Flash Memory Control Interface

Information

  • Patent Application
  • 20080086590
  • Publication Number
    20080086590
  • Date Filed
    October 02, 2007
    16 years ago
  • Date Published
    April 10, 2008
    16 years ago
Abstract
Interfaces, arrangements, and methods for controlling flash memory devices in a multiple device system without increasing the pin count are disclosed. In one embodiment, the system includes first and second flash memory devices and a memory controller. The first memory device receives a configuration signal from a memory controller, and generates a registered signal from the configuration signal for the second memory device. The registered signal may also be provided to the memory controller from a last of the multiple memory devices. The memory controller communicates with the memory devices via an interface that includes a plurality of parallel input/output (I/O) terminals coupled to each of memory device and a serially-connected control terminal. The parallel I/O terminals generally include one or more data I/O terminals configured to transmit data (including parametric data) and commands, a clock terminal configured to receive a clock signal, and a write protect terminal configured to receive a write protection signal.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram showing a conventional memory array organization.



FIG. 2A is a timing diagram showing a conventional read operation.



FIG. 2B is a timing diagram showing a conventional page program operation.



FIG. 2C is a timing diagram showing a conventional block erase operation.



FIG. 3 is a block diagram showing an exemplary hybrid drive arrangement suitable for use in accordance with embodiments of the present invention.



FIG. 4 is a block diagram showing an exemplary signal connection arrangement in accordance with embodiments of the present invention.



FIG. 5 is a timing diagram showing an exemplary command sequence in accordance with embodiments of the present invention.



FIG. 6 is a block diagram showing an exemplary flash memory chip and memory controller arrangement in accordance with embodiments of the present invention.



FIG. 7 is a timing diagram showing an exemplary device configuration in accordance with embodiments of the present invention.



FIG. 8A is a timing diagram showing an exemplary erase operation in accordance with embodiments of the present invention.



FIG. 8B is a timing diagram showing an exemplary send buffer data to host read buffer operation in accordance with embodiments of the present invention.



FIG. 9 is a flow diagram showing an exemplary method of erasing in accordance with embodiments of the present invention.



FIGS. 10A-10G are diagrams showing exemplary systems in which the present invention may be used.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents that may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be readily apparent to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.


Some portions of the detailed descriptions which follow are presented in terms of processes, procedures, logic blocks, functional blocks, processing, and other symbolic representations of operations on data bits, data streams or waveforms within a computer, processor, controller and/or memory. These descriptions and representations are generally used by those skilled in the data processing arts to effectively convey the substance of their work to others skilled in the art. A process, procedure, logic block, function, operation, etc., is herein, and is generally, considered to be a self-consistent sequence of steps or instructions leading to a desired and/or expected result. The steps generally include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, optical, or quantum signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer, data processing system, or logic circuit. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, waves, waveforms, streams, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise and/or as is apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing terms such as “processing,” “operating,” “computing,” “calculating,” “determining,” “manipulating,” “transforming,” or the like, refer to the action and processes of a computer, data processing system, logic circuit or similar processing device (e.g., an electrical, optical, or quantum computing or processing device), that manipulates and transforms data represented as physical (e.g., electronic) quantities. The terms refer to actions, operations and/or processes of the processing devices that manipulate or transform physical quantities within the component(s) of a system or architecture (e.g., registers, memories, other such information storage, transmission or display devices, etc.) into other data similarly represented as physical quantities within other components of the same or a different system or architecture.


Furthermore, for the sake of convenience and simplicity, the terms “signal(s)” and “waveform(s)” may be used interchangeably, and in general, use of one such form generally includes the other, unless the context of the use unambiguously indicates otherwise; however, these terms are generally given their art recognized meanings. The terms “node(s)”, “input(s)”, “output(s)”, and “port(s)” may be used interchangeably, as may the terms “connected to”, “coupled with”, “coupled to”, and “in communication with” (which terms also refer to direct and/or indirect relationships between the connected, coupled and/or communicating elements, unless the context of the term's use unambiguously indicates otherwise). However, these terms are also given their art recognized meanings.


The invention, in its various aspects, will be explained in greater detail below with regard to exemplary embodiments.



