The present invention relates to a flat weft-knitted upper for a shoe, in particular for sports shoes.
A number of requirements are imposed on a sports shoe, such as a running shoe, soccer shoe, basketball shoe, American Football shoe, baseball shoe or tennis shoe. This particularly includes the fact that a sports shoe is to provide very good support to the person wearing it. This is particularly important in sports with longitudinal or lateral accelerations, such as running, tennis or soccer. However, good support by the footwear is also important in sports such as climbing.
A further requirement imposed on a sports shoe is the lowest weight possible. This is particularly important when running and during fast sprints, as occur in tennis or soccer, for example.
It is currently difficult to simultaneously realize the mentioned requirements of “good support” on the one hand and “low weight” on the other hand in conventional sports shoes. Thus, a reduction of a sports shoe's weight usually results in the sports shoe providing the wearer with less support since material is dispensed with which would otherwise support the foot and ensure a firm coupling of the sports shoe to the foot.
On the other hand, the improvement of the support provided by a sports shoe to the wearer usually results in an increase in weight, for example by the application of additional fastening elements, such as buckles or hook-and-loop fasteners, or by additional reinforcements in certain areas.
Thus, there is tension between the mentioned requirements imposed on a soccer shoe so that, at best, solutions which do meet one of the mentioned requirements while disregarding other requirements are known to date.
The present invention is therefore based on the problem of providing a sports shoe which is light on the one hand and provides very good support to a wearer on the other hand.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various embodiments of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.
According to certain embodiments of the present invention, an upper for a sports shoe comprises flat weft-knitted knitwear, wherein the flat weft-knitted knitwear forms a top portion and a bottom portion of the upper, wherein the top portion is formed as tube weft-knitted knitwear such that it is configured to surround a part of a shank of a wearer of the sports shoe when worn, and wherein the bottom portion is configured to cover at least a part of a foot of the wearer of the sports shoe when worn.
In some embodiments, the top portion and the bottom portion are connected to one another by linking and/or by weft-knitting. In further embodiments, the top portion and the bottom portion are connected to one another by ultrasonic welding. The welded seam may be covered by a band of adhesive material.
In certain embodiments, the knitwear is formed as single-surface knitwear.
According to some embodiments, the top portion and the bottom portion are adjacent to one another below an ankle of the wearer of the sports shoe when worn.
In some embodiments, knitwear is manufactured on a flat weft-knitting machine with two beds of needles. The bottom portion may be formed as two-ply knitwear.
The top portion may further comprise a weft-knitted-in pocket for a shin guard.
In some embodiments, the bottom portion comprises at least one lace bar, formed integrally with the knitwear, with at least one lace eyelet. The at least one lace bar may be formed as a layer of the knitwear. The bottom portion may comprise two lace bars, and the knitwear may be more elastic in an area between the two lace bars than in other areas.
In some embodiments, the upper further comprises a front portion not formed as knitwear. The front portion may comprise leather or artificial leather.
In certain embodiments, the top portion, at its upper edge, may comprise an elastic cuff formed integrally with the knitwear. The top portion may be adjusted to anatomical conditions of the shank of a wearer of the sports shoe and/or may be tapered from an upper edge to an ankle area. In certain embodiments, the top portion is elastic and exerts pressure on at least a part of the shank. The exerted pressure may be adjusted to the sport for which the sports shoe is used and/or may be adjusted to the respective wearer of the sports shoe. In some embodiments, the top portion comprises an elastic yarn.
According to certain embodiments, a sports shoe comprises an upper as described above and a sole connected to the upper.
According to certain embodiments of the present invention, a method of manufacturing a shoe upper comprising flat weft-knitted knitwear comprises flat-knitting the knitwear such that the flat weft-knitted knitwear forms a top portion and a bottom portion of the upper, forming the top portion as tube weft-knitted knitwear such that it is configured to surround a part of a shank of a wearer of the sports shoe when worn, and forming the bottom portion such that it is configured to cover at least a part of a foot of the wearer of the sports shoe when worn.
In the following detailed description, embodiments of the invention are described referring to the following figures:
The mentioned problem is solved by an upper for a sports shoe, comprising flat weft-knitted knitwear, wherein the flat weft-knitted knitwear forms a top portion and a bottom portion of the upper, wherein the top portion is formed as tube weft-knitted knitwear such that it is suitable for surrounding a part of the shank of a wearer of the sports shoe, and wherein the bottom portion is suitable for covering at least a part of a foot of the wearer of the sports shoe.
According to certain embodiments of the invention, the upper comprises flat weft-knitted knitwear. This makes the sports shoe particularly light already, since knitwear has a low weight due to hollow spaces caused by the stitches and hollow spaces in the yarns.
The flat weft-knitted knitwear of the upper according to certain embodiments of the invention forms a top portion and a bottom portion of the upper. The top portion is positioned essentially above the bottom portion when the sports shoe in which the upper is used is standing. In other words, the top portion is located closer to the edge of the foot opening than the bottom portion, with the foot opening being the opening through which a foot is inserted when the sports shoe is put on. The top portion and the bottom portion can be directly adjacent to one another or they can be spaced from one another.
According to certain embodiments of the invention, the top portion is formed as tube weft-knitted knitwear such that it is suitable for surrounding a part of the shank of a wearer of the sports shoe. Tube weft-knitted knitwear is two-ply knitwear which was manufactured on a flat weft-knitting machine with at least two beds of needles and the two plies of which are only connected on the edges. Tube weft-knitted knitwear can have a constant or a variable diameter along its length. For example, the diameter of tube weft-knitted knitwear may be tapered towards one end.
By the top portion being formed as tube weft-knitted knitwear, the top portion can tightly surround a part of a shank of a wearer of the sports shoe and thus provides additional support. Moreover, tube weft-knitted knitwear does not comprise any seams. Pressure sores or chafe marks are reduced or avoided by this.
Additionally, tube weft-knitted knitwear can be ideally adjusted to anatomical conditions. For example—in contrast to circular weft-knitted knitwear—the width, i.e. the diameter of the tube weft-knitted knitwear can be varied along its length. Due to this, it is possible to take into account the fact that the human shank is usually tapered towards the ankle. The top portion can then be formed such that it exerts essentially, i.e. palpably, constant pressure on the shank along its length. Moreover, tube weft-knitted knitwear can be asymmetrical so as to be able to even better adjust to the anatomical conditions.
The bottom portion of the upper according to the invention is suitable for covering at least a part of a foot of the wearer of the sports shoe. In certain embodiments of the invention, the bottom portion covers the foot essentially completely, i.e. from the toes to below the ankle, for example.
In summary, advantages according to certain embodiments of the invention may be achieved by using flat weft-knitted knitwear in the top and bottom portions, with the knitwear being tube weft-knitted in the bottom portion.
In some embodiments of the invention, the top portion and the bottom portion are connected to one another by linking and/or by weft-knitting (e.g. flat weft-knitting). In linking, two edges of knitwear are connected to each other according to the stitches (usually stitch by stitch). Due to this, no seam or at most a seam which only adds a little thickness is created at the line connecting the top portion and the bottom portion. Pressure sores or chafe marks are avoided or at least reduced by this. The same applies with regard to the alternative connection by weft-knitting, in case of which the top portion and the bottom portion are formed as single-surface knitwear.
Additionally or alternatively, the top portion and the bottom portion are connected to one another by sewing, gluing and/or welding.
In some embodiments of the invention, the top portion and the bottom portion are connected to one another by ultrasonic welding. Ultrasonic welding enables a simple and cost-efficient connection.
In certain embodiments of the invention, the welded seam is covered by a band of adhesive material (e.g. thermoplastic or duroplastic (thermoset) material or adhesive). The band can be arranged on the inside of the upper. In this way, the band avoids or reduces pressure sores or chafe marks. Alternatively or additionally, the band can be arranged on the outside of the upper. This can improve the optical appeal of the upper.
In certain embodiments of the invention, the knitwear is formed as single-surface knitwear. In this case, the top portion and the bottom portion are weft-knitted on a flat weft-knitting machine in one go and connected to one another in the process. This avoids the additional working step of connecting the top portion to the bottom portion.
In certain embodiments of the invention, the top portion and the bottom portion are adjacent to one another below the ankle of the wearer of the sports shoe. The top portion can be adjusted in this way in order to tightly surround the ankle of the wearer in order to protect it on the one hand and to counteract twisting of the foot on the other hand.
In certain embodiments of the invention, the knitwear is manufactured on a flat weft-knitting machine with two beds of needles. Due to this, the top portion can be weft-knitted as a tube in a simple manner.
In certain embodiments of the invention, the bottom portion is formed as two-ply knitwear. In this way, the upper can be provided with additional stability in the area of the foot.
In certain embodiments of the invention, the top portion comprises a weft-knitted-in pocket. This pocket can be filled with a shin guard, padding, an insulating layer, a warming or cooling pack and/or a sensor (particularly for communication with a mobile device), for example, and/or be used as a storage facility (e.g. for a key or money). By the pocket being weft-knitted into the top portion, it can be formed in one working step as the top portion is weft-knitted. A separate working step in which the pocket is attached can be done without.
