Referring to
The first-stage shift register SR1 receives the third-stage scan signal S3 and outputs the first-stage scan signal S1 to enable the first row of pixels P1 in the pixel array 220 via a scan line L1 and receive data signals from the data driver 230 according to the first clock signal CK1 and the third clock signal CK3 after triggered by a start pulse STV. The second-stage shift register SR2 is coupled to the scan line L1 for receiving the first-stage scan signal S1 as a start pulse. The second-stage shift register SR2 receives the four-stage scan signal S4 and outputs the second-stage scan signal S2 to enable the second row of pixels P2 in the pixel array 220 via a scan line L2 and receive data signal D2 from the data driver 230 according to the second clock signal CK2 and the four clock signal CK4 after triggered by the first-stage scan signal S1 (a start pulse). Subsequently, the odd-stage shift registers SR3, respectively receive the next odd-stage scan signals S5, . . . and output the odd-stage scan signals S3, . . . to the pixel array 220 according to the first clock signal CK1 and the third clock signal CK3 after triggered by the previous odd-stage scan signals S1, . . . (start pulses). The even-stage shift registers SR4, respectively receive the next even-stage scan signals S6, . . . and output the even-stage scan signals S2, . . . to the pixel array 220 according to the second clock signal CK2 and the four clock signal CK4 after triggered by the previous even-stage scan signals S2, . . . (start pulses).
Referring to
As mentioned above, in the flat display of the embodiment, the second-stage shift register SR2 receives the first-stage scan signal S1 directly via the scan line L1 as a start pulse. Therefore, not only a normal operation of dual-side panel driving can be achieved, but also power consumption and cost for the driving circuit can be effectively reduced without need to provide another start pulse from a control circuit.
Although the second-stage shift register SR2 is exemplified to couple with the scan line L1 to receive the scan signal S1 as a start pulse in the invention, as shown in
Or as shown in
Referring to
The first-stage shift register SR1 receives a third-stage scan signal S3 and outputs a first-stage scan signal S1 to enable the first row of pixels P1 in the pixel array 620 to receive data signals from the data driver 630 according to the first clock signal CK1 and the second clock signal CK2 after triggered by the first start pulse STV1. The second-stage shift register SR2 receives a fourth-stage scan signal S4 and outputs a second-stage scan signal S2 to enable the second row of pixels P2 in the pixel array 620 to receive data signals from the data driver 630 according to the second clock signal CK2 and the third clock signal CK3 after triggered by the second start pulse STV2. The first start pulse STV1 and the second start pulse STV2 are, for example, provided by a control circuit (not shown in the figure).
Besides, the third-stage shift register SR3 receives the fifth-stage scan signal S5 and outputs the third-stage scan signal S3 to enable the third row of pixels P3 in the pixel array 620 to receive data signals from a data driver 630 according to the third clock signal CK3 and the first clock signal CK1 after triggered by the first-stage scan signal Si. Afterward, use every three shift registers as a circle, that is, the shift registers SR(i), SR(i+1) and SR(i+2) (i≧4) respectively receive the next-second-stage scan signals S(i+2), S(i+3) and S(i+4) and output scan signals S(i), S(i+1) and S(i+2) to the pixel array 620 according to the clock signals CK1 and CK2, CK2 and CK3, and CK3 and CK1 after triggered by the previous-second-stage scan signals S(i−2), S(i−1) and S(1) (as start pulses).
Referring to
As shown in
In the initial timing stage T0, in terms of the first-stage (i=1) shift register SR1, the input signal Sin is the first start pulse STV1 which outputs a high voltage (such as 10V) and the scan signal S3 and the clock signals C1 (=CK1) and C2 (=CK2) all output a low voltage. Therefore, the transistors M1, M3, and M7 in the shift register SR1 are all turned on such that the voltage at the node P1 is at a high level and the transistors M4, M9 and M10 are turned off. At the time, the scan signal S1 is lowered down to a low level by the clock signal C1 (=CK1) with a low voltage.
Moreover, in terms of the second-stage (i=2) shift register, the input signal Sin is the second start pulse STV2 which outputs a low voltage, such as −10V, and the clock signals C1 (=CK2) and C2 (=CK3) are at a low voltage level. Therefore, the transistors M1˜M11 of the shift register SR2 are all turned off such that the scan signal S2 is at a low voltage level. Analogized by the same reason, in terms of the following shift registers SR3, . . . , the input signal Sin is the previous-second-stage scan signal S1, . . . which is at a low voltage level and the clock signals C1 and C2 are both at a low voltage level. Therefore, all the scan signals S3, . . . outputted by the shift registers SR3, . . . have the low voltage level.