FIG. 3 shows an exemplary hybrid drive arrangement 300 suitable for use in accordance with embodiments of the present invention. Host 302 can interface with flash device 308 in hybrid drive 304. In general, the flash device 308 comprises controller/flash memory module 404 (see FIG. 4 and the discussion thereof below). Referring back to FIG. 3, in various examples, the interface between host 302 and flash 308 can include a serial advanced technology attachment (SATA) interface or a parallel ATA (PATA) interface. Hybrid drive 304 can also include central processing unit (CPU) 310, read channel 312, and buffer memory (e.g., dynamic random access memory (DRAM)) 306. For example, CPU 310 may comprise a conventional microprocessor, (digital) signal processor (e.g., a DSP), or microcontroller. Read channel 312 may comprise conventional read channel data transfer processing blocks (e.g., one or more ports, signal detectors, encoders, decoders, interleavers, de-interleavers, error checking code [ECC] calculators and/or comparators, etc.). DRAM 306 can include from about 2 Mb to about 8 Mb of memory. The present flash memory/controller module in particular embodiments can be utilized in hybrid drive 304, or in any suitable solid-state drive (SSD). Advantages of using flash memory in a hard drive, as opposed to a hard disk approach, include: (i) faster boot and resume times; (ii) longer battery life (e.g., for wireless applications); and (iii) higher data reliability.



FIG. 4 shows an exemplary signal connection arrangement 400 in accordance with embodiments of the present invention. Host 402 can interface with memory controller/flash module 404. The interface between host 402 and memory controller 406 can be conventional (e.g., including pins and/or terminals for the signals shown in FIGS. 2A-2C and/or Table 1 above, or a subset thereof). Memory controller 406 can be connected with a plurality of flash memory devices (e.g., flash memory chip 408-A and flash memory chip 408-B) via each signal pin or terminal, as shown. In some embodiments, memory controller 406 may be implemented as an application specific integrated circuit (ASIC) or a system on a chip (SOC). In addition, signal CNFG may connect through circuitry on flash devices 408-A and 408-B in serial fashion. Table 3 below shows a pin or terminal description for signals in the interface between controller 406 and flash memory devices 408-A and 408-B in accordance with embodiments of the present invention (e.g., see the column labeled “Memory Controller”), as related to a conventional NAND flash interface. “In/Out” refers to whether the signal is an input signal, an output signal, or both, on the controller 406.












TABLE 3






Memory




NAND Flash
Controller
In/Out
Description







Data in/out
DATA[7:0]
In/Out
Input/Output 8-bit data


I/O[7:0]


Command latch
SYNC_N
Out
Command timing signal


enable CLE


Address latch enable
REF_CLK
Out
Clock for flash IP block


ALE


Chip enable


CE


Read enable
RD_CLK
In
Sampling clock for Read


RE


Data CH0-CH3; capture





clock for data byte


Write enable
CNFG
Out
Chip configuration


WE


Write protect
WP_N
Out
Write protect


WP


Ready/busy output
INT_N
In
Interrupt for PRG/ERASE


R/B

OD
commands; pull-up for





memory controller


RESET_N
RESET_N
Out










FIG. 5 shows a timing diagram 500 for an exemplary command sequence in accordance with embodiments of the present invention. From a memory controller, write protection (WP_N), command timing signal (SYNC_N), clock for flash (REF_CLK), and chip configuration (CNFG), can be supplied. Command timing signal SYNC_N may be brought high one cycle prior to tri-stating of the data bus. From a flash, a sampling clock for read data or a capture clock for a data byte (RD_CLK), and an interrupt for PRG/ERASE commands (INT_N), can be supplied. From either a memory controller or a flash, input/output data (DATA[7:0]) can be provided.


In the example of FIG. 5, SYNC_N can represent a timing signal to start the command sequence. Once appropriately configured, three signals may be of primary need for flash device control (e.g., SYNC_N, REF_CLK, and RD_CLK). On the DATA[7:0] pins, “I” can represent a flash identification (ID), “C” can represent a command byte, “P” can represent a parameter, “D” can represent a data byte from the memory controller, and “F” can represent flash data bytes or analog read data from flash devices. Further, command bytes may generally follow ID bytes to designate the flash memory device to which the particular command pertains. Also, broadcasting to each flash device coupled to the memory controller can be accommodated via a designated ID byte. Example command bytes can be as shown below in Table 4, where each “x” is independently a hexadecimal value assigned to that particular command.