In certain embodiments of the invention, the bottom portion comprises a weft-knitted-in pocket. This pocket can be filled with padding and/or a warming or cooling pack, for example.
In certain embodiments of the invention, the bottom portion comprises at least one lace bar, formed integrally with the knitwear, with at least one lace eyelet. Due to this, separately attaching a lace bar, for example by sewing on or gluing together, can be done without.
In certain embodiments of the invention, the at least one lace eyelet is weft-knitted into the lace bar. Thus, the lace eyelet is formed as the lace bar is weft-knitted. Subsequently forming the lace eyelet, for example by punching, can be done without and fraying of the lace eyelet can be avoided or at least reduced.
In certain embodiments of the invention, the lace bar is formed as one ply of the knitwear. In a further embodiment of the invention, a second ply of the knitwear assumes the function of a tongue. In this way, the lace bar and the tongue can be formed in one working step as the bottom portion is weft-knitted.
In certain embodiments of the invention, the bottom portion comprises two lace bars and the knitwear is more elastic in an area between the two lace bars than in other areas. In this way, the upper can adjust to different foot widths and the sports shoe can be laced up without creases being formed under the laces, since the area between the two lace bars is elastic.
In certain embodiments of the invention, the upper comprises a front portion which is not formed as knitwear. In this way, the upper can be designed depending on the requirements and it can comprise, in the front portion, a more rigid material or a material with a particular surface finish, for example.
In certain embodiments of the invention, the front portion comprises leather or artificial leather. Leather or artificial leather can be advantageous in soccer shoes in order to increase friction (“grip”) with the ball.
In certain embodiments of the invention, the top portion, at its upper edge, comprises an elastic cuff formed integrally with the knitwear. The elastic cuff prevents or reduces sliding down of the top portion. By the cuff being formed integrally with the knitwear, an additional working step of connecting the cuff to the knitwear is omitted.
In certain embodiments of the invention, the cuff is weft-knitted as single Jersey. In this way, the cuff can be provided with elasticity in a simple manner. However, the cuff can also be weft-knitted as rib fabric front or purl fabric.
In certain embodiments of the invention, the top portion is adjusted to the anatomical conditions of a shank of a wearer of the sports shoe. This can take the fact into consideration that the human shank does not have a constant circumference but is usually tapered towards the ankle.
In certain embodiments of the invention, the top portion is tapered from an upper edge towards an ankle area. Thus, the top portion is ideally adjusted to the human anatomy and the top portion exerts essentially, i.e. palpably, constant pressure on the shank along its length. Pressure sores or chafe marks are avoided or reduced by this.
The invention principally allows an individual adjustment of the style and design of the sports shoe. For example, a custom-made sports shoe can be obtained using initial parameters, which have been obtained by a body scan, for example, and which represent the circumference of a leg, a calf or an ankle joint, for example. For this purpose, a standard weft-knitting pattern can be started out from, for example, and stitches can then be omitted or added depending on the initial parameters.
Moreover, the invention allows for individual designs of a sports shoe by the use of knitwear which can be formed with individual, colored yarns, graphics, logos, patterns, etc.
In certain embodiments of the invention, the top portion is elastic and exerts pressure on at least a part of the shank. The support of the sports shoe is improved by the pressure. On the other hand, a certain amount of pressure by pieces of apparel is desirable in sports, in order to provide the athlete with feedback regarding the position of their body parts (“proprioception”).
In certain embodiments of the invention, the exerted pressure is adjusted to the sport for which the sports shoe is used. In this way, the foot can, for example, be provided with better support by higher pressure in case of a tennis shoe, which is subject to high accelerations due to abrupt decelerations and accelerations. In case of a running shoe, which is usually not subject to such high accelerations as a tennis shoe is, less pressure on the shank is sufficient.
In certain embodiments of the invention, the exerted pressure is adjusted to the respective wearer of the sports shoe. Depending on their personal preferences, the wearer can decide on more or less pressure on the shank by the top portion.
In certain embodiments of the invention, the top portion comprises an elastic yarn. By an elastic yarn, the top portion can be designed elastically in a simple manner, so as to exert pressure on at least a part of the shank.
The invention also relates to a sports shoe which comprises an upper according to the invention and a sole connected to the upper.
Finally, the invention relates to a method for manufacturing an upper according to the invention, comprising the following steps: Flat weft-knitting the knitwear such that the flat weft-knitted knitwear forms a top portion and a bottom portion of the upper; forming the top portion as tube weft-knitted knitwear such that it is suitable for surrounding a part of the shank of a wearer of the sports shoe; and forming the bottom portion such that it is suitable for covering at least a part of a foot of the wearer of the sports shoe.
On principle, all embodiments of the invention mentioned in this description can be combined with one another, i.e. the features of one embodiment together with the features of another embodiment constitute a further embodiment of the invention.
The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
Embodiments and variations of the present invention will be described in more detail below.
The use of knitwear allows products such as an upper (also referred to as a shoe upper) or a sole of a shoe, such as an insole, strobel sole, midsole and/or outer sole to be equipped with areas with different characteristics providing different functions with low production effort. The properties include bendability, stretchability (expressed as Young's modulus, for example), permeability to air and water, thermoconductivity, thermal capacity, moisture absorption, static friction, abrasion resistance, hardness and thickness, for example.
Various techniques are applied in order to achieve such characteristics or functions, which will be described in the following. This includes suitable techniques in manufacturing knitwear such as knitting techniques, the selection of fibers and yarns, coating the fibers, yarns or knitwear with polymer or other materials, the use of monofilaments, the combination of monofilaments and polymer coating, the application of fuse/melt yarns, and multi-layer textile material. In general, the yarns used for the manufacture of knitwear can be equipped, e.g. coated, accordingly. In addition or alternatively, the finished knitwear can be equipped accordingly.
Another aspect of providing functions concerns the specific use of knitwear for certain areas of a product, for example of an upper or a sole, and the connection of different parts by suitable connection techniques. The mentioned aspects and techniques as well as other aspects and techniques will be explained in the following.
The described techniques can be used individually or they can be combined in any manner.
Knitwear
Knitwear used in the present invention is divided into weft-knitted fabrics and single-thread warp-knitted fabrics on the one hand and multi-thread warp-knitted fabrics on the other hand. The distinctive characteristic of knitwear is that it is formed of interlocking yarn or thread loops. These thread loops are also referred to as stitches and can be formed of one or several yarns or threads.
Yarn or thread are the terms for a structure of one or several fibers which is long in relation to its diameter. A fiber is a flexible structure which is rather thin in relation to its length. Very long fibers, of virtually unlimited length with regard to their use, are referred to as filaments. Monofilaments are yarns consisting of one single filament, that is, one single fiber.
In weft-knitted fabrics and single-thread warp-knitted fabrics, the stitch formation requires at least one thread or yarn, with the thread running in longitudinal direction of the product, i.e. substantially at a right angle to the direction in which the product is made during the manufacturing process. In multi-thread warp-knitted fabrics, the stitch formation requires at least one warp sheet, i.e. a plurality of so-called warps. These stitch-forming threads run in longitudinal direction, i.e. substantially in the direction in which the product is made during the manufacturing process.
An alternative of a weft-knitted fabric which can be used for the present invention with a so-called filler yarn 15 is shown in
Instead of or in addition to a filler yarn, a weft can also be introduced into the knitwear during weft-knitting or warp-knitting, e.g. in order to reduce elasticity of the knitwear.
Warp-knitted fabric 13 is created by warp-knitting with many threads from top down, as shown in
By way of example, the interlaces tricot 21, 2×1 plain 22 and atlas 23 are shown in
Stitches arranged above each other with joint binding sites are referred to as wales.
Three basic weft-knitted structures are known in weft-knitted fabrics, which can be recognized by the run of the stitches along a wale. With plain, single Jersey, only back loops can be recognized along a wale on one side of the fabric and only back loops can be recognized along the other side of the product. This structure is created on a bed of needles of a knitting machine, i.e. an arrangement of neighboring knitting needles, and also referred to as single Jersey. With rib fabric, front and back loops alternate within a course, i.e. either only front or back loops can be found along a wale, depending on the side of the product from which the wale is considered. This structure is created on two beds of needles with needles offset opposite each other. With purl fabric, front and back loops alternate in one wale. Both sides of the product look the same. This structure is manufactured by latch needles as illustrated in
An essential advantage of knitwear over weaved textiles is the variety of structures and surfaces which can be created with it. It is possible to manufacture both very heavy and/or stiff knitwear and very soft, transparent and/or stretchable knitwear with substantially the same manufacturing technique. The parameters by which the properties of the material can be influenced substantially are the pattern of weft-knitting or warp-knitting, the used yarn, the needle size or the needle distance, and the tensile strain subject to which the yarn is placed on the needles.
An advantage of weft-knitting may be that certain yarns can be weft-knitted in at freely selectable places. In this manner, selected zones can be provided with certain properties. For example, the shoe upper for the soccer shoe according to the invention can be provided with zones made from rubberized yarn in order to achieve higher static friction and thus enable the player to better control the ball. With certain yarns being weft-knitted in at selected places, no additional elements have to be applied.
