This invention relates to packaged light emitting diodes (LEDs) and, in particular, to an array of phosphor-converted LED dies mounted in an array of collimating reflector cups or lenses for a thin camera flash.
Cameras are prevalent in smartphones and other devices that are relatively thin. The camera flash is frequently formed of one or two phosphor-converted LEDs. The combined area of the LEDs typically determines the instantaneous brightness of the flash for a given driving current pulse. The bare LED die is GaN-based and emits blue light, and the phosphor adds a yellow component (or red and green components) so the combination of the blue light leaking through the phosphor and the phosphor light creates the bright white light for the flash.
The camera typically uses a Fresnel lens or other type of molded plastic lens to collimate the light in an attempt to direct most of the light at the subject in the camera's field of view.
Lenses cause some back reflection, which is substantially absorbed by the flash module. Lenses are relatively thick, and the distance from the top of the lens to the LED die surface depends on the footprint of the LED die. Since relatively large LED die sizes are used to obtain the required brightness with the fewest LED dies, the lens must be fairly thick. Further, the lenses generally create a conical emission pattern which does not correspond to the rectangular field of view of the camera. Accordingly, the prior art LED flash modules for cameras are relatively thick and illuminate a large area beyond the field of view of the camera, wasting such light energy.
What is needed is an LED camera flash module that is thinner than the prior art flash modules and produces a beam that more closely matches the aspect ratio of the camera's field of view.
A thin flash module for a camera uses an array of small LED dies, where the total light-emitting area of the LEDs may equal the area of the one or two large LED(s) in a conventional flash to achieve the desired flash brightness. For example, for a 3×5 array of LED dies, the size of each LED die may be as little as about 1/15 the size of the conventional LED dies used in a flash module.
Each small LED die is surrounded by a reflective cup. The light exit aperture of each cup is substantially a square (corresponding to the shape of the LED), so that the overall beam of the flash module will be formed of an array of generally square sub-beams. Other rectangular or oblong shapes are envisioned and are included within the scope of the invention.
The cups may be formed in a connected array of plastic cups molded over a lead frame, where leads of the lead frame are exposed at the bottom of each cup for connection to the LED electrodes. The walls of the cups may be coated with a specular metal film, such as silver, aluminum, or chromium. The lead frame connects the LEDs in series or in a combination of series and parallel. The cups may form a 16×9 array (columns×rows), a 5×3 array, a 4×3 array, or other size to generally correspond to the aspect ratio of the camera's field of view. For example, if the camera's field of view aspect ratio is 16:9, a suitable reflective cup array may be 5×3 to sufficiently approximate the aspect ratio. Using LED dies which have relatively small edge dimensions permits a relatively small required height (z-axis height) and area of each rectangular cup. The more LED dies used, the smaller each LED die can be, and the thinner the flash module can be. The height of the cups is much less than the height of collimating lenses used in the prior art.
In another embodiment, the LED dies are pre-mounted on the lead frame, and the reflective cups (having a hole at their base) are affixed to the lead frame and surround each LED die.
In another embodiment, the array of cups is stamped from a metal sheet, where the edges of each cup facing the LED can be made knife edges so all light is reflected toward the exit aperture of the cup.
Although the lateral dimensions of the flash module may be larger than conventional LED flash modules, due to the use of a 2-dimensional array of small LED dies, the thickness will be much smaller.
In one embodiment, the LED dies are GaN based and emit blue light. A mixture of phosphor powder (e.g., YAG phosphor) and silicone, having an index of refraction between that of GaN and air to increase light extraction, is deposited to a precise thickness in each cup to create the target white light temperature. The rim of the cup is higher than the phosphor so the cup collimates the phosphor light. The phosphor mixture also encapsulates the LED dies to block moisture, provide mechanical support, etc.
In another embodiment, the LED dies are conformally coated with phosphor prior to being mounted in the cups. In such an embodiment, a clear encapsulant (e.g., silicone) may be deposited in the cups to encapsulate the LED dies and increase light extraction.
Additional features and embodiments are described herein.
Elements that are the same or similar are labeled with the same numeral.
