first segment 32 preferably is equal to or at least slightly greater than the largest possible gap distance between an upper edge of the drywall 18 and the ceiling element 14 (generally determined by the slot 26 length or height). Thus, the drywall 18 can directly contact the first segment 32 to create a complete or at least a substantial seal between drywall 18 and the first segment 32 of the track 12, as described below. The height of the second segment 34 preferably is selected to provide a desirable amount of relative movement of the stud 16 relative to the track 12. Thus, preferably the height of the second segment 34 is related to and sufficient to accommodate a desired height of the slots 26.
The track 12 can optionally comprise at least one recess 36. The recess 36 can comprise, for example, an area or areas along the web 22 configured to received a strip or strips of fire-retardant material 20. The strip or strips of fire-retardant material 20 can be bonded to the track 12, for example by adhesion, along the recess 36. In order to inhibit or prevent fire and/or smoke from spreading through the wall joints, the strip or strips of fire-retardant material 20 can be compressed between two rigid surfaces. With or without a recess, keeping the material sandwiched, compressed, and/or contained between rigid surfaces can inhibit the spread of fire and/or smoke as the strip of fire-retardant material 20 expands within a wall joint. Without compression or containment of the fire-retardant material 20, the fire-retardant material 20 can potentially expand to a point where the strip of material 20 may fall away from the track 12, and/or can no longer substantially inhibit or prevent the spread of fire and/or smoke. Thus, in at least some of the embodiments described herein, at least one rigid surface can comprise the recess 36, and the other rigid surface can comprise the ceiling element 14. Moreover, prior to any expansion, or prior to complete expansion, of the fire-retardant material strips 20, the illustrated arrangement provides a complete or substantially complete seal between the track 12 and the ceiling element 12 at temperatures below the threshold to cause expansion of the fire-retardant material 20 and/or prior to complete expansion of the fire-retardant material 20. In addition, any of the header tracks 12 incorporating a fire-retardant material strip 20 illustrated herein can create a complete or substantial seal between the header track 12 and the ceiling element 14. Preferably, the seal created is sufficient to permit the wall system 10 to pass the UL 2079 test L-Rating.
With continued reference to
With reference to the top view of the wall system 10 shown in
With reference to
With continued reference to
In some embodiments, the fire-retardant material 20 can be adhesively bonded to the surface or surfaces of the recess 36. In those embodiments where the fire-retardant material has generally four sides when viewed at a cross-section, the fire-retardant material can be adhesively bonded to the track 12 along at least a portion of two of the four sides, such as shown in
With continued reference to
With continued reference to
Preferably, the track 12 of
Preferably, a thickness of the fire-retardant material strips 20 (prior to expansion) is substantially equal to or less than the linear distance or offset between the inward-facing surfaces of the first segment 32 and second segment 34 of the flange 24. Accordingly, the fire-retardant material 20 does not interfere with the vertical movement of the stud 16 and movement of the stud 16 is therefore unlikely to dislodge the fire-retardant material 20 from the track 12. The offset between the first segment 32 and second segment 34 preferably is also generally equal to or somewhat larger than a thickness of the head of the fastener 28. Thus, the thickness of the fire-retardant material 20 and the thickness of the head of the fastener 28 may be similar or generally equal in size.
The width of the fire-retardant material 20 (vertical dimension in
In some arrangements, it may be desirable to provide openings, slots or through-holes 46 (referred to collectively as openings 46) in any of a variety of shapes and sizes in the first segment 32 of the flange 24, or in another portion of the flange 24 or track 12 onto which the fire-retardant material 20 is placed or attached. For example, the openings 46 may be circular, oval, square, rectangular, triangular or other suitable shapes. Preferably, the number, size, shape and/or spacing of the openings 46 is/are selected such that the track 12 maintains sufficient strength, rigidity and durability to function as a top or bottom track despite the removal of material to create the openings 46. As illustrated in
With reference to
With continued reference to
With continued reference to
The embodiment of
With reference to
As described above, the track 12 preferably includes ribs 44 adjacent the recesses 36 along the flanges 24. Advantageously, the ribs 44 can provide spaces sized to accommodate the heads of the fasteners 28 below the ribs 44. The ribs 44 can permit a generally continuous seal between the drywall 18 and flanges 24, without causing the types of substantial gaps shown in