Knitwear is manufactured on machines in the industrial context. These usually comprise a plurality of needles. In weft-knitting, latch needles 41 are usually used, which each comprise a moveable latch 42, as illustrated in
A differentiation is made between flat weft-knitting and circular-knitting machines. In flat weft-knitting machines, a thread feeder feeds the thread back and forth along one or several beds of needles. In a circular-knitting machine, the needles are arranged in a circular manner and the thread feeding correspondingly takes place in a circular movement along one or more round beds of needles.
Instead of a single bed of needles, it is also possible for a knitting machine to comprise two parallel beds of needles. When looked at from the side, the needles of the two beds of needles may, for example, be opposite each other at a right angle. This enables the manufacture of more elaborate structures or weaves. The use of two beds of needles allows the manufacture of a one-layered or two-layered weft-knitted fabric. A one-layered weft-knitted fabric is created when the stitches generated on the first bed of needles are enmeshed with the stitches generated on the second bed of needles. Accordingly, a two-layered weft-knitted fabric is created when the stitches generated on the first bed of needles are not or only selectively enmeshed with the stitches generated on the second bed of needles and/or if they are merely enmeshed at the end of the weft-knitted fabric. If the stitches generated on the first bed of needles are loosely enmeshed only selectively with the stitches generated on the second bed of needles by an additional yarn, this is also referred to as spacer weft-knitted fabric. The additional yarn, for example a monofilament, is thus guided back and forth between two layers, so that a distance between the two layers is created. The two layers can e.g. be connected to each other via a so-called tuck-stitch.
Generally, the following weft-knitted fabrics can thus be manufactured on a weft-knitting machine with two beds of needles: If only one bed of needles is used, a one-layered weft-knitted fabric is created. When two beds of needles are used, the stitches of both beds of needles can consistently be connected to each other so that the resulting knitwear comprises a single layer. If the stitches of both beds of needles are not connected or only connected at the edge when two beds of needles are used, two layers are created. If, when using two beds of needles, the stitches of both beds of needles are connected selectively in turns by an additional thread, a spacer weft-knitted fabric is created. The additional thread is also referred to as spacer thread and it can be fed via a separate yarn feeder.
On principle, weft-knitting machines with more than two beds of needles can also be used, which allows the design of the knitwear manufactured on them to be fashioned even more flexibly.
The techniques described herein as well as further aspects of the manufacture of knitwear can be found in “Fachwissen Bekleidung”, 6th ed. by H. Eberle et al. (published with the title “Clothing Technology” in English), in “Textil- and Modelexikon”, 6th ed. by Alfons Hofer and in “Maschenlexikon”, 11th ed. by Walter Holthaus, for example.
Three-Dimensional Knitwear
Three-dimensional (3D) knitwear can also be manufactured on weft-knitting machines and warp-knitting machines, particularly on flat weft-knitting machines. This is knitwear which comprises a spatial structure although it is weft-knitted or warp-knitted in a single process. A three-dimensional weft-knitting or warp-knitting technique allows for spatial knitwear to be manufactured without seams, cut or manufacture in one piece and in a single process.
Three-dimensional knitwear may, for example, be manufactured by varying the number of stitches in the direction of the wales by the formation of partial courses. The corresponding mechanical process is referred to as “needle parking”. Depending on the requirement, this can be combined with structural variations and/or variations of the number of stitches in the direction of the course. When partial courses are formed, stitch formation temporarily occurs only along a partial width of the weft-knitted fabric or warp-knitted fabric. The needles which are not involved in the stitch formation keep the half stitches (“needle parking”) until weft-knitting occurs again at this position. In this way, it is possible to achieve bulges, for example.
By three-dimensional weft-knitting or warp-knitting an upper can be adjusted to the cobbler's last or the foot and a sole can be treaded, for example. The tongue of a shoe can e.g. be weft-knitted into the right shape. Contours, structures, knobs, curvatures, notches, openings, fasteners, loops and pockets can be integrated into the knitwear in a single process.
Three-dimensional knitwear can be used for the present invention in an advantageous manner.
For example, a three-dimensional shoe can be weft-knitted using a single-Jersey material which extends from the topmost portion of the upper to the toes and/or another area of a bottom portion of the shoe. The topmost portion of the upper can be weft-knitted using elastic yarns with a predetermined elasticity module, whereas the bottom portion of the upper can include several yarns of different types. For example, the bottom portion of a shoe upper can include several yarns, such as yarns made from polyester, monofilament, elastic yarns and/or combinations thereof.
Functional Knitwear
Knitwear and particularly weft-knitted fabric can be provided with a range of functional properties and used in the present invention in an advantageous manner.
It is possible by a weft-knitting technique to manufacture knitwear which has different functional areas and simultaneously maintains its contours. The structures of knitwear may be adjusted to functional requirements in certain areas, by the stitch pattern, the yarn, the needle size, the needle distance or the tensile strain subject to which the yarn is placed on the needles being selected accordingly.
It is possible, for example, to include structures with large stitches or openings within the knitwear in areas in which airing is desired. In contrast, in areas in which support and stability are desired, fine-meshed stitch patterns, stiffer yarns or even multi-layered weft-knitting structures can be used, which will be described in the following. In the same manner, the thickness of the knitwear is variable.
Knitwear having more than one layer provides numerous possible constructions for the knitwear, which provide many advantages. Knitwear with more than one layer, e.g. two, can be weft-knitted or warp-knitted on a weft-knitting machine or a warp-knitting machine with several beds of needles, e.g. two, in a single stage, as described in the section “knitwear” above. Alternatively, the several layers, e.g. two, can be weft-knitted or warp-knitted in separate stages and then placed above each other and connected to each other if applicable, e.g. by sewing, gluing, welding or linking.
Several layers fundamentally increase solidness and stability of the knitwear. In this regard, the resulting solidness depends on the extent to which and the techniques by which the layers are connected to each other. The same yarn or different yarns can be used for the individual layers. For example, it is possible in a weft-knitted fabric for one layer to be weft-knitted from multi-fiber yarn and one layer to be weft-knitted from monofilament, whose stitches are enmeshed. In particular stretchability of the weft-knitted layer is reduced due to this combination of different yarns. It is an advantageous alternative of this construction to arrange a layer made from monofilament between two layers made from multi-fiber yarn in order to reduce stretchability and increase solidness of the knitwear. This results in a pleasant surface made from multi-fiber yarn on both sides of the knitwear.
An alternative of two-layered knitwear is referred to as spacer weft-knitted fabric or spacer warp-knitted fabric, as explained in the section “knitwear”. In this regard, a spacer yarn is weft-knitted or warp-knitted more or less loosely between two weft-knitted or warp-knitted layers, interconnecting the two layers and simultaneously serving as a filler. The spacer yarn can comprise the same material as the layers themselves, e.g. polyester or another material. The spacer yarn can also be a monofilament which provides the spacer weft-knitted fabric or spacer warp-knitted fabric with stability.
Such spacer weft-knitted fabrics or spacer warp-knitted fabrics, which are also referred to as three-dimensional weft-knitted fabrics or warp-knitted fabrics, but have to be differentiated from the formative 3D weft-knitted fabrics or 3D warp-knitted fabrics mentioned in the section “three-dimensional knitwear” above, can be used wherever additional cushioning or protection is desired, e.g. at the upper or the tongue of an upper or in certain areas of a sole. Three-dimensional structures can also serve to create spaces between neighboring textile layers or also between a textile layer and the foot and thus ensure airing. Moreover, the layers of a spacer weft-knitted fabric or a spacer warp-knitted fabric can comprise different yarns depending on the position of the spacer weft-knitted fabric on the foot.
The thickness of a spacer weft-knitted fabric or a spacer warp-knitted fabric can be set in different areas depending on the function or the wearer. Various degrees of cushioning can be achieved with areas of various thicknesses, for example. Thin areas can increase bendability, for example, thus fulfilling the function of joints or flex lines.
Multi-layer constructions also create possibilities of color design, by different colors being used for the different layers. In this way, knitwear can be provided with two different colors for the front and the back, for example. An upper made from such knitwear can then comprise a different color on the outside than on the inside.
An alternative of multi-layered constructions are pockets or tunnels, in which two textile layers or knitwear weft-knitted or warp-knitted on two beds of needles are connected to each other only in certain areas so that a hollow space is created. Alternatively, items of knitwear weft-knitted or warp-knitted in two separate processes are connected to each other such that a void is created, e.g. by sewing, gluing, welding or linking. It is then possible to introduce a cushioning material such as a foam material, eTPU (expanded thermoplastic urethane), ePP (expanded polypropylene), expanded EVA (ethylene vinyl acetate) or particle foam, an air or gel cushion for example, through an opening, e.g. at the tongue, the upper, the heel, the sole or in other areas. Alternatively or additionally, the pocket can also be filled with a filler thread or a spacer knitwear. It is furthermore possible for threads to be pulled through tunnels, for example as reinforcement in case of tension loads in certain areas of an upper. Moreover, it is also possible for the laces to be guided through such tunnels. Moreover, loose threads can be placed into tunnels or pockets for padding, for example in the area of the ankle. However, it is also possible for stiffer reinforcing elements, such as caps, flaps or bones to be inserted into tunnels or pockets. These can be manufactured from plastic such as polyethylene, TPU, polyethylene or polypropylene, for example.