TABLE 4





Command byte
Command







xxh
PROGRAM


xxh
WRITE BUFFER


xxh
EXECUTE PROGRAM


xxh
READ


xxh
READ BUFFER


xxh
READ STATUS


xxh
READ ID


xxh
DEVICE CONFIG


xxh
SET CONFIG


xxh
READ ERROR INFO


xxh
ERASE


xxh
RESET









Parameter bytes may generally follow command bytes, and a total number of parameter bytes may be dependent on the particular associated command. Data bytes may then generally follow parameter bytes, and a total number of data bytes may also be defined by the particular associated command. Further, data bytes may typically provide data for PROGRAM or WRITE BUFFER commands. Flash data bytes (i.e., those driven by a flash memory device) may generally be followed by either a command byte or a parameter byte, and a total number of flash data bytes may be defined by a particular associated command. Further, flash data bytes may typically be data for READ BUFFER, READ DATA, READ STATUS, READ ID, or SEND READ DATA commands.


A RESET command can instruct the controller/flash memory module (e.g., module 404 of FIG. 4) to abort a command and/or reset an associated (or identified) flash memory device. An example command description for a command or instruction to configure a flash ID (e.g., a DEVICE CONFIG command) is shown below in Table 5.

















TABLE 5





symbol
B7
B6
B5
B4
B3
B2
B1
B0

















I
xxh (broadcast) only



C
xxh (DEVICE CONFIG)


P(P1-Pn)
Authentication bytes









A READ ID command can verify an authentication byte, a product code, and a flash memory device or chip revision, for example. An exemplary description for a verification command or instruction (e.g., READ ID) is shown below in Table 6.

















TABLE 6





Symbol
B7
B6
B5
B4
B3
B2
B1
B0

















I
Flash ID



C
xxh (READ ID)


F1
Product code


F2
Flash chip revision


F3
Authentication byte









A SET CONFIG command can enable and/or disable interrupts, and configure a number of bits per cell, for example. An exemplary description for an interrupt enable or cell configuration command or instruction (e.g., SET CONFIG) is shown below in Table 7.

















TABLE 7





symbol
B7
B6
B5
B4
B3
B2
B1
B0
















I
Flash ID or xxh (broadcast)


C
xxh (SET CONFIG)













P1
D16
MLC
EN_P
IEN_E
IEN_P
IEN_R









D16: ‘1’ = 16-bit data bus; ‘0’ = 8-bit data bus;



MLC: set a number of bits per cell;



EN_P: ‘1’ = enable packing of programming data;



IEN_E: ‘1’ = enable interrupt when ERASE operation



completed;



IEN_P: ‘1’ = enable interrupt when PROGRAM completed;



IEN_R: ‘1’ = enable interrupt when READ data is ready











FIG. 6 shows a block diagram 600 for an exemplary flash memory chip and memory controller arrangement in accordance with embodiments of the present invention. For example, arrangement 600 or a variation with any number of flash memory devices may form a memory module. In the particular example of FIG. 6, memory controller 602 can interface with serially-coupled flash memory devices or chips 604-0, 604-1, 604-2, . . . 604-15, for example. CNFG in memory controller 602 can connect to a “D” input of one flip-flop, and an enable input of another flip-flop in flash 604-0 as shown. Also as shown, flip-flop outputs can be connected in serial fashion, and DATA[7:0] from memory controller 602 can connect to “D” flip-flop inputs.


A scan chain or serial coupling arrangement can thus be formed, with feedback 606 connected to FB in memory controller 602. CNFG can be passed through the chain and returned via feedback 606. Further, each flip-flop can be clocked by REF_CLK (not shown in FIG. 6, but discussed below with reference to FIG. 7) for providing time-shifted versions of the configuration signal to subsequent flash memory devices in the chain. Thus, a number of REF_CLK cycles occurring before the CNFG pulse is returned to memory controller 602 can be used to determine the number of flash devices in a particular arrangement or memory module. Also, if reconfiguration is needed, a reset operation (e.g., using signal RESET_N, shown in FIG. 4) can first be performed.