The area where the copper lead frame 12 is to be bonded to the bottom LED die electrodes may be plated with a suitable metal, such as gold, nickel, or alloys, to form the contact pads 14 and 16. Gold balls, solder wetting, or other techniques, if required, may also be used to allow bonding to the LED die electrodes. Although the LED dies 20 are shown as flip-chips, the LED dies may have one or both electrodes on its top surface that is/are wire-bonded to the contact pads 14/16. The lead frame 12 and cup material act as a heat sink to remove heat from the LED dies 20.
The array of plastic cups 18 is molded over the lead frame 12 either before or after the LED dies 20 are mounted on the lead frame 12. Compression molding or injection molding may be used. Preferably, the plastic is thermally conductive. If the plastic is also electrically conductive due to containing metal particles (for increasing its thermal conductivity), the portion of the lead frame 12 in contact with the plastic has a dielectric coating formed over it prior to the molding step to prevent shorting the pads 14 and 16 to each other.
Each cup 18 generally forms a square center base 22, a square outer perimeter, and a square light exit aperture 24. As used herein, the term rectangle includes a square. The shape of the cup 18 corresponds to the shape of the LED die 20, so an elongated LED die 20 would cause the cup's 18 aperture to have the same relative dimensions as the LED die 20 and not be square. The interior walls 26 of each cup 16 are coated with a reflective material, such as a deposited metal film (e.g., silver, chromium, aluminum). Evaporation, sputtering, spraying, or other technique may be used. The interior walls 26 may instead be coated with other types of films, such as a dichroic coating, that reflect the direct LED die light and the phosphor light or only reflect the LED light or only reflect the phosphor light. The reflective material may be specular for the narrowest beam or may be diffusive (such as by using white paint or a white cup material) for a wider beam.
Instead of molding the array of cups 18 over the lead frame 12, the array of cups 18 may be machined or stamped from a reflective material, such as aluminum. By stamping the array of cups 18 from a metal sheet, the bottom edges facing the LED dies 20 may be knife edges so there is little or no reflection back towards the LED dies 20. If the array of cups 18 is not molded over the lead frame 12, the array is affixed to the lead frame 12 with an adhesive, such as a thermally conductive epoxy. If the array of cups 18 is formed of a metal, a dielectric layer is formed between the array of cups 18 and the lead frame 12. The LED dies 20 extend through an opening at the bottom of each cup 18.
The substrate 28 includes top metal pads 30 and 32 connected to the anode and cathode ends of the LED die 20 string. Metal vias 34 and 36 extending through the substrate 28 contact robust bottom metal pads 38 and 40 that may be soldered to a printed circuit board. The circuit board may have traces connected to a camera flash controller 41 for delivering a pulse of current to the LED dies 20 when taking a picture.
Since the array of cups 18 may form a 5×3 array (to approximate a typical 16:9 camera field of view) or any other size, the LED die 20 in each cup 18 is much smaller than a conventional LED die used in a flash module. For example, for a 5×3 array, the LED dies 20 may be less than ⅕ the size of a single LED die that delivers the same light output power for the same current pulse. Ideally, for a 5×3 array, the LED dies 20 may be 1/15 the size of the conventional LED die. The required height H of each cup 18 and the other dimensions of each cup 18 depend on the size of the LED die 20. For the extremely small sizes of the LED dies 20 described herein, the height of each cup 18 may be only about 1 mm. Each side of the LED die 20 may be less than 0.25 mm and the LED die 20 may have a height of only a few tens of microns, since the growth substrate (e.g. sapphire) has been removed. For flip-chips, a transparent growth substrate may remain on the LED die 20 to increase its side emission to provide a more uniform light emission from each cup 18. The light exit aperture of each cup 18 may be only 1-3 millimeters.
Typically sizes of the array to generally correspond to the camera's field of view may be 5×3 and 4×3.
In one embodiment, a precise amount of a mixture 43 of phosphor powder and silicone is dispensed in each cup 18 to encapsulate the LED die 20 and wavelength-convert the LED light. A certain amount of the blue LED light leaks through the cured mixture 43, and the blue light combines with the phosphor light to generate any overall color, such as white light for the flash. The phosphor powder may be YAG or other phosphor.