A further possibility for a functional design of knitwear is the use of certain variations of the basic weaves. In weft-knitting, it is possible for bulges, ribs or waves to be weft-knitted in certain areas, for example, in order to achieve reinforcement in these places. A wave may, for example, be created by stitch accumulation on a layer of knitwear. This means that more stitches are weft-knitted or warp-knitted on one layer than on another layer. Alternatively, different stitches are weft-knitted on the one layer than on the other layer, e.g. with these being weft-knitted tighter, wider or using a different yarn. Thickening is caused in both alternatives.
Ribs, waves or similar patterns may, for example, also be used at the bottom of a weft-knitted outer sole of a shoe in order to provide a tread and provide the shoe with better non-slip properties. In order to obtain a rather thick weft-knitted fabric, for example, it is possible to use the weft-knitting techniques “tuck” or “half cardigan”, which are described in “Fachwissen Bekleidung”, 6th ed. by H. Eberle et al., for example.
Waves can be weft-knitted or warp-knitted such that a connection is created between two layers of a two-layered knitwear or such that no connection is created between the two layers. A wave can also be weft-knitted as a right-left wave on both sides with or without a connection of the two layers. A structure in the knitwear can be achieved by an uneven ration of stitches on the front or the back of the knitwear.
Ribs, waves or similar patterns, for example, may be included in the knitwear of the soccer shoe according to the invention in order to increase friction with a soccer ball, for example, and/or in order to generally allow for a soccer player to have better control of the ball.
A further possibility of functionally designing knitwear within the framework of the present invention is providing openings in the knitwear already during weft-knitting or warp-knitting. In this manner, airing of the soccer shoe according to the invention may be provided in specific places in a simple manner.
Yet another possibility of functionally designing knitwear within the framework of the present invention is forming laces integrally with the knitwear of the shoe upper according to the invention. In these embodiments, the laces are warp-knitted or weft-knitted integrally with the knitwear already when the knitwear of the shoe upper according to the invention is weft-knitted or warp-knitted. In this regard, a first end of a lace is connected to the knitwear, while a second end is free.
In certain embodiments, the first end is connected to the knitwear of the upper in the area of the transition from the tongue to the area of the forefoot of the upper. In further embodiments, a first end of a first lace is connected to the knitwear of the upper at the medial side of the tongue and a first end of a second lace is connected to the knitwear of the upper at the lateral side of the tongue. The respective second ends of the two laces can then be pulled through lace eyelets for tying the shoe.
A possibility of speeding up the integral weft-knitting or warp-knitting of laces is having all yarns used for weft-knitting or warp-knitting knitwear end in the area of the transition from the tongue to the area of the forefoot of the upper. The yarns may end in the medial side of the upper on the medial side of the tongue and form the lace connected on the medial side of the tongue. The yarns may end in the lateral side of the upper on the lateral side of the tongue and form the lace connected to the lateral side of the tongue. The yarns may then be cut off at a length which is sufficiently long for forming laces. The yarns can be twisted or intertwined, for example. The respective second end of the laces may be provided with a lace clip. Alternatively, the second ends are fused or provided with a coating.
The knitwear is particularly stretchable in the direction of the stitches (longitudinal direction) due to its construction. This stretching can be reduced e.g. by subsequent polymer coating of the knitwear. The stretching can also be reduced during manufacture of the knitwear itself, however. One possibility is reducing the mesh openings, that is, using a smaller needle size. Smaller stitches generally result in less stretching of the knitwear. Moreover, the stretching of the knitwear can be reduced by weft-knitted reinforcements, e.g. three-dimensional structures. Such structures may be arranged on the inside or the outside of the knitwear of the shoe upper according to the invention. Furthermore, non-stretchable yarn, e.g. made from nylon, can be laid in a tunnel along the knitwear in order to limit stretching to the length of the non-stretchable yarn.
Colored areas with several colors can be created by using a different thread and/or by additional layers. In transitional areas, smaller mesh openings (smaller needle sizes) are used in order to achieve a fluent passage of colors.
Further effects can be achieved by weft-knitted insets (inlaid works) or Jacquard knitting. Inlaid works are areas which only provide a certain yarn, e.g. in a certain color. Neighboring areas which can comprise a different yarn, for example in a different color, are then connected to each other by a so-called tuck-stitch.
During Jacquard knitting, two beds of needles are used and two different yarns run through all areas, for example. However, in certain areas only one yarn appears on the visible side of the knitwear and the respective other yarn runs invisibly on the other side of the knitwear.
A product manufactured from knitwear can be manufactured in one piece on a weft-knitting machine or a warp-knitting machine. Functional areas can then already be manufactured during weft-knitting or warp-knitting by corresponding techniques as described here.
Alternatively, the product can be combined from several parts of knitwear and it can also comprise parts which are not manufactured from knitwear. In this regard, the parts of knitwear can each be designed separately with different functions, for example regarding thickness, insulation, transport of moisture, stability, protection, abrasion-resistance, durability, cooling, stretchability, rigidity, compression, etc.
The shoe upper of the soccer shoe according to the invention and/or its sole may, for example, be generally manufactured from knitwear as a whole or it may be put together from different parts of knitted goods. A whole upper or parts of that may, for example, be separated, e.g. punched, from a larger piece of knitwear. The larger piece of knitwear may, for example, be a circular weft-knitted fabric or a circular warp-knitted fabric or a flat weft-knitted fabric or a flat warp-knitted fabric.
In a further example, a shoe comprises a flat weft-knitted strobel sole, an insole and/or an outsole. The outsole can be connected to the upper by sewing, for example. Other connecting techniques may be utilized.
For example, a tongue can be manufactured as a continuous piece and connected with the upper subsequently, or it can be manufactured in one piece with the upper. With regard to their functional designs, ridges on the inside can e.g. improve flexibility of the tongue and ensure that a distance is created between the tongue and the foot, which provides additional airing. Laces may be guided through one or several weft-knitted tunnels of the tongue. The tongue can also be reinforced with polymer in order to achieve stabilization of the tongue and e.g. prevent a very thin tongue from convolving. Moreover, the tongue can then also be fitted to the shape of the cobbler's last or the foot.
Applications such as polyurethane (PU) prints, thermoplastic polyurethane (TPU) ribbons, textile reinforcements, leather, rubber, etc., may be subsequently applied to the knitwear of the soccer shoe according to the invention. Thus, it is possible, for example, to apply a plastic heel or toe cap as reinforcement or logos and eyelets for laces on the shoe upper, for example by sewing, gluing or welding, as described below.
Sewing, gluing or welding, for example, constitute suitable connection techniques for connecting individual parts of knitwear with other textiles or with parts of knitwear. Linking is another possibility for connecting two parts of knitwear. Therein, two edges of knitwear are connected to each other according to the stitches (usually stitch by stitch).
A possibility for welding textiles, particularly ones made from plastic yarns or threads, is ultrasonic welding. Therein, mechanical oscillations in the ultrasonic frequency range are transferred to a tool referred to as a sonotrode. The oscillations are transferred to the textiles to be connected by the sonotrode under pressure. Due to the resulting friction, the textiles are heated up, softened and ultimately connected in the area of the place of contact with the sonotrode. Ultrasonic welding allows rapidly and cost-effectively connecting particularly textiles with plastic yarns or threads. It is possible for a ribbon to be attached, for example glued, to the weld seam, which additionally reinforces the weld seam and is optically more appealing. Moreover, wear comfort is increased since skin irritations—especially at the transition to the tongue—are avoided.
Connecting various textile areas, such as parts of knitwear, may occur at quite different locations. For example, the seams for connecting various textile areas of the shoe upper of the soccer shoe according to the invention can be arranged at various positions, as shown in
The use of adhesive tape constitutes a further possibility for connecting textile areas. This can also be used in addition to an existing connection, e.g. over a sewn seam or a welded seam. An adhesive tape can fulfill further functions in addition to the function of connecting, such as e.g. protection against dirt or water. An adhesive tape can comprise properties which change over its length.
Certain embodiments of an upper 51 connected to a shoe sole 61 by adhesive tape is shown in
The shoe sole 61 can be an outer sole or a midsole. The upper 51 and the shoe sole 61 are connected to each other by a surrounding adhesive tape 62. The adhesive tape 62 can be of varying flexibility along its length. For example, the adhesive tape 62 might be particularly rigid and not very flexible in the shoe's heel area in order to provide the shoe with the necessary stability in the heel area. This may be achieved by varying the width and/or the thickness of the adhesive tape 62, for example. The adhesive tape 62 can generally be constructed such that it is able to receive certain forces in certain areas along the tape. In this way, the adhesive tape 62 does not only connect the upper to the sole but simultaneously fulfils the function of structural reinforcement.