With reference to
With reference to
With reference to
The wall assembly 10 of
Preferably, a backer rod 40 is positioned within the head-of-wall deflection gap, which is the space between the upper end or edge of the wallboard 18 and the ceiling element 14. Preferably, the backer rod 40 is compressible in a cross-sectional direction to accommodate upward movement of the wallboard 18. The backer rod 40 can be constructed partially or entirely from a compressible material. Preferably, the backer rod 40 can be compressed to at least about a 50%, 60% or 70% and up to about an 80% reduction in cross-sectional thickness, including a range encompassing those values or any value within such a range. In some cases, the backer rod 40 may be compressible to somewhat more than 80% of its original cross-sectional dimension or thickness. One preferred backer rod 40 is marketed under the trade name Denver Foam® by Backer Rod Mfg. Inc. of Denver, Colo. The Denver Foam® backer rod is constructed from an open cell polyurethane foam material. However, other suitable, preferably compressible, backer rods and backer rod materials can be used, including closed cell materials. The backer rod 40 can have any suitable cross-sectional shape, including circular or semi-circular, among others. The illustrated backer rod 40 of
The deflection gap, and backer rod 40, preferably is covered by a combination of joint compound 60 and joint tape 62 of any suitable type typically used to conceal seams between panels or sheets of wallboard (e.g., drywall or gypsum board). For example, the joint tape 62 can be a paper material and, more specifically, a cross-fibered paper or a fiberglass mesh tape. The joint compound 60 can be a combination of water, limestone, expanded perlite, ethylene-vinyl acetate polymer, attapulgite, possibly among other ingredients. Preferably, the tape 62 is applied in a flat orientation (rather than folded along its center as in typical corner applications) with an upper edge at or near the ceiling element 14 and at least a portion of the tape 62 overlapping an upper end portion of the outwardly-facing surface of the wallboard 18. Preferably, the tape 62 is covered on both sides or encapsulated in joint compound 60. Thus, the joint compound 60 can be positioned within the deflection gap and/or onto the upper end portion of the outwardly-facing surface of the wallboard 18. The tape 62 can be applied to the joint compound 60 and pressed into position. Then, one or more additional layers of joint compound 60 can be placed over the tape 62. Preferably, this process is the same as or similar to the process used on seams between wallboard panels and can be accomplished by the same crew at the same time as the wallboard seams, thereby increasing the efficiency of assembling the wall assembly 10 and reducing the overall cost. It has been unexpectedly discovered by the present inventors that the joint compound 60/joint tape 62 combination can sustain repeated cycling of the wall assembly 10 relative to the ceiling element 114 (up and down vertical movement of the studs 16 and wallboard 18) without significant or excessive cracking and without delamination or separation of the joint compound 60/joint tape 62 combination from the wallboard 18. Accordingly, an attractive appearance can be maintained at a lower cost than fire caulking or even acoustic sealants.
Previously, compressible backer rods were not been employed in fire-rated head-of-wall deflection gaps because typical backer rod materials (such as open cell polyurethane foam) can only withstand temperatures up to about 500 degrees Fahrenheit. Thus, fire caulking is generally used without any backing material. However, fire caulking generally is only about 8%-19% compressible, which provides resistance to the cycling of the wall assembly 10 and also results in an unattractive finish. The present inventors developed a system which employed intumescent material applied directly to the header track 12, which rendered the fire caulking unnecessary. One such arrangement is shown and described with reference to
Although the above-described header track 12 of
As described above, the backer rod 40 can be of any suitable cross-sectional size and shape.
With reference to
In those embodiments described herein wherein the flanges 24 are generally deep (e.g. where the flanges are longer in height than the web 22 is in width), the track 12 can temporarily be secured to the stud 16 with fasteners 28. Once the track 12 is in position around the stud 16 (i.e. when the stud 16 is nestled within the track 12), the fasteners 28 can be removed, and the drywall 18 can be attached to the stud 16. In some embodiments, a generally U-shaped track having long flanges 24, for example, can hold the stud 16 in place without use of fasteners 28 and permit relative vertical movement. In these embodiments, the track 12 can still incorporate the use of first and second segments 32, 34, ribs 44, or other components, for example, to facilitate alignment of the drywall 18 with the track 12, and to generally create a seal between the drywall 18 and the track 12.