Alternatively, each LED die 20 is conformally coated with a layer of phosphor prior to being mounted on the lead frame 12. The phosphor may also be affixed as a pre-formed tile over each LED die 20. In such a case, a transparent encapsulant may be deposited in each cup 18. The encapsulant may include an additional phosphor, such as red phosphor, to generate the desired wavelengths for the flash.
In
Since no lens is used, the entire flash module, minus the substrate 28, may be about 1-3 mm thick. The lead frame 12 may be very thin since it is not used for mechanical support.
If each cup 18 opening was 2 mm, the minimum footprint for a 5×3 array would be about 6×10 mm. This is larger than a conventional flash module footprint (since only 1 or 2 LED dies are used) but the height is much less.
Since each cup 18 emits a generally square beam, the array aspect ratio is selected to generally match the rectangular aspect ratio of the camera's field of view, such as 16:9, 5:3, 4:3, etc.
The size of the optional substrate 28 is not relevant to the operation of the invention and typically has a footprint slightly larger than the array of cups 18. If the lead frame has sufficient structural strength or the mounting area of the array is sufficiently stiff, the substrate 28 may be eliminated.
Since each LED die 20 is much smaller than a conventional LED die in a flash, even molded lenses can be used while maintaining a very thin flash module profile.
In one embodiment, the cups 18 or lenses 50 may be shaped differently across the array to create an optimal beam.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
The present application is a continuation of U.S. application Ser. No. 15/312,608, filed Nov. 18, 2016, which is a § 371 application of International Application No. PCT/IB2015/054539 filed on Jun. 16, 2015 and entitled “A FLASH MODULE CONTAINING AN ARRAY OF REFLECTOR CUPS FOR PHOSPHOR-CONVERTED LEDS,” which claims the benefit of U.S. Provisional Patent Application No. 62/013,010, filed Jun. 17, 2014. U.S. application Ser. No. 15/312,608, International Application No. PCT/IB2015/054539 and U.S. Provisional Patent Application No. 62/013,010 are incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
7091653 | Ouderkirk et al. | Aug 2006 | B2 |
7221864 | Seo | May 2007 | B2 |
7284871 | Oon et al. | Oct 2007 | B2 |
7461948 | Van et al. | Dec 2008 | B2 |
7519287 | Mok | Apr 2009 | B2 |
7838897 | Higashi | Nov 2010 | B2 |
7984999 | Harbers et al. | Jul 2011 | B2 |
8974082 | Matsuwaki | Mar 2015 | B2 |
9086213 | Harbers et al. | Jul 2015 | B2 |
10649315 | Butterworth | May 2020 | B2 |
20040159850 | Takenaka | Aug 2004 | A1 |
20050056858 | Kakiuchi et al. | Mar 2005 | A1 |
20070040097 | Mok et al. | Feb 2007 | A1 |
20070091602 | Van et al. | Apr 2007 | A1 |
20080128735 | Yoo et al. | Jun 2008 | A1 |
20090152582 | Chang et al. | Jun 2009 | A1 |
20090168072 | Visser et al. | Jul 2009 | A1 |
20100181582 | Li | Jul 2010 | A1 |
20130051014 | Sikkens et al. | Feb 2013 | A1 |
20130215596 | Holman | Aug 2013 | A1 |
20140078378 | Demers et al. | Mar 2014 | A1 |
20150102744 | Muto | Apr 2015 | A1 |
20160043285 | Basin et al. | Feb 2016 | A1 |
20170062678 | Butterworth | Mar 2017 | A1 |
20170184944 | Butterworth | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1913151 | Feb 2007 | CN |
1916751 | Feb 2007 | CN |
1981378 | Jun 2007 | CN |
101252163 | Aug 2008 | CN |