Fibers
The yarns or threads used for the knitwear of the present invention usually comprise fibers. As was explained above, a flexible structure which is rather thin in relation to its length is referred to as a fiber. Very long fibers, of virtually unlimited length with regard to their use, are referred to as filaments. Fibers are spun or twisted into threads or yarns. Fibers can also be long, however, and twirled into a yarn. Fibers can consist of natural or synthetic materials. Natural fibers are environmentally friendly, since they are compostable. Natural fibers include cotton, wool, alpaca, hemp, coconut fibers or silk, for example. Among the synthetic fibers are polymer-based fibers such as Nylon™, polyester, elastane or spandex or Kevlar®, which can be produced as classic fibers or as high-performance fibers or technical fibers.
In certain embodiments, a soccer shoe according to the invention may be assembled from various parts, with a weft-knitted or a warp-knitted part comprising natural yarn made from natural fibers and a removable part, e.g. the insole, comprising plastic, for example. In this manner, both parts can be disposed of separately. In this example, the weft-knitted part could be directed to compostable waste, whereas the insole could be directed to recycling of reusable materials, for example.
The mechanical and physical properties of a fiber and the yarn manufactured therefrom are also determined by the fiber's cross-section, as illustrated in
A fiber having the circular cross-section 710 can either be solid or hollow. A solid fiber is the most frequent type, it allows easy bending and is soft to the touch. A fiber as a hollow circle with the same weight/length ratio as the solid fiber has a larger cross-section and is more resistant to bending. Examples of fibers with a circular cross-section are Nylon™, polyester and Lyocell.
A fiber having the bone-shaped cross-section 730 has the property of wicking moisture. Examples of materials for such fibers are acrylic and spandex. The concave areas in the middle of the fiber support moisture being passed on in the longitudinal direction, with moisture being rapidly wicked from a certain place and distributed.
The following further cross-sections are illustrated in
Individual fibers with their properties which are relevant for the manufacture of knitwear for the present invention will be described in the following:
A plurality of different yarns can be used for the manufacture of knitwear which is used in the present invention. As was already defined, a structure of one or several fibers which is long in relation to its diameter is referred to as a yarn.
Functional yarns are capable of transporting moisture and thus of absorbing sweat and moisture. They can be electrically conducting, self-cleaning, thermally regulating and insulating, flame resistant, and UV-absorbing, and can enable infrared radiation. They can be suitable for sensorics. Antibacterial yarns, such as silver yarns, for example, prevent odor formation.
Stainless steel yarn contains fibers made of a blend of nylon or polyester and steel. Its properties include high abrasion resistance, high cut resistance, high thermal abrasion, high thermal and electrical conductivity, higher tensile strength and high weight.
In textiles made from knitwear, electrically conducting yarns can be used for the integration of electronic devices. These yarns may, for example, forward impulses from sensors to devices for processing the impulses, or the yarns can function as sensors themselves, and measure electric streams on the skin or physiological magnetic fields, for example. Examples for the use of textile-based electrodes can be found in European patent application EP 1 916 323.
Fuse yarns can be a mixture of a thermoplastic yarn and a non-thermoplastic yarn. There are essentially three types of fuse/melt yarns: a thermoplastic yarn surrounded by a non-thermoplastic yarn; a non-thermoplastic yarn surrounded by thermoplastic yarn; and pure fuse/melt yarn of a thermoplastic material. After being heated to the melting temperature, the thermoplastic yarn fuses with the non-thermoplastic yarn (e.g. polyester or nylon), stiffening the knitwear. The melting temperature of the thermoplastic yarn is determined accordingly and it is usually lower than that of the non-thermoplastic yarn in case of a mixed yarn.
A shrinking yarn is a dual-component yarn. The outer component is a shrinking material, which shrinks when a defined temperature is exceeded. The inner component is a non-shrinking yarn, such as polyester or nylon. Shrinking increases the stiffness of the textile material.
A further yarn for use in knitwear are luminescent or reflecting yarns and so-called “intelligent” yarns. Examples of intelligent yarns are yarns which react to humidity, heat or cold and alter their properties accordingly, e.g. contracting and thus making the stitches smaller or changing their volume and thus increasing permeability to air. Yarns made from piezo fibers or yarn coated with a piezo-electrical substance are able to convert kinetic energy or changes in pressure into electricity, which can provide energy to sensors, transmitters or accumulators, for example.
Yarns can furthermore generally be reworked, e.g. coated, in order to maintain certain properties, such as stretching, water resistance/water repellence, color or humidity resistance.
Polymer Coating
Due to its structure, weft-knitted or warp-knitted knitwear is considerably more flexible and stretchable than weaved textile materials. For certain applications and requirements, e.g. in certain areas of a shoe upper according to the present invention, it is therefore necessary to reduce flexibility and stretchability in order to achieve sufficient stability.
For that purpose, a polymer layer can be applied to one side or both sides of knitwear (weft-knit or warp-knit goods), but generally also to other textile materials. Such a polymer layer causes a reinforcement and/or stiffening of the knitwear. In a shoe upper in accordance with the present invention, it may, for example, serve the purpose of supporting and/or stiffening and/or reducing elasticity in the toe area, in the heel area, along the lace eyelets, on lateral and/or medial surfaces or in other areas. Furthermore, elasticity of the knitwear and particularly stretchability are reduced. Moreover, the polymer layer protects the knitwear against abrasion. Furthermore, it is possible to give the knitwear a three-dimensional shape by the polymer coating by compression-molding. The polymer coating may be thermoplastic urethane (TPU), for example.
In the first step of polymer coating, the polymer material is applied to one side of the knitwear. It can also be applied on both sides, however. The material can be applied by spraying on, coating with a doctor knife, laying on, printing on, sintering, ironing on or spreading. If it is polymer material in the form of a film, the latter is placed on the knitwear and connected with the knitwear by heat and pressure, for example. The most important method of applying is spraying on. This can be carried out by a tool similar to a hot glue gun. Spraying on enables the polymer material to be applied evenly in thin layers. Moreover, spraying on is a fast method. Effect pigments such as color pigments, for example, may be mixed into the polymer coating.
The polymer is applied in at least one layer with a thickness of approximately 0.2-1 mm. One or several layers can be applied, with it being possible for the layers to be of different thicknesses and/or colors. For example, a shoe can comprise a polymer coating with a thickness of 0.01 to 5 mm. Furthermore, with some shoes, the thickness of the polymer coating can be in the range of 0.05 to 2 mm. Between neighboring areas of a shoe with polymer coating of various thicknesses there can be continuous transitions from areas with a thin polymer coating to areas with a thick polymer coating. In the same manner, different polymer materials can be used in different areas, as will be described in the following.
During application, polymer material attaches itself to the points of contact or points of intersection, respectively, of the yarns of the knitwear, on the one hand, and to the gaps between the yarns, on the other hand, forming a closed polymer surface on the knitwear after the processing steps described in the following. However, in case of larger mesh openings or holes in the textile structure, this closed polymer surface can also be intermittent, e.g. so as to enable airing. This also depends on the thickness of the applied material: The more thinly the polymer material is applied, the easier it is for the closed polymer surface to be intermittent. Moreover, the polymer material can also penetrate the yarn and soak it and thus contributes to its stiffening.
After application of the polymer material, the knitwear is pressed in a press under heat and pressure. The polymer material liquefies in this step and fuses with the yarn of the textile material.
In a further optional step, the knitwear can be pressed into a three-dimensional shape in a machine for compression-molding. For example the area of the heel or the area of the toes of a shoe upper can be shaped three-dimensionally over a cobbler's last. Alternatively, the knitwear can also be directly fitted to a foot.
After pressing and molding, the reaction time until complete stiffening can be one to two days, depending on the used polymer material.
The following polymer materials can be used: polyester; polyester-urethane pre-polymer; acrylate; acetate; reactive polyolefins; co-polyester; polyamide; co-polyamide; reactive systems (mainly polyurethane systems reactive with H2O or O2); polyurethanes; thermoplastic polyurethanes; and polymeric dispersions.
The described polymer coating can be used sensibly wherever support functions, stiffening, increased abrasion resistance, elimination of stretchability, increase of comfort, increase of friction and/or fitting to prescribed three-dimensional geometries are desired. In certain embodiments, the shoe upper in accordance with the present invention may be fitted to the individual shape of the foot of the person wearing it, by polymer material being applied to the shoe upper and then adapting to the shape of the foot under heat.
In addition or alternatively to a reinforcing polymer coating, a knitwear can also be equipped with a water-repellant coating in order to avoid or at least reduce the ingress of humidity into an upper, for example. In this regard, the water-repellant coating can be applied to the entire upper or only to a part thereof, e.g. in the area of the toes. Water-repellant coatings can be based on hydrophobic materials such as polytetrafluoroethylene (PTFE), wax or paraffin. A commercially available coating is Scotchgard™ by 3M.
Monofilaments for Reinforcement
As was already defined, a monofilament is a yarn consisting of one single filament, that is, one single fiber. Therefore, stretchability of monofilaments is considerably lower than that of yarns which are manufactured from many fibers. This also reduces the stretchability of knitwear which are manufactured from monofilaments or comprise monofilaments and which are used in the present invention. Monofilaments are typically made from polyamide. However, other materials, such as polyester or a thermoplastic material, may also be used.