Afterwards, in the first timing stage T1, in terms of the first-stage shift register SR1, the input signal Sin (=STV1) outputs a low voltage, the clock signal C1 is changed to a high voltage level, and the clock signal C2 (=CK2) is still at a low voltage level. At the time, the voltage at the node P1 is lifted up to a higher voltage level due to a bootstrap effect such that the transistor M3 of the shift register SR1 is turned on and the scan signal S1 outputs a perfect high voltage level of the clock signal C1 (=CK1).
In terms of the second-stage shift register SR2, the input signal Sin (=STV2) outputs a high voltage and the clock signals C1 (=CK2) and C2 (=CK3) are both at a low voltage level. Similar to the operation condition of the first-stage shift register SR1 in the above timing stage T0, the voltage at the node P1 in the second-stage shift register SR2 is at a high level and the scan signal S2 outputs a low voltage.
In terms of the third shift register SR3, the start pulse Sin is the scan signal S1 which outputs also a high voltage, the clock signal C1 (=Ck3) has a low voltage level and the clock signal C2 (=CK1) has a high voltage level. Therefore, the transistor M10 of the shift register SR3 is turned on to output the scan signal S3 with a low voltage level. Analogized by the same reason, it can be known that all the scan signals S4, . . . have a low voltage level.
Next, in the second timing stage T2, in terms of the first-stage shift register SR1, the input signal Sin (=STV1) has a low voltage level, the clock signal C1 (=CK1) has a low voltage level and the clock signal C2 (=CK2) has a high voltage level. At the time, the transistor M10 of the shift register SR1 is turned on such that the scan signal S1 outputs a low voltage.
In terms of the second-stage shift register SR2, the input signal Sin (=STV2) outputs a low voltage, the clock signal C1 (=CK2) has a high voltage level and the clock signal C2 (=CK3) has a low voltage level. Similar to operation condition of the first-stage shift register SR1 in the previous timing stage T1, the voltage of the node P1 in the shift register SR2 is still at a high level such that the transistor M3 of the shift register SR2 is turned on and the scan signal S2 outputs the high voltage level of the clock signal C1 (=CK2).
In terms of the third-stage shift register SR3, the start pulse Sin is the scan signal S1 and outputs a low voltage and the clock signals C1 (=CK3) and C2 (=CK1) both have a low voltage level. At the time, the transistor M3 of the shift register SR3 is turned on such that the scan signal S3 is the low-level clock signal C1. Analogized by the same reason, it can be known that the scan signals S4, all have a low voltage level.
Following that, in the third timing stage T3, in terms of the first-stage shift register SR1, the input signal Sin (=STV1) has a low voltage level, and the clock signals C1 (=CK1) and C2 (=CK2) both have a low voltage level. The third-stage scan signal S3 outputs a high voltage such that the transistor M2 of the shift register SR1 is turned on and the voltage at the node P1 is at a low level. As a result, the transistor M3 is turned off and the scan signal S1 outputs a low voltage.
In terms of the second-stage shift register SR2, the input signal Sin (=STV2) outputs a low voltage, the clock signal C1 (=CK2) has a low voltage level and the clock signal C2 (=CK3) has a high voltage level. Similar to operation condition of the first-stage shift register SR1 in the above timing stage T2, the transistor M10 of the shift register SR2 is turned on such that the scan signal S2 outputs a low voltage.
In terms of the third-stage shift register SR3, the start pulse Sin is the scan output S1 and outputs a low voltage, the clock signal C1 (=CK3) is at a high voltage level and the clock signal C2 (=CK1) has a low voltage level. Similar to operation condition of the second-stage shift register SR2 of the above timing stage T2, the voltage at the node P1 in the shift register SR3 is remained at a high level such that the transistor M3 of the shift register SR2 is turned on and the scan signal S2 outputs a high voltage of the clock signal C1 (=CK3). Analogized by the same reason, it can be known that the scan signals S4, are all at a low voltage level. Therefore, the shift register circuit of the flat display structure of the embodiment only needs three clock signals CK1˜CK3 to achieve the purpose of dual-side panel driving.
Although the first-stage shift register SR1 and the second-stage shift register SR2 are exemplified to respectively receive different start pulses STV1 and STV2 in the invention, the flat display structure of the invention can also include the second-stage shift register SR1 coupled to the scan line L1 for receiving the scan signal SI as a start pulse as shown in
The advantage of the flat display structure disclosed by the above two embodiments of the invention lies on the second-stage shift register directly uses the start pulse or the scan signal of the first-stage shift register as the required start pulse or the even-stage or odd-stage shift registers only need to use three clock signals to achieve the purpose of dual-side panel driving. Therefore, power consumption and cost of the driving circuit can be effectively reduced and market competitiveness of the flat display can be improved.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
95124207 | Jul 2006 | TW | national |