The present claimed invention generally relates to semiconductor devices. More specifically, the present claimed invention relates to flash memory cells.
The architecture of a conventional flash memory array is known in the art. Generally, a memory array includes a number of lines arranged as rows and columns. The rows of the array are commonly referred to as word lines and the columns as bit lines. The word lines and bit lines overlap at what can be referred to as nodes. Situated at or near each node is a memory cell, which is generally some type of transistor. In a virtual ground architecture, a bit line can serve as either a source or drain line for the transistor (memory cell), depending on which memory cell is being program verified or read.
A typical flash memory cell includes a substrate in which source and drain regions have been formed, and a gate element formed on the substrate in proximity to the source and drain regions. The gate element typically includes a floating gate and a control gate separated by an oxide-nitride-oxide (ONO) layer. The gate element and the substrate (specifically, the source and drain regions in the substrate) are typically separated by a tunnel oxide layer that consists of silicon dioxide.
While conventional memory cells perform satisfactorily, it is desirable to scale them down in size so that a greater number of memory cells can be put into a given area. Furthermore, increasing the density of memory cells is expected to increase the speed at which the memory array operates.
Accordingly, a device and/or method that increases the density of memory cells in a memory array would be of value. The present invention provides this and other advantages.
Embodiments of the present invention pertain to flash memory cells and methods of forming the same. In one embodiment, a memory cell is formed on a substrate. The memory cell includes a floating gate that is formed at least in part within the substrate. A bit line region is formed within the substrate in proximity to the floating gate. That is, the bit line is buried within the substrate adjacent to the floating gate. Because of the configuration of the bit line and the floating gate, memory cells can be located closer to each other, increasing the density of memory cells in a memory array.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.
Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Some portions of the detailed descriptions that follow are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations for fabricating semiconductor devices. These descriptions and representations are the means used by those skilled in the art of semiconductor device fabrication to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing terms such as “forming,” “performing,” “producing,” “depositing,” “filling,” “implanting” or “etching” or the like, refer to actions and processes (e.g., flowchart 300 of
In the present embodiment, a typical node in the memory array 100 includes a floating gate 14 that is, at least in part, located within substrate 10. That is, a portion of the floating gate 14 is located below the surface of substrate 10, while part of the floating gate 14 extends above the surface of the substrate 10. The other floating gates in the memory array 100 (e.g., floating gates 19 and 20) are also partially buried within the substrate 10.
A tunnel oxide layer 13 separates the floating gate 14 from the substrate 10. A floating gate 11 is situated above the floating gate 14. A dielectric layer (“interpoly dielectric”) 12 separates the floating gate 14 from the control gate 11. Significantly, control gate 11 extends across adjacent nodes and functions as a word line (refer to
In one embodiment, the dielectric layer 12 has a relatively constant thickness that follows the contours of the substrate 10 and the floating gates 14, 19 and 20. In one embodiment, control gate 11 has a thickness that varies as it follows the contours of the substrate 10 and the floating gates 14, 19 and 20. This is exemplified by region 26 of control gate 11; region 26 of control gate 11 is thicker between the floating gates 14 and 20. In the embodiment illustrated by
Also of significance, the bit lines (e.g., bit lines 15, 18 and 24) are located within substrate 10. Specifically, the bit lines 15, 18 and 24 are buried within the substrate 10. In the present embodiment, the bit lines 15, 18 and 24 are situated along two adjacent surfaces of a respective floating gate. For example, as can be seen from
In comparison to a node in a conventional memory array, memory array 100 of
In practice, the features of the present invention offer a number of advantages. First, the memory cells can be located closer to one another, so that a greater number of memory cells can be located within a given area. Importantly, this is achieved while maintaining a satisfactory channel length. That is, relative to the conventional art, the features of the present invention allow memory cells to be situated closer to each other without necessarily reducing channel length. This is demonstrated by looking at representative channel 16 of
Another advantage provided by the present invention is improved programming efficiency. This is demonstrated by considering representative electron flow path 17 of
In one embodiment, substrate 10 is a silicon substrate, the control gate 11 and the floating gates 14, 19 and 20 are formed of polysilicon, the dielectric layer 12 is formed of oxide-nitride-oxide, the tunnel oxide 13 is silicon dioxide, and the bit lines 15, 18 and 24 are formed using an arsenic dopant. Other suitable materials can be used.
As mentioned above, control gates 11 and 23 function as word lines. The control gates 11 and 23 are essentially perpendicular to the bit lines 15 and 18. Floating gates 14 and 20, for example, lie at or near the junction of control gate 11 with bit lines 15 and 18, respectively.
Various techniques known in the art are used to fabricate a semiconductor device such as a memory cell. In general, these techniques involve repeating, with variations, a number of characteristic steps or processes. One of these characteristic steps or processes involves applying a layer of material to an underlying substrate or to a preceding layer, and then selectively removing the material using, for example, an etch process. Another of the characteristic steps or processes involves selectively adding a dopant material to the substrate or to one or more of the subsequent layers, in order to achieve desirable electrical performance. Using these characteristic processes, a semiconductor, generally comprising different types of material, can be accurately formed. These characteristic processes are known in the art, and so are not elaborated upon herein.
The process of flowchart 300 is described in conjunction with
In step 310 of
In step 320 of
In step 330 of
In step 340 of
In step 350 of
In step 360 of
In summary, the present invention, in its various embodiments, allows the density of memory cells in a memory array to be increased while maintaining or improving performance.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4053916 | Cricchi et al. | Oct 1977 | A |
4222063 | Rodgers | Sep 1980 | A |
4673962 | Chatterjee et al. | Jun 1987 | A |
5006909 | Kosa | Apr 1991 | A |
5102817 | Chatterjee et al. | Apr 1992 | A |
5103276 | Shen et al. | Apr 1992 | A |
5164917 | Shichijo | Nov 1992 | A |
5208657 | Chatterjee et al. | May 1993 | A |
5225697 | Malhi et al. | Jul 1993 | A |
5252845 | Kim et al. | Oct 1993 | A |
5300450 | Shen et al. | Apr 1994 | A |
5334548 | Shen et al. | Aug 1994 | A |
5883406 | Nishizawa | Mar 1999 | A |
5888864 | Koh et al. | Mar 1999 | A |
5939760 | Batra et al. | Aug 1999 | A |
6060739 | Saitoh | May 2000 | A |
6143610 | Wen et al. | Nov 2000 | A |
6246083 | Noble | Jun 2001 | B1 |
6300199 | Reinberg | Oct 2001 | B1 |
6426252 | Radens | Jul 2002 | B1 |
6506638 | Yu | Jan 2003 | B1 |
6518615 | Geusic et al. | Feb 2003 | B1 |
6521935 | Krautschneider et al. | Feb 2003 | B2 |
6531727 | Forbes et al. | Mar 2003 | B2 |
6537871 | Forbes et al. | Mar 2003 | B2 |
20030048656 | Forbos | Mar 2003 | A1 |
20030141538 | Hayashi | Jul 2003 | A1 |