So whereas knitwear made from a monofilament is considerably more rigid and less stretchable, this knitwear, however, does not have the desired surface properties such as e.g. smoothness, colors, transport of moisture, outer appearance and variety of textile structures as usual knitwear has. This disadvantage is overcome by the knitwear described in the following.
A monofilament can also be begun to be melted slightly in order to connect with the layer of the first yarn and limit stretching even more. The monofilament then fuses with the first yarn at the points of contact and fixates the first yarn with respect to the layer made from monofilament.
Combination of Monofilaments and Polymer Coating
The weft-knitted fabric having two layers described in the preceding section can additionally be reinforced by a polymer coating as was already described in the section “polymer coating”. The polymer material is applied to the weft-knitted layer made from monofilament. In doing so, it does not connect to the material (e.g. polyamide material) of the monofilament, since the monofilament has a very smooth and round surface, but substantially penetrates the underlying first layer of a first yarn (e.g. polyester yarn). During subsequent pressing, the polymer material therefore fuses with the yarn of the first layer and reinforces the first layer. In doing so, the polymer material has a lower melting point than the first yarn of the first layer and the monofilament of the second layer. The temperature during pressing is selected such that only the polymer material melts but not the monofilament or the first yarn.
Fuse Yarn
For reinforcement and for the reduction of stretching, the yarn of the knitwear which is used according to the invention can additionally or alternatively also be a melted yarn which fixes the knitwear after pressing. There are essentially three types of fuse/melt yarns: a thermoplastic yarn surrounded by a non-thermoplastic yarn; a non-thermoplastic yarn surrounded by thermoplastic yarn; and pure fuse/melt yarn of a thermoplastic material. In order to improve the bond between thermoplastic yarn and the non-thermoplastic yarn, it is possible for the surface of the non-thermoplastic yarn to be texturized.
Pressing may take place at a temperature ranging from 110 to 150° C., and may further take place at 130° C. The thermoplastic yarn melts at least partially in the process and fuses with the non-thermoplastic yarn. After pressing, the knitwear is cooled, so that the bond is hardened and fixed. The fuse yarn may be arranged in the entire knitwear or only in selective areas.
In certain embodiments, the fuse yarn is weft-knitted or warp-knitted into the knitwear. In case of several layers, the melted yarn can be weft-knitted into one, several or all layers of the knitwear.
In further embodiments, the melt yarn can be arranged between two layers of knitwear. In doing so, the melt yarn can simply be placed between the layers. Arrangement between the layers has an advantage that the mold is not stained during pressing and molding, since there is no direct contact between the melt yarn and the mold.
Thermoplastic Textile for Reinforcement
A further possibility for reinforcing knitwear which is used for the present invention is the use of a thermoplastic textile. This is a thermoplastic woven fabric or thermoplastic knitwear. A thermoplastic textile melts at least partially subject to heat and stiffens as it cools down. A thermoplastic textile may, for example, be applied to the surface of the knitwear by applying pressure and heat. When it cools down, the thermoplastic textile stiffens and specifically reinforces the shoe upper in the area in which it was placed, for example.
The thermoplastic textile can specifically be manufactured for the reinforcement in its shape, thickness and structure. Additionally, its properties can be varied in certain areas. The stitch structure, the knitting stitch and/or the yarn used can be varied such that different properties are achieved in different areas.
In certain embodiments, a thermoplastic textile is a weft-knitted fabric or warp-knitted fabric made from thermoplastic yarn. Additionally, the thermoplastic textile can also comprise a non-thermoplastic yarn. The thermoplastic textile may be applied to the shoe upper of the soccer shoe according to the invention, for example, by pressure and heat.
A woven fabric whose wefts and/or warps are thermoplastic are further embodiments of a thermoplastic textile. Different yarns can be used in the weft direction and the warp direction pf the thermoplastic woven fabric, so as to achieve different properties, such as stretchability, in the weft direction and the warp direction.
A spacer weft-knitted fabric or spacer warp-knitted fabric made from thermoplastic material are further embodiments of a thermoplastic textile. In this regard, only one layer may be thermoplastic, for example, e.g. so as to be attached to the shoe upper of the soccer shoe according to the invention. Alternatively, both layers are thermoplastic, e.g. in order to connect the sole to the upper.
A thermoplastic weft-knitted fabric or warp-knitted fabric can be manufactured using the manufacturing techniques for knitwear described in the section “knitwear”.
A thermoplastic textile can be connected with the surface to be reinforced only partially subject to pressure and heat so that only certain areas or only a certain area of the thermoplastic textile connects to the surface. Other areas or another area do not connect, so that the permeability for air and/or humidity is maintained there, for example. The function and/or the design of the shoe upper of the soccer shoe according to the invention can be modified by this.
Flat Weft-Knitted Upper
The flat weft-knitted knitwear 92 of the upper 91 according to the invention forms a top portion 93 and a bottom portion 94 of the upper. The top portion 93 is positioned essentially above the bottom portion 94 when the sports shoe in which the upper 91 is used is standing. In other words, the top portion 93 is located closer to the edge of foot opening than the bottom portion 94, with the foot opening being the opening through which a foot is inserted when the sports shoe is put on. The top portion 93 and the bottom portion 94 can be directly adjacent to one another or they can be spaced from one another. In the embodiments of
The top portion 93 shown in
The bottom portion 94 of the upper 91 according to the invention is suitable for covering at least a part of a foot of the wearer of the sports shoe. In the embodiments of
In the embodiments of
Alternatively, the top portion 93 and the bottom portion 94 can be manufactured separately and connected to one another by ultrasonic welding or other connecting techniques. Additionally, the welded seam can be covered by a band of adhesive material (e.g. thermoplastic or duroplastic (thermoset) material or adhesive, etc.). The band can be arranged on the inside of the upper 91. Alternatively or additionally, the band can be arranged on the outside of the upper 91.
In some embodiments, the top portion 93 and the bottom portion 94 may be sewn or glued together. The seam can also be covered by a band as described before in this case.
In the embodiments of
Since the embodiments of
In the embodiments of
In the embodiments of
In the embodiments of
In the embodiments of
The exerted pressure can be adjusted to the sport for which the sports shoe is used. For example, the foot can, for example, be provided with better support by higher pressure in case of a tennis shoe, which is subject to high accelerations due to abrupt decelerations and accelerations. In case of a running shoe, which is usually not subject to such high accelerations as a tennis shoe is, less pressure on the shank is sufficient.
The exerted pressure can additionally or alternatively be adjusted to the respective wearer of the sports shoe. Depending on their personal preferences, the wearer can decide on more or less pressure on the shank by the top portion 93.
In the embodiments of
The sole 102 can be connected to the upper 91 e.g. by gluing, sewing or ultrasonic welding. If the sole 102 is manufactured from knitwear, the sole 102 can be weft-knitted integrally with the bottom portion 94 of the upper 91.
In the embodiments of
In the embodiments of
The knitwear 92 of the upper 91 of
The polymer coating can be a coating as described in the section “Polymer coating” and it can be processed as described therein. Instead of a polymer coating, a thermoplastic textile can also be used as reinforcement, as described in the corresponding section. The statements made with regard to the polymer coating then apply analogously with regard to the arrangement of reinforced and non-reinforced areas.
In the embodiments of
The upper 91 of
In addition to the embodiments of
In the embodiments of
In the embodiments of
In the embodiments of
In these embodiments, the upper 91 comprises an elastic instep area 131. In the area of the forefoot, the knitwear comprises two areas 132 and 133, with the stitch structure in the area 132 being different from the stitch structure of the area 133. The lace bar 103 is formed integrally with the knitwear of the upper 91. The top portion 93 of the upper 91 is formed as a tube weft-knitted knitwear and comprises an elastic cuff 96, which can be of different elasticity than the area 93 lying below it.
As shown in
The area 143 is an example of a strobel sole replacement which can be flat weft-knitted and then connected to the weft-knitted upper. For example, the area 143 can be connected with an upper by a seam near the dashed line. Furthermore, in some embodiments a weft-knitted insole and/or outsole can be provided and connected with the upper. These flat weft-knitted parts (e.g. strobel sole, insole and/or outsole) can include elastic yarns in some embodiments.
When manufacturing the upper 91, every bed of needles can be used for weft-knitting a side of the upper 91, for example the lateral side and the medial side. During knitting of the upper 91, the sides of the upper 91 are connected with one another at the ends of the bed of needles. For example, the lateral side can be connected to the medial side by the stitches being transferred between the beds of needles, i.e. being shifted from one bed of needles to the respective other bed of needles. Once weft-knitting of the upper 91 is completed, the open stitches on the beds of needles can also be linked so as to form the upper 91.
Alternatively, some embodiments of a weft-knitted upper 91 can be manufactured using additional beds of needles so as to increase the number of plies on one or both sides of the upper 91. Additional layers can provide additional padding, allow the manufacture of structures (e.g. support, strips, bands, pockets, etc.) and allow the selection of predetermined properties in the shoe such as heat-transport properties, regulation of humidity, etc.