101586753 | Nov 2009 | CN |
202004043 | Oct 2011 | CN |
103000789 | Mar 2013 | CN |
103026517 | Apr 2013 | CN |
111123620 | May 2020 | CN |
102004045950 | Mar 2006 | DE |
2124255 | Nov 2009 | EP |
2553319 | Mar 2017 | EP |
3158393 | Apr 2017 | EP |
2005-019675 | Jan 2005 | JP |
2005-114924 | Apr 2005 | JP |
2005091675 | Apr 2005 | JP |
2005-164990 | Jun 2005 | JP |
2007180520 | Jul 2007 | JP |
2007-266358 | Oct 2007 | JP |
2008513983 | May 2008 | JP |
2011-114096 | Jun 2011 | JP |
2014011359 | Jan 2014 | JP |
102244461 | Apr 2021 | KR |
200425531 | Nov 2004 | TW |
200727090 | Jul 2007 | TW |
201401585 | Jan 2014 | TW |
201947309 | Dec 2019 | TW |
WO-2013122722 | Aug 2013 | WO |
WO-2013161883 | Oct 2013 | WO |
WO-2014002628 | Jan 2014 | WO |
WO-2015-049146 | Apr 2015 | WO |
WO-2015193807 | Dec 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/312,608, filed Nov. 18, 2016, A Flash Module Containing an Array of Reflector Cups for Phosphor-Converted LEDs. |
“Japanese Application Serial No. 2016-573842, Examiners Decision of Final Refusal dated Dec. 22, 2020”, (w/ English Translation), 10 pgs. |
“Korean Application Serial No. 10-2017-7001379, Decision to Grant dated Feb. 9, 2021”, (w/ English Translation), 4 pgs. |
“Korean Application Serial No. 10-2017-7001379, Response filed Dec. 2, 2020 to Notice of Preliminary Rejection dated Oct. 20, 2020”, (w/Translation of English Claims), 18 pgs. |
“Taiwanese Application Serial No. 109119210, Office Action dated Jan. 8, 2021”, (w/ English Translation), 7 pgs. |
“Chinese Application Serial No. 201580032616.X, First Office Action dated Aug. 30, 2018”, (w/ English Translation), 15 pgs. |
“Chinese Application Serial No. 201580032616.X, Response filed Dec. 21, 2018 to First Office Action dated Aug. 30, 2018”, (w/ English Translation), 16 pgs. |
“European Application Serial No. 15745244.2, Office Action dated May 14, 2020”, 6 pgs. |
“European Application Serial No. 15745244.2, Response Aug. 19, 2020 to Office Action dated May 14, 28”, 25 pgs. |
“European Application Serial No. 15745244.2, Response filed Jul. 18, 2019 to Office Action dated Apr. 4, 2019”, 25 pgs. |
“Japanese Application Serial No. 2016-573842, Written Argument and Amendment filed Jul. 22, 2020 to Office Action dated May 12, 2020”, (w/ English Translation), 7 pgs. |
“Korean Application Serial No. 10-2017-7001379, Notice of Preliminary Rejection dated Oct. 20, 2020”, 15 pgs. |
“Taiwanese Application Serial No. 104119627, Office Action dated Nov. 7, 2018”, (w/ English Translation), 10 pgs. |
“Taiwanese Application Serial No. 104119627, Response filed Feb. 11, 2019 to Office Action dated Nov. 7, 2018”, (w/ English Translation), 24 pgs. |
“Chinese Application Serial No. 201580032616.X, Decision of Rejection dated Sep. 3, 2019”, (w/ English Translation), 19 pgs. |
“Chinese Application Serial No. 201580032616.X, Response filed Jun. 14, 2019 to Office Action dated Apr. 15, 2019”, (w/ English Translation of Amended Claims), 6 pgs. |
“Japanese Application Serial No. 2016-573842, Final Notification of Reasons for Refusal dated May 12, 2020”, (w/ English Translation), 6 pgs. |
“Japanese Application Serial No. 2016-573842, Notification of Reasons for Rejection dated Nov. 19, 2019”, (w/ English Translation), 4 pgs. |
“Japanese Application Serial No. 2016-573842, Response filed Aug. 13, 2019 to Office Action dated May 14, 2019”, (w/ English Translation of Claims), 6 pgs. |