Manufacturing
Metal stud manufactures can use traditional role forming technology to manufacture metal studs 16 and tracks 12 described herein. For example, long narrow widths of flat sheet steel can be fed through a series of rollers to produce a desired profile for a track 12. The profiles of the tracks 12 can be altered by changing the die that controls the rollers. It has been found that altering the tracks 12 to receive fire-retardant material 20 and adding the fire-retardant material 20 as illustrated for example in
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In particular, while the present wall system, components and methods have been described in the context of particularly preferred embodiments, the skilled artisan will appreciate, in view of the present disclosure, that certain advantages, features and aspects of the system may be realized in a variety of other applications, many of which have been noted above. Additionally, it is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1130722 | Fletcher | Mar 1915 | A |
1563651 | Pomerantz | Dec 1925 | A |
2218426 | Hulbert, Jr. | Oct 1940 | A |
2683927 | Maronek | Jul 1954 | A |
2733786 | Drake | Feb 1956 | A |
3129792 | Gwynne | Apr 1964 | A |
3271920 | Downing, Jr. | Sep 1966 | A |
3309826 | Zinn | Mar 1967 | A |
3324615 | Zinn | Jun 1967 | A |
3397495 | Thompson | Aug 1968 | A |
3481090 | Lizee | Dec 1969 | A |
3537219 | Navarre | Nov 1970 | A |
3566559 | Dickson | Mar 1971 | A |
3744199 | Navarre | Jul 1973 | A |
3786604 | Kramer | Jan 1974 | A |
3837126 | Voiturier et al. | Sep 1974 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
3908328 | Nelsson | Sep 1975 | A |
3935681 | Voiturier et al. | Feb 1976 | A |
3955330 | Wendt | May 1976 | A |
3964214 | Wendt | Jun 1976 | A |
3974607 | Balinski | Aug 1976 | A |
4011704 | O'Konski | Mar 1977 | A |
4103463 | Dixon | Aug 1978 | A |
4130972 | Varlonga | Dec 1978 | A |
4144335 | Edwards | Mar 1979 | A |
4144385 | Downing | Mar 1979 | A |
4152878 | Balinski | May 1979 | A |
4164107 | Kraemling et al. | Aug 1979 | A |
4178728 | Ortmanns et al. | Dec 1979 | A |
4203264 | Kiefer et al. | May 1980 | A |
4283892 | Brown | Aug 1981 | A |
4318253 | Wedel | Mar 1982 | A |
4329820 | Wendt | May 1982 | A |
4361994 | Carver | Dec 1982 | A |
4424653 | Heinen | Jan 1984 | A |
4437274 | Slocum et al. | Mar 1984 | A |
4454690 | Dixon | Jun 1984 | A |
4622794 | Geortner | Nov 1986 | A |
4649089 | Thwaites | Mar 1987 | A |
4672785 | Salvo | Jun 1987 | A |
4709517 | Mitchell et al. | Dec 1987 | A |
4723385 | Kallstrom | Feb 1988 | A |
4761927 | O'Keeffe et al. | Aug 1988 | A |
4787767 | Wendt | Nov 1988 | A |
4825610 | Gasteiger | May 1989 | A |
4850385 | Harbeke | Jul 1989 | A |
4885884 | Schilger | Dec 1989 | A |
4918761 | Harbeke | Apr 1990 | A |
4930276 | Bawa et al. | Jun 1990 | A |
5010702 | Daw et al. | Apr 1991 | A |
5094780 | von Bonin | Mar 1992 | A |
5103589 | Crawford | Apr 1992 | A |
5125203 | Daw | Jun 1992 | A |
5127203 | Paquette | Jul 1992 | A |
5127760 | Brady | Jul 1992 | A |
5146723 | Greenwood et al. | Sep 1992 | A |
5155957 | Robertson et al. | Oct 1992 | A |
5157883 | Meyer | Oct 1992 | A |
5167876 | Lem | Dec 1992 | A |
5173515 | von Bonin et al. | Dec 1992 | A |
5212914 | Martin et al. | May 1993 | A |
5222335 | Petrecca | Jun 1993 | A |
5244709 | Vanderstukken | Sep 1993 | A |
5285615 | Gilmour | Feb 1994 | A |
5315804 | Attalla | May 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5347780 | Richards et al. | Sep 1994 | A |
5367850 | Nicholas | Nov 1994 | A |
5374036 | Rogers et al. | Dec 1994 | A |
5390465 | Rajecki | Feb 1995 | A |
5394665 | Johnson | Mar 1995 | A |