FIG. 7 shows a timing diagram 700 for an exemplary device configuration operation in accordance with embodiments of the present invention. Upon a transition of the write protect and/or synchronization signal(s) to an asserted state, the flash device identification byte (e.g., a flash ID or “I” byte) and the command byte (e.g., a “C” byte) are transmitted from the controller to the flash memory devices. Authentication data “P” can be provided once CNFG transitions (e.g., goes to a “high” binary logic state) for a cycle after the flash ID byte and the command byte have been supplied, as shown. Also, synchronization (or command timing) signal SYNC_N can transition (e.g., go to a “high” binary logic state) one cycle prior to the last authentication data portion. In some embodiments, such authentication data portions can be provided for up to 16 REF_CLK cycles. Further, a device configuration command (e.g., command A0h) may be ignored by a particular flash memory device if: (i) the particular device has already been configured; (ii) the write protect signal is not asserted (e.g., WP_N=‘0’); (iii) the configuration signal (e.g., CNFG) has not been asserted; and/or (iv) the configuration signal has been asserted for two or more clock periods, or two separate times.


For configuration of each flash memory device in a system, the “I” byte can be a broadcast command such that the subsequent device configuration command can be received in each device in preparation for storing a device ID, as well as other configuration information. Each flash device ID can be stored in a reserved memory portion within each flash memory device. Further, each device can derive its own ID by counting the number of clock cycles between the assertion of the device configuration command and reception of a time-shifted version of the configuration signal at a given flash memory device. For example, flash memory device 604-0 can assign itself flash ID “0000” because the CFNG signal is asserted one cycle after the device configuration command is issued. Flash memory device 604-1 can then assign itself an ID of “0001” because of the two cycle difference between the device configuration command and the time-shifted version of the configuration signal reaching 604-1 (one cycle later than the signal reaches device 604-0), and so on. Alternatively, the parametric data bytes can simply provide the ID for each flash memory device from the memory controller.



FIG. 8A shows a timing diagram 720 for an exemplary operation to erase data in one of the plurality of flash memory devices in accordance with embodiments of the present invention. To execute the erase operation, the write protect signal (e.g., WP_N) may be asserted for substantially the entire operation, but the synchronization signal (e.g., SYNC_N) may be asserted for a limited number of cycles of the timing signal (e.g., a single cycle of REF_CLK). The erase command (e.g., D0h) can be supplied, followed in subsequent cycles by parameter bytes P1, P2, and P3. Further, erase interrupt (INT_N) can be supplied by the particular flash device indicated by flash identification byte “I” supplied prior to the command byte “C”, and INT_N may go low to indicate completion of the erase operation (e.g., when IEN_E=‘1’).



FIG. 8B shows a timing diagram 780 for an exemplary operation to send buffer data to host for a buffer read in accordance with embodiments of the present invention. To execute the read buffer operation, the write protect signal (e.g., WP_N) may be asserted for the entire operation, but the synchronization signal (e.g., SYNC_N) may be asserted for a limited number of cycles of the timing signal (e.g., a single cycle of REF_CLK). The read buffer command (e.g., 32h) can be supplied, followed one cycle later by flash data bytes F1, F2, . . . Fn. Flash data bytes (F1-Fn) may be provided on analog outputs RDP0/RDN0-RDP3/RDN3 (8-bit bus), or RDP0/RDN0-RDP7/RDN7 (16-bit bus). To synchronize these data bytes, the read timing signal (e.g., RD_CLK) can be supplied from the particular flash device indicated by flash identification byte “I” supplied prior to the command byte “C”. Also, INT_N can be low when IEN_R=‘1’ to enable interrupt when read data is ready.



FIG. 9 shows a flow diagram 800 for an exemplary method of erasing in accordance with embodiments of the present invention. The flow can begin (802), and an erase command may be issued by or from the controller (804). For example, the erase command may execute a data erase operation. A read status command may then be issued by or from the controller (806), and may continue until an “operation in progress” (OIP) indicator is de-asserted (e.g., OIP=‘0,’ 808). The read status command generally determines the status of a (previous) command, such as an erase command, a program command, or a read command. The status of such commands may include no error, command execution in progress, and/or one or more errors or error types, depending on the number of bits available for providing read status information. When the OIP indicator is de-asserted (808) and/or an interrupt occurs (812), a second read status command may be issued (810). When the operation is complete and no error occurs, a “no error” status may be indicated. Alternatively, the second read status command (810) may either clear or assert an interrupt, depending on whether an error occurred during the operation (e.g., command execution). If an error is found (e.g., by asserting an error indicator or flag, step 814), a read error information command may be issued (816) to get error information, and the flow can complete (818). If no error is found (ERR=‘0’ in 814), the flow can complete (818).


Exemplary Systems Using the Present Circuit


In a further aspect of the invention, a system may comprise the present apparatus or circuit for controlling flash memory devices. Various exemplary implementations of the present invention are shown in FIGS. 10A-10G.