Instead of being manufactured by several beds of needles, additional layers can also be manufactured on a single bed of needles, by each nth (e.g. each second or third) needle being responsible for a single ply. Needles which are responsible for a certain ply can use a separate thread feeder and/or a different yarn. A different thread feeder could be used for the 1st, 3rd, 5th, etc. needle than for the 2nd, 4th, 6th, etc. needle, for example. A first ply of the knitwear is then manufactured on needles 1, 3, 5, etc. while a second ply of the knitwear is simultaneously manufactured on needles 2, 4, 6, etc.
In a further example, an upper can be weft-knitted using two or more beds of needles. A first bed of needles can be used for weft-knitting a first side of an upper 91 with a first length and the second bed of needles can be used for weft-knitting the second side of the upper 91 with a shorter second length. The two sides can also be connected with one another by linking. In some embodiments, weft-knitting can be continued after linking on at least one side, so as to obtain an additional weft-knitted portion which continues on from the linking area. This additional weft-knitted area can e.g. be used for providing additional support in a part of the upper, for enveloping the midsole and/or for creating structures (e.g. strips, bands, pockets) on the upper 91.
A method for manufacturing an upper according to the invention comprises the following steps: Flat weft-knitting the knitwear such that the flat weft-knitted knitwear forms a top portion and a bottom portion of the upper; forming the top portion as tube weft-knitted knitwear such that it is suitable for surrounding a part of the shank of a wearer of the sports shoe; and forming the bottom portion such that it is suitable for covering at least a part of a foot of the wearer of the sports shoe.
On principle, all described embodiments can be combined with one another, i.e. the features of one embodiment together with the features of another embodiment constitute a further embodiment of the invention.
In the following, further examples are described to facilitate the understanding of the invention:
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.
Number | Date | Country | Kind |
---|---|---|---|
102014220087.3 | Oct 2014 | DE | national |
This application is a continuation patent application of U.S. application Ser. No. 16/575,961, filed Sep. 19, 2019, entitled FLAT WEFT-KNITTED UPPER FOR SPORTS SHOES (“the '961 application”), which is a continuation patent application of U.S. application Ser. No. 14/873,605, filed Oct. 2, 2015, now U.S. Pat. No. 10,455,885, entitled FLAT WEFT-KNITTED UPPER FOR SPORTS SHOES (“the '605 application”), which is related to and claims priority benefits from German Patent Application No. DE 10 2014 220 087.3, filed on Oct. 2, 2014, entitled FLAT WEFT-KNITTED UPPER FOR SPORTS SHOES (“the '087 application”). The '961, '605, and '087 applications are hereby incorporated herein in their entireties by this reference.
Number | Name | Date | Kind |
---|---|---|---|
74962 | Wesson | Feb 1868 | A |
275142 | Carter | Apr 1883 | A |
299934 | Muller | Mar 1884 | A |
467091 | Gernshym | Jan 1892 | A |
578153 | Lamb | Mar 1897 | A |
601192 | Woodside | Mar 1898 | A |
601894 | Lamb | Apr 1898 | A |
D31023 | Olmsted | Jun 1899 | S |
757424 | Vohl | Apr 1904 | A |
872163 | Williams | Nov 1907 | A |
951033 | Steber | Mar 1910 | A |
1215198 | Rothstein | Feb 1917 | A |
1346516 | Godfrey | Jul 1920 | A |
1370799 | Egerton | Mar 1921 | A |
1413314 | Bosworth | Apr 1922 | A |
1413537 | Jones | Apr 1922 | A |
1538263 | Ackerman | May 1925 | A |
1597934 | Stimpson | Aug 1926 | A |
1811803 | Oakley | Jun 1931 | A |
1841518 | Bellak | Jan 1932 | A |
1869386 | Marzak | Aug 1932 | A |
1888172 | Joha | Nov 1932 | A |
1902780 | Holden et al. | Mar 1933 | A |
RE18804 | Joha | Apr 1933 | E |
1910251 | Joha | May 1933 | A |
1972609 | Arsdale et al. | Sep 1934 | A |
2001293 | Wilson | May 1935 | A |
2018275 | Jack | Oct 1935 | A |
2024180 | Parlante | Dec 1935 | A |
2038844 | Dorf | Apr 1936 | A |
2042146 | Deakin | May 1936 | A |
2047724 | Zuckerman | Jul 1936 | A |
2048294 | Roberts | Jul 1936 | A |
2069083 | Percy | Jan 1937 | A |
2076285 | Wiggin | Apr 1937 | A |
2126186 | Friedland | Aug 1938 | A |
2147197 | Glidden | Feb 1939 | A |
2150730 | Schuessler | Mar 1939 | A |
2165092 | Daniels | Jul 1939 | A |
2171654 | Ralph et al. | Sep 1939 | A |
2178941 | Schuessler | Nov 1939 | A |
2257390 | Roy | Sep 1941 | A |
2276920 | Charles et al. | Mar 1942 | A |
2292455 | Hollier et al. | Aug 1942 | A |
2297028 | Sheeler | Sep 1942 | A |
2302167 | Austin | Nov 1942 | A |
2314098 | Raymond | Mar 1943 | A |
2319141 | Kuehnel | May 1943 | A |
2330199 | Basch | Sep 1943 | A |
2343390 | Ushakoff | Mar 1944 | A |
2364134 | Dow et al. | Dec 1944 | A |
2371689 | Gregg et al. | Mar 1945 | A |
2391564 | Gregg | Dec 1945 | A |
2391594 | Gaetano | Dec 1945 | A |
2400487 | Clark | May 1946 | A |
2400692 | Herbert | May 1946 | A |
2424957 | Schletter | Jul 1947 | A |
2440393 | Clark | Apr 1948 | A |
2460674 | Lajos | Feb 1949 | A |
2464301 | Francis | Mar 1949 | A |
2467237 | Sherman et al. | Apr 1949 | A |
2467821 | Gregg | Apr 1949 | A |
2516697 | Haddad | Jul 1950 | A |
2538673 | Ansley | Jan 1951 | A |
2569764 | Jonas | Oct 1951 | A |
2584084 | Rubico | Jan 1952 | A |
2586045 | Hoza | Feb 1952 | A |
2603891 | Gustav | Jul 1952 | A |
2608078 | Anderson | Aug 1952 | A |
2623373 | Vogel | Dec 1952 | A |
2641004 | Whiting et al. | Jun 1953 | A |
2675631 | Doughty | Apr 1954 | A |
2679117 | Reed | May 1954 | A |
2701458 | Ducharme | Feb 1955 | A |
2712744 | Miller et al. | Jul 1955 | A |
2714813 | Roscoe | Aug 1955 | A |
2783631 | Sumner | Mar 1957 | A |
2811029 | Conner | Oct 1957 | A |
2848885 | Goodman | Aug 1958 | A |
2898754 | Harms | Aug 1959 | A |
2934839 | Servin | May 1960 | A |
2948132 | Gift | Aug 1960 | A |
2966785 | Goff et al. | Jan 1961 | A |
2983128 | Goff et al. | May 1961 | A |
2994322 | Cullen et al. | Aug 1961 | A |
3004354 | Kramer | Oct 1961 | A |
3013564 | Harold | Dec 1961 | A |
3015943 | Guy | Jan 1962 | A |
3035291 | Bingham, Jr. | May 1962 | A |
3063074 | Scholl | Nov 1962 | A |
3070909 | Hermann et al. | Jan 1963 | A |
3078699 | Huntley | Feb 1963 | A |
3093916 | Hiestand et al. | Jun 1963 | A |
3138880 | Kunzli | Jun 1964 | A |
3159988 | Reymes | Dec 1964 | A |
3217336 | Joseph | Nov 1965 | A |
3228819 | Bingham, Jr. | Jan 1966 | A |
3252484 | Meyer et al. | May 1966 | A |
3298204 | Hoffecker | Jan 1967 | A |
3310889 | Samuels | Mar 1967 | A |
3324220 | Stansfield | Jun 1967 | A |
3370363 | Kaplan | Feb 1968 | A |
3416174 | Novitske | Dec 1968 | A |
3425246 | Knohl | Feb 1969 | A |
3463692 | Brunner | Aug 1969 | A |
3550402 | Colton | Dec 1970 | A |
3567567 | Sherrill | Mar 1971 | A |