5412919 | Pellock et al. | May 1995 | A |
5452551 | Charland et al. | Sep 1995 | A |
5454203 | Turner | Oct 1995 | A |
5456050 | Ward | Oct 1995 | A |
5471791 | Keller | Dec 1995 | A |
5471805 | Becker | Dec 1995 | A |
5552185 | De Keyser | Sep 1996 | A |
5592796 | Landers | Jan 1997 | A |
5604024 | von Bonin | Feb 1997 | A |
5644877 | Wood | Jul 1997 | A |
5687538 | Frobosilo et al. | Nov 1997 | A |
5689922 | Daudet | Nov 1997 | A |
5709821 | von Bonin et al. | Jan 1998 | A |
5740643 | Huntley | Apr 1998 | A |
5755066 | Becker | May 1998 | A |
5765332 | Landin et al. | Jun 1998 | A |
5787651 | Horn et al. | Aug 1998 | A |
5797233 | Hascall | Aug 1998 | A |
5806261 | Huebner et al. | Sep 1998 | A |
5913788 | Herren | Jun 1999 | A |
5921041 | Egri, II | Jul 1999 | A |
5927041 | Sedlmeier et al. | Jul 1999 | A |
5930963 | Nichols | Aug 1999 | A |
5950385 | Herren | Sep 1999 | A |
5968669 | Liu et al. | Oct 1999 | A |
5974750 | Landin et al. | Nov 1999 | A |
6058668 | Herren | May 2000 | A |
6110559 | De Keyser | Aug 2000 | A |
6128874 | Olson et al. | Oct 2000 | A |
6131352 | Barnes et al. | Oct 2000 | A |
6151858 | Ruiz et al. | Nov 2000 | A |
6176053 | St. Germain | Jan 2001 | B1 |
6182407 | Turpin et al. | Feb 2001 | B1 |
6189277 | Boscamp | Feb 2001 | B1 |
6207077 | Burnell-Jones | Mar 2001 | B1 |
6207085 | Ackerman | Mar 2001 | B1 |
6213679 | Frobosilo et al. | Apr 2001 | B1 |
6216404 | Vellrath | Apr 2001 | B1 |
6233888 | Wu | May 2001 | B1 |
6256960 | Babcock et al. | Jul 2001 | B1 |
6305133 | Cornwall | Oct 2001 | B1 |
6374558 | Surowiecki | Apr 2002 | B1 |
6381913 | Herren | May 2002 | B2 |
6405502 | Cornwall | Jun 2002 | B1 |
6430881 | Daudet et al. | Aug 2002 | B1 |
6470638 | Larson | Oct 2002 | B1 |
6606831 | Degelsegger | Aug 2003 | B2 |
6647691 | Becker et al. | Nov 2003 | B2 |
6668499 | Degelsegger | Dec 2003 | B2 |
6679015 | Cornwall | Jan 2004 | B1 |
6705047 | Yulkowski | Mar 2004 | B2 |
6732481 | Stahl, Sr. | May 2004 | B2 |
6783345 | Morgan et al. | Aug 2004 | B2 |
6799404 | Spransy | Oct 2004 | B2 |
6843035 | Glynn | Jan 2005 | B1 |
6854237 | Surowiecki | Feb 2005 | B2 |
6871470 | Stover | Mar 2005 | B1 |
7043880 | Morgan et al. | May 2006 | B2 |
7059092 | Harkins et al. | Jun 2006 | B2 |
7152385 | Morgan et al. | Dec 2006 | B2 |
7191845 | Loar | Mar 2007 | B2 |
7240905 | Stahl | Jul 2007 | B1 |
7302776 | Duncan et al. | Dec 2007 | B2 |
7487591 | Harkins et al. | Feb 2009 | B2 |
7506478 | Bobenhausen | Mar 2009 | B2 |
7513082 | Johnson | Apr 2009 | B2 |
7540118 | Jensen | Jun 2009 | B2 |
7617643 | Pilz et al. | Nov 2009 | B2 |
7681365 | Klein | Mar 2010 | B2 |
7716891 | Radford | May 2010 | B2 |
7752817 | Pilz et al. | Jul 2010 | B2 |
7775006 | Giannos | Aug 2010 | B2 |
7776170 | Yu et al. | Aug 2010 | B2 |
7814718 | Klein | Oct 2010 | B2 |
7827738 | Abrams et al. | Nov 2010 | B2 |
7866108 | Klein | Jan 2011 | B2 |
7950198 | Pilz et al. | May 2011 | B2 |
8056293 | Klein | Nov 2011 | B2 |
8061099 | Andrews | Nov 2011 | B2 |
8069625 | Harkins et al. | Dec 2011 | B2 |
8074416 | Andrews | Dec 2011 | B2 |
8087205 | Pilz et al. | Jan 2012 | B2 |
8100164 | Goodman et al. | Jan 2012 | B2 |
8132376 | Pilz et al. | Mar 2012 | B2 |
8136314 | Klein | Mar 2012 | B2 |
8151526 | Klein | Apr 2012 | B2 |
8181404 | Klein | May 2012 | B2 |
8225581 | Strickland et al. | Jul 2012 | B2 |
8281552 | Pilz et al. | Oct 2012 | B2 |
8322094 | Pilz et al. | Dec 2012 | B2 |
8353139 | Pilz | Jan 2013 | B2 |
8413394 | Pilz et al. | Apr 2013 | B2 |
8495844 | Johnson | Jul 2013 | B1 |
8499512 | Pilz et al. | Aug 2013 | B2 |
8555566 | Pilz et al. | Oct 2013 | B2 |
8578672 | Mattox et al. | Nov 2013 | B2 |