Referring now to FIG. 10A, the present invention can be implemented in a hard disk drive (HDD) 900. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10A at 902. In some implementations, the signal processing and/or control circuit 902 and/or other circuits (not shown) in the HDD 900 may process data, perform coding and/or encryption, perform calculations, and/or format data that is output to and/or received from a magnetic storage medium 906.


The HDD 900 may communicate with a host device (not shown) such as a computer, mobile computing devices such as personal digital assistants, cellular phones, media or MP3 players and the like, and/or other devices via one or more wired or wireless communication links 908. The HDD 900 may be connected to memory 909 such as random access memory (RAM), low latency nonvolatile memory such as flash memory, read only memory (ROM) and/or other suitable electronic data storage.


Referring now to FIG. 10B, the present invention can be implemented in a digital versatile disc (DVD) drive 910. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10B at 912, and/or mass data storage 918 of the DVD drive 910. The signal processing and/or control circuit 912 and/or other circuits (not shown) in the DVD 910 may process data, perform coding and/or encryption, perform calculations, and/or format data that is read from and/or data written to an optical storage medium 916. In some implementations, the signal processing and/or control circuit 912 and/or other circuits (not shown) in the DVD 910 can also perform other functions such as encoding and/or decoding and/or any other signal processing functions associated with a DVD drive.


The DVD drive 910 may communicate with an output device (not shown) such as a computer, television or other device via one or more wired or wireless communication links 917. The DVD 910 may communicate with mass data storage 918 that stores data in a nonvolatile manner. The mass data storage 918 may include a hard disk drive (HDD). The HDD may have the configuration shown in FIG. 10A. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The DVD 910 may be connected to memory 919 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.


Referring now to FIG. 10C, the present invention can be implemented in a high definition television (HDTV) 920. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10C at 922, a WLAN interface and/or mass data storage of the HDTV 920. The HDTV 920 receives HDTV input signals in either a wired or wireless format and generates HDTV output signals for a display 926. In some implementations, signal processing circuit and/or control circuit 922 and/or other circuits (not shown) of the HDTV 920 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other type of HDTV processing that may be required.


The HDTV 920 may communicate with mass data storage 927 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices. At least one HDD may have the configuration shown in FIG. 10A and/or at least one DVD may have the configuration shown in FIG. 10B. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The HDTV 920 may be connected to memory 928 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. The HDTV 920 also may support connections with a WLAN via a WLAN network interface 929.


Referring now to FIG. 10D, the present invention can be implemented in a control system of a vehicle 930, a WLAN interface and/or mass data storage of the vehicle control system. In some implementations, the present invention implement a powertrain control system 932 that receives inputs from one or more sensors such as temperature sensors, pressure sensors, rotational sensors, airflow sensors and/or any other suitable sensors and/or that generates one or more output control signals such as engine operating parameters, transmission operating parameters, and/or other control signals.


The present invention may also be implemented in other control systems 940 of the vehicle 930. The control system 940 may likewise receive signals from input sensors 942 and/or output control signals to one or more output devices 944. In some implementations, the control system 940 may be part of an anti-lock braking system (ABS), a navigation system, a telematics system, a vehicle telematics system, a lane departure system, an adaptive cruise control system, a vehicle entertainment system such as a stereo, DVD, compact disc and the like. Still other implementations are contemplated.


The powertrain control system 932 may communicate with mass data storage 946 that stores data in a nonvolatile manner. The mass data storage 946 may include optical and/or magnetic storage devices (for example, hard disk drives [HDDs] and/or DVDs). At least one HDD may have the configuration shown in FIG. 10A and/or at least one DVD may have the configuration shown in FIG. 10B. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The powertrain control system 932 may be connected to memory 947 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. The powertrain control system 932 also may support connections with a WLAN via a WLAN network interface 948. The control system 940 may also include mass data storage, memory and/or a WLAN interface (all not shown).


Referring now to FIG. 10E, the present invention can be implemented in a cellular phone 950 that may include a cellular antenna 951. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10E at 952, a WLAN interface and/or mass data storage of the cellular phone 950. In some implementations, the cellular phone 950 includes a microphone 956, an audio output 958 such as a speaker and/or audio output jack, a display 960 and/or an input device 962 such as a keypad, pointing device, voice actuation and/or other input device. The signal processing and/or control circuits 952 and/or other circuits (not shown) in the cellular phone 950 may process data, perform coding and/or encryption, perform calculations, format data and/or perform other cellular phone functions.