“Japanese Application Serial No. 2016-573842, Written Argument and Amendment filed Apr. 2, 2020 to Notification of Reasons for Rejection dated Nov. 19, 2019”, (w/ English Translation), 7 pgs. |
“Taiwanese Application Serial No. 108112157, Office Action dated Nov. 20, 2019”, (w/ English Translation), 7 pgs. |
“Taiwanese Application Serial No. 108112157, Response filed Feb. 18, 2020 to Office Action dated Nov. 20, 2019”, (w/ English Translation of Claims), 17 pgs. |
“U.S. Appl. No. 15/312,608, Final Office Action dated Oct. 8, 2019”, 12 pgs. |
“U.S. Appl. No. 15/312,608, Non Final Office Action dated May 16, 2019”, 11 pgs. |
“U.S. Appl. No. 15/312,608, Notice of Allowance dated Jan. 9, 2020”, 7 pgs. |
“U.S. Appl. No. 15/312,608, Preliminary Amendment filed Nov. 18, 2016”, 7 pgs. |
“U.S. Appl. No. 15/312,608, Response filed Dec. 9, 2019 to Final Office Action dated Oct. 8, 2019”, 11 pgs. |
“U.S. Appl. No. 15/312,608, Response filed Aug. 16, 2019 to Non-Final Office Action dated May 16, 2019”, 14 pgs. |
“Chinese Application Serial No. 201580032616.X, Office Action dated Apr. 15, 2019”, w/English translation, 22 pgs. |
“European Application Serial No. 15745244.2, Communication pursuant to Article 94(3) EPC dated Apr. 4, 2019”, 7 pgs. |
“International Application Serial No. PCT/IB2015/054539, International Preliminary Report on Patentability dated Dec. 29, 2016”, 8 pgs. |
“International Application Serial No. PCT/IB2015/054539, International Search Report dated Nov. 2, 2015”, 3 pgs. |
“International Application Serial No. PCT/IB2015/054539, Written Opinion dated Nov. 2, 2015”, 6 pgs. |
“Japanese Application Serial No. 2016-573842, Office Action dated May 14, 2019”, W/English Translation, 6 pgs. |
“Chinese Application Serial No. 201580032616.X, Notice of Decision dated Mar. 30, 2021”, (w/ English Translation), 31 pgs. |
“Chinese Application Serial No. 201580032616.X, Notice of Reexamination dated Feb. 7, 2021”, (w/ English Translation), 20 pgs. |
“Chinese Application Serial No. 201580032616.X, Request for Reexamination filed Dec. 4, 2019 in response to Decision of Rejection dated Sep. 3, 2019”, (w/ EnglishTranslation), 10 pgs. |
“Chinese Application Serial No. 201580032616.X, Response filed Mar. 5, 2021 to Notice of Reexamination dated Feb. 7, 2021”, (w/ English Translation), 14 pgs. |
“Chinese Application Serial No. 201911309631.0, Office Action dated Apr. 30, 2021”, (w/ English Translation), 26 pgs. |
“Chinese Application Serial No. 201911309631.0, Response filed Aug. 3, 2021 to Office Action dated Apr. 30, 2021”, (w/ English Translation of Claims), 14 pgs. |
“Taiwanese Application Serial No. 109119210, Office Action dated Jun. 3, 2021”, (w/ English Translation), 7 pgs. |
“Taiwanese Application Serial No. 109119210, Response filed Mar. 10, 2021 to Office Action dated Jan. 8, 2021”, (w/ English Translation of Claims), 18 pgs. |
“Taiwanese Application Serial No. 109119210, Response filed Aug. 10, 2021 to Office Action dated Jun. 3, 2021”, (w/ English Translation of Claims), 24 pgs. |
“Chinese Application Serial No. 201911309631.0, Office Action dated Nov. 12, 2021”, (w/ English Translation), 14 pgs. |
Number | Date | Country | |
---|---|---|---|
20200241391 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62013010 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15312608 | US | |
Child | 16849741 | US |