8590231 | Pilz | Nov 2013 | B2 |
8595999 | Pilz et al. | Dec 2013 | B1 |
8607519 | Hilburn | Dec 2013 | B2 |
8640415 | Pilz et al. | Feb 2014 | B2 |
8646235 | Hilburn, Jr. | Feb 2014 | B2 |
8671632 | Pilz et al. | Mar 2014 | B2 |
8793947 | Pilz et al. | Aug 2014 | B2 |
8938922 | Pilz et al. | Jan 2015 | B2 |
8973319 | Pilz et al. | Mar 2015 | B2 |
9127454 | Pilz et al. | Sep 2015 | B2 |
20020029535 | Loper | Mar 2002 | A1 |
20020170249 | Yulkowski | Nov 2002 | A1 |
20030079425 | Morgan et al. | May 2003 | A1 |
20030089062 | Morgan et al. | May 2003 | A1 |
20030213211 | Morgan et al. | Nov 2003 | A1 |
20040010998 | Turco | Jan 2004 | A1 |
20040016191 | Whitty | Jan 2004 | A1 |
20040045234 | Morgan et al. | Mar 2004 | A1 |
20040139684 | Menendez | Jul 2004 | A1 |
20040211150 | Bobenhausen | Oct 2004 | A1 |
20050183361 | Frezza | Aug 2005 | A1 |
20050246973 | Jensen | Nov 2005 | A1 |
20060032163 | Korn | Feb 2006 | A1 |
20060123723 | Weir et al. | Jun 2006 | A1 |
20070056245 | Edmondson | Mar 2007 | A1 |
20070068101 | Weir et al. | Mar 2007 | A1 |
20070193202 | Rice | Aug 2007 | A1 |
20070261343 | Stahl | Nov 2007 | A1 |
20080087366 | Yu et al. | Apr 2008 | A1 |
20080134589 | Abrams et al. | Jun 2008 | A1 |
20080172967 | Hilburn | Jul 2008 | A1 |
20080250738 | Howchin | Oct 2008 | A1 |
20090049781 | Pilz et al. | Feb 2009 | A1 |
20090090074 | Klein | Apr 2009 | A1 |
20090178369 | Pilz et al. | Jul 2009 | A1 |
20100170172 | Klein | Jul 2010 | A1 |
20110067328 | Naccarato et al. | Mar 2011 | A1 |
20110099928 | Klein et al. | May 2011 | A1 |
20110167742 | Klein | Jul 2011 | A1 |
20110185656 | Klein | Aug 2011 | A1 |
20110214371 | Klein | Sep 2011 | A1 |
20120066989 | Pilz et al. | Mar 2012 | A1 |
20120266550 | Naccarato et al. | Oct 2012 | A1 |
20120297710 | Klein | Nov 2012 | A1 |
20130086859 | Pilz | Apr 2013 | A1 |
20130118102 | Pilz et al. | May 2013 | A1 |
20140075865 | Pilz | Mar 2014 | A1 |
20140130433 | Pilz | May 2014 | A1 |
20140196391 | Pilz | Jul 2014 | A1 |
20150247319 | Pilz | Sep 2015 | A1 |
20150247320 | Pilz | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
2234347 | Oct 1999 | CA |
0 346 126 | Dec 1989 | EP |
2 159 051 | Nov 1985 | GB |
2 411 212 | Aug 2005 | GB |
06-146433 | May 1994 | JP |
06-220934 | Aug 1994 | JP |
WO 03038206 | May 2003 | WO |
WO 2007103331 | Sep 2007 | WO |
WO 2009026464 | Feb 2009 | WO |
Entry |
---|
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages. |
Canadian First Office Action for Application No. 2,697,295, dated Sep. 21, 2011, in 4 pages. |
Canadian Second Office Action for Application No. 2,697,295, dated May 23, 2012, in 4 pages. |
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page. |
DoubleTrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006. |
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007. |
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011. |
International Search Report for Application No. PCT/US2008/073920, dated Apr. 9, 2009. |
Canadian Office Action for Application No. 2,827,183, dated Mar. 27, 2015 in 4 pages. |
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 Jul. 2011. 1 page. |
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37. |
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015. |
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015. |
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20150013254 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61322222 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13649951 | Oct 2012 | US |
Child | 14448784 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13083328 | Apr 2011 | US |
Child | 13649951 | US |