The cellular phone 950 may communicate with mass data storage 964 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices (for example, hard disk drives [HDDs] and/or DVDs). At least one HDD may have the configuration shown in FIG. 10A and/or at least one DVD may have the configuration shown in FIG. 10B. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The cellular phone 950 may be connected to memory 966 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. The cellular phone 950 also may support connections with a WLAN via a WLAN network interface 968.


Referring now to FIG. 10F, the present invention can be implemented in a set top box 980. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10F at 984, a WLAN interface and/or mass data storage of the set top box 980. The set top box 980 receives signals from a source such as a broadband source and outputs standard and/or high definition audio/video signals suitable for a display 988 such as a television and/or monitor and/or other video and/or audio output devices. The signal processing and/or control circuits 984 and/or other circuits (not shown) of the set top box 980 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other set top box function.


The set top box 980 may communicate with mass data storage 990 that stores data in a nonvolatile manner. The mass data storage 990 may include optical and/or magnetic storage devices (for example, hard disk drives [HDDs] and/or DVDs). At least one HDD may have the configuration shown in FIG. 10A and/or at least one DVD may have the configuration shown in FIG. 10B. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The set top box 980 may be connected to memory 994 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. The set top box 980 also may support connections with a WLAN via a WLAN network interface 996.


Referring now to FIG. 10G, the present invention can be implemented in a media player 1000. The present invention may implement either or both signal processing and/or control circuits, which are generally identified in FIG. 10G at 1004, a WLAN interface and/or mass data storage of the media player 1000. In some implementations, the media player 1000 includes a display 1007 and/or a user input 1008 such as a keypad, touchpad and the like. In some implementations, the media player 1000 may employ a graphical user interface (GUI) that typically employs menus, drop down menus, icons and/or a point-and-click interface via the display 1007 and/or user input 1008. The media player 1000 further includes an audio output 1009 such as a speaker and/or audio output jack. The signal processing and/or control circuits 1004 and/or other circuits (not shown) of the media player 1000 may process data, perform coding and/or encryption, perform calculations, format data and/or perform any other media player function.


The media player 1000 may communicate with mass data storage 1010 that stores data such as compressed audio and/or video content in a nonvolatile manner. In some implementations, the compressed audio files include files that are compliant with MP3 format or other suitable compressed audio and/or video formats. The mass data storage may include optical and/or magnetic storage devices (for example, hard disk drives [HDDs] and/or DVDs). At least one HDD may have the configuration shown in FIG. 10A and/or at least one DVD may have the configuration shown in FIG. 10B. The HDD may be a mini HDD that includes one or more platters having a diameter that is smaller than approximately 1.8″. The media player 1000 may be connected to memory 1014 such as RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage. The media player 1000 also may support connections with a WLAN via a WLAN network interface 1016. Still other implementations in addition to those described above are contemplated.


CONCLUSION

Thus, the present invention provides an interface, arrangement, and method for configuring and operating flash memory devices in multiple device systems without increasing a pin count. In particular, embodiments of the present invention provide multiple flash memory systems including a memory controller, as well as methods of configuring and operating flash memory devices in such a system.


The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims
  • 1. A method of configuring a multi-device memory system, comprising: asserting a control signal to a plurality of flash memory devices, each flash memory device having: a plurality of parallel input and/or output (I/O) terminals, including one or more data I/O terminals, a clock terminal configured to receive a clock signal, and a write protect terminal configured to receive a write protection signal; anda serially connected control terminal configured to receive said control signal;determining a unique identifier for each of said plurality of flash memory devices; andserially storing said unique identifier in a corresponding one of said plurality of flash memory devices within a predetermined number of clock cycles of asserting said control signal.
  • 2. The method of claim 1, wherein said control signal is a configuration control signal, and said configuration control signal is asserted when it has a predetermined state or undergoes a predetermined transition.
  • 3. The method of claim 1, wherein said control signal is asserted for a predetermined number of clock cycles.
  • 4. The method of claim 3, further comprising: time-shifting said control signal using said clock signal in a first flash memory device, and providing a shifted control signal to a second flash memory device adjacent to said first flash memory device.
  • 5. The method of claim 4, further comprising providing parametric data to each of said plurality of flash memory devices via said data I/O terminal(s).
  • 6. The method of claim 5, further comprising registering said parametric data for each of said plurality of flash memory devices using said clock signal.
  • 7. The method of claim 4, wherein said determining said unique identifier comprises counting a number of clock cycles between a first command and a time-shifted version of said configuration signal.
  • 8. The method of claim 7, wherein said first command comprises a device configuration command.
  • 9. The method of claim 1, comprising ignoring an assertion of said control signal in one of said flash memory devices when: said one of said flash memory devices has stored said unique identifier without being reset;said write protection signal is asserted; and/orsaid control signal is asserted for a predetermined number of clock cycles, said predetermined number being greater than one.
  • 10. The method of claim 2, further comprising determining a number of said plurality of flash memory devices using a time-shifted version of said configuration control signal from a last of said plurality of flash memory devices.
  • 11. The method of claim 1, wherein said unique identifier comprises a multi-bit binary string.
  • 12. A method of operating a multi-device memory system, comprising: asserting one or more control signals on a corresponding number of serially-connected input/output (I/O) terminals on each of a plurality of flash memory devices in said system, each of said flash memory devices further comprising one or more parallel data I/O terminals and a clock terminal;identifying one of said plurality of flash memory devices by transmitting a unique identifier on said parallel data I/O terminal(s) within a predetermined number of clock cycles of asserting said control signal(s); andtransmitting an instruction to said identified one of said plurality of flash memory devices on said data I/O terminal(s).
  • 13. The method of claim 12, wherein said instruction comprises a read, erase, or program command.
  • 14. The method of claim 12, wherein said identifying comprises supplying a device identification byte on said data I/O terminals.
  • 15. The method of claim 14, wherein said device identification byte is supplied in a cycle of a clock signal prior to said transmitting said instruction, said clock signal being supplied on said clock terminal.
  • 16. The method of claim 14, further comprising synchronizing a result of said instruction using a read sampling clock coupled to each of said plurality of flash memory devices.
  • 17. The method of claim 12, wherein said transmitting said instruction comprises using an interface coupling a memory controller to said plurality of flash memory devices, said interface comprising: a configuration terminal for transmitting a configuration signal to a first of said plurality of flash memory devices;a command control terminal for transmitting a command timing signal to said plurality of flash memory devices; anda read clock terminal for receiving a read sampling clock from one of said plurality of flash memory devices.
  • 18. A memory module, comprising: a first flash memory device configured to receive a configuration signal from a memory controller and to generate a first registered signal from said configuration signal;a second flash memory device configured to receive said first registered signal, and to generate a second registered signal from said first registered signal, said second registered signal being provided to said memory controller, andsaid memory controller coupled to said first and second flash memory devices via an interface, said interface comprising: a control terminal configured to transmit said configuration signal, anda plurality of parallel input/output (I/O) terminals coupled to each of said first and second flash memory devices, said plurality of parallel I/O terminals including one or more data I/O terminals configured to transmit data signals, a clock terminal configured to receive a clock signal, and a write protect terminal configured to receive a write protection signal.
  • 19. The memory module of claim 18, wherein said first and second registered signals are configured to serially shift a pulse of said configuration signal from said first to said second flash memory device, and then to said memory controller.
  • 20. The memory module of claim 18, wherein each of said first and second flash memory devices comprises a first D-type flip-flop configured to provide said first and second registered signals, respectively.
  • 21. The memory module of claim 20, wherein each of said first and second flash memory device comprises a second D-type flip-flop configured to register parametric data when enabled by a corresponding one of said first and second registered signals, said parametric data being provided on said data I/O terminals.
  • 22. The memory module of claim 21, wherein said parametric data comprises a unique identifier.
  • 23. The memory module of claim 19, further comprising counting logic, said counting logic being configured to compute a unique identifier from a number of clocks between a device configuration command and a corresponding one of said first and second registered signals.
  • 24. The memory module of claim 19, wherein said data I/O terminals comprise at least eight bits.
  • 25. The memory module of claim 19, wherein said controller further comprises: configuration logic configured to transmit said configuration signal to said first flash memory device;command control logic configured to transmit a command timing signal to said first and second flash memory devices;timing logic configured to transmit a clock signal to said first and second flash memory devices; anda read clock terminal configured to receive a read sampling clock from one of said plurality of flash memory devices.
RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional Application No. 60/798,630 (Attorney Docket No. MP1313PR), filed on Oct. 4, 2006, incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
60828144 Oct 2006 US