3583081 | Hayashi | Jun 1971 | A |
3616149 | Wincklhofer et al. | Oct 1971 | A |
3620892 | Wincklhofer et al. | Nov 1971 | A |
3635051 | Betts et al. | Jan 1972 | A |
3656323 | Brown | Apr 1972 | A |
3694940 | Stohr | Oct 1972 | A |
3695063 | Betts et al. | Oct 1972 | A |
3704474 | Winkler | Dec 1972 | A |
3766566 | Tadokoro et al. | Oct 1973 | A |
3769723 | Masterson et al. | Nov 1973 | A |
3778856 | Christie et al. | Dec 1973 | A |
3785173 | Hanney et al. | Jan 1974 | A |
3816211 | Haigh | Jun 1974 | A |
3838583 | Rumi et al. | Oct 1974 | A |
3863272 | Guille | Feb 1975 | A |
3867248 | Bauer | Feb 1975 | A |
3884052 | Findlay et al. | May 1975 | A |
3952358 | Fukuoka | Apr 1976 | A |
3952427 | von den Benken et al. | Apr 1976 | A |
3967390 | Anfruns | Jul 1976 | A |
3971234 | Taylor | Jul 1976 | A |
3972086 | Belli et al. | Aug 1976 | A |
3985003 | Reed | Oct 1976 | A |
3985004 | Johnson et al. | Oct 1976 | A |
4027402 | Liu et al. | Jun 1977 | A |
4028910 | Wignall et al. | Jun 1977 | A |
4031586 | von den Benken et al. | Jun 1977 | A |
4034431 | Fukuoka | Jul 1977 | A |
4038699 | Burn | Aug 1977 | A |
4038840 | Castello | Aug 1977 | A |
4068395 | Senter | Jan 1978 | A |
4075383 | Anderson et al. | Feb 1978 | A |
4111008 | Robinson et al. | Sep 1978 | A |
4120101 | Drew | Oct 1978 | A |
4133118 | Khalsa et al. | Jan 1979 | A |
4144727 | Duhl et al. | Mar 1979 | A |
4183156 | Rudy et al. | Jan 1980 | A |
4211806 | Civardi et al. | Jul 1980 | A |
4219945 | Rudy et al. | Sep 1980 | A |
4232458 | Bartels | Nov 1980 | A |
4233758 | Auberry | Nov 1980 | A |
4255949 | Thorneburg | Mar 1981 | A |
4258480 | Famolare et al. | Mar 1981 | A |
4265954 | Romanek | May 1981 | A |
4276671 | Melton | Jul 1981 | A |
4279049 | Coiquaud | Jul 1981 | A |
4282657 | Antonious | Aug 1981 | A |
4306315 | Castiglia | Dec 1981 | A |
4306929 | Menikheim et al. | Dec 1981 | A |
4317292 | Melton | Mar 1982 | A |
4324752 | Newton et al. | Apr 1982 | A |
4354318 | Frederick et al. | Oct 1982 | A |
4356643 | Kester et al. | Nov 1982 | A |
4373361 | Thorneburg | Feb 1983 | A |
4430811 | Okada | Feb 1984 | A |
4447967 | Zaino | May 1984 | A |
4465448 | Aldridge et al. | Aug 1984 | A |
4467626 | Coble et al. | Aug 1984 | A |
4517910 | Jalowsky | May 1985 | A |
4523346 | Auberry et al. | Jun 1985 | A |
4531525 | Richards | Jul 1985 | A |
4592154 | Oatman | Jun 1986 | A |
4607439 | Harada | Aug 1986 | A |
4610685 | Raley | Sep 1986 | A |
4624115 | Safrit et al. | Nov 1986 | A |
4642915 | Pfander | Feb 1987 | A |
4651354 | Petrey | Mar 1987 | A |
4658515 | Oatman | Apr 1987 | A |
4663946 | Wright | May 1987 | A |
4669126 | Jones | Jun 1987 | A |
4682479 | Pernick | Jul 1987 | A |
4722202 | Imboden | Feb 1988 | A |
4729179 | Quist, Jr. | Mar 1988 | A |
4737396 | Kamat et al. | Apr 1988 | A |
4750339 | Simpson, Jr. et al. | Jun 1988 | A |
4756098 | Boggia | Jul 1988 | A |
4783355 | Mueller | Nov 1988 | A |
4785558 | Shiomura | Nov 1988 | A |
4788922 | Clarius | Dec 1988 | A |
4813158 | Brown | Mar 1989 | A |
4813161 | Lesley | Mar 1989 | A |
4843844 | Hursh et al. | Jul 1989 | A |
4852272 | Chilewich et al. | Aug 1989 | A |
4899465 | Bleimhofer et al. | Feb 1990 | A |
4941331 | Cournoyer et al. | Jul 1990 | A |
4960135 | Nelson | Oct 1990 | A |
5031423 | Ikenaga et al. | Jul 1991 | A |
5052130 | Barry et al. | Oct 1991 | A |
5095720 | Tibbals | Mar 1992 | A |
5117567 | Berger et al. | Jun 1992 | A |
5125116 | Gaither et al. | Jun 1992 | A |
5152025 | Hirmas et al. | Oct 1992 | A |
5157791 | Woodson et al. | Oct 1992 | A |
5181278 | Peleg et al. | Jan 1993 | A |
5192601 | Neisler | Mar 1993 | A |
5216827 | Cohen | Jun 1993 | A |
5240773 | Dunn et al. | Aug 1993 | A |
5253434 | Curley, Jr. et al. | Oct 1993 | A |
5291671 | Caberlotto et al. | Mar 1994 | A |
5319807 | Brier | Jun 1994 | A |
5323627 | Lonati et al. | Jun 1994 | A |
5335517 | Throneburg et al. | Aug 1994 | A |
5343639 | Kilgore et al. | Sep 1994 | A |
5345638 | Nishida | Sep 1994 | A |
5353523 | Kilgore et al. | Oct 1994 | A |
5353524 | Brier | Oct 1994 | A |
5371957 | Gaudio et al. | Dec 1994 | A |
5373713 | Miller | Dec 1994 | A |
5385036 | Spillane et al. | Jan 1995 | A |
5388430 | Essig | Feb 1995 | A |
5426869 | Gore et al. | Jun 1995 | A |
5461884 | McCartney et al. | Oct 1995 | A |
5479791 | Osborne | Jan 1996 | A |
5484646 | Mann | Jan 1996 | A |
5505011 | Bleimhofer | Apr 1996 | A |
5511323 | Dahlgren | Apr 1996 | A |
5513450 | Aviles | May 1996 | A |
5519894 | Imboden et al. | May 1996 | A |
5526584 | Bleimhofer et al. | Jun 1996 | A |
5553468 | Osborne | Sep 1996 | A |
5560227 | Depoe et al. | Oct 1996 | A |
5572860 | Mitsumoto et al. | Nov 1996 | A |
5575090 | Condini | Nov 1996 | A |
5581817 | Hicks | Dec 1996 | A |
5592836 | Schuster et al. | Jan 1997 | A |
5605060 | Osborne | Feb 1997 | A |
5606808 | Gilliard et al. | Mar 1997 | A |
5623734 | Pugliatti | Apr 1997 | A |
5623840 | Roell | Apr 1997 | A |
5708985 | Ogden | Jan 1998 | A |
5709107 | Jeffcoat | Jan 1998 | A |
5711093 | Aumann | Jan 1998 | A |
5711168 | Proctor et al. | Jan 1998 | A |
5722262 | Proctor et al. | Mar 1998 | A |
5729918 | Smets et al. | Mar 1998 | A |
5735145 | Pernick | Apr 1998 | A |
5737857 | Aumann | Apr 1998 | A |
5737943 | Bernhardt | Apr 1998 | A |
5746013 | Fay | May 1998 | A |
5758435 | Miyata | Jun 1998 | A |
5765296 | Ludemann et al. | Jun 1998 | A |
5774898 | Malpee | Jul 1998 | A |
5784806 | Wendt | Jul 1998 | A |
5787503 | Murphy | Aug 1998 | A |
5791163 | Throneburg | Aug 1998 | A |
5836179 | Van Laar | Nov 1998 | A |
5850745 | Albright | Dec 1998 | A |
5855123 | Albright | Jan 1999 | A |
5884419 | Davidowitz et al. | Mar 1999 | A |
5896608 | Whatley | Apr 1999 | A |
5896683 | Foxen et al. | Apr 1999 | A |
5896758 | Rock et al. | Apr 1999 | A |
5906007 | Roberts | May 1999 | A |
5947845 | Canelas | Sep 1999 | A |
5996189 | Wang et al. | Dec 1999 | A |
6021585 | Cole | Feb 2000 | A |
6029376 | Cass | Feb 2000 | A |
6032387 | Johnson | Mar 2000 | A |
6052921 | Oreck | Apr 2000 | A |
6088936 | Bahl et al. | Jul 2000 | A |
6109068 | Stoll et al. | Aug 2000 | A |
6128835 | Ritter et al. | Oct 2000 | A |
6151802 | Reynolds et al. | Nov 2000 | A |
6158253 | Svoboda et al. | Dec 2000 | A |
6170175 | Funk et al. | Jan 2001 | B1 |
6173589 | Hayes, Jr. et al. | Jan 2001 | B1 |
6192717 | Rabinowicz | Feb 2001 | B1 |
6196030 | Stoll et al. | Mar 2001 | B1 |
6227010 | Roell | May 2001 | B1 |
6230525 | Dunlap | May 2001 | B1 |
6231946 | Brown, Jr. et al. | May 2001 | B1 |
6250115 | Suzuki | Jun 2001 | B1 |
6272888 | Fujita et al. | Aug 2001 | B1 |
6286233 | Gaither | Sep 2001 | B1 |
6287168 | Rabinowicz | Sep 2001 | B1 |
6299962 | Davis et al. | Oct 2001 | B1 |
6301759 | Langer et al. | Oct 2001 | B1 |
6308438 | Throneburg et al. | Oct 2001 | B1 |
6330814 | Fujiwara | Dec 2001 | B1 |
6333105 | Tanaka et al. | Dec 2001 | B1 |
6401364 | Burt et al. | Jun 2002 | B1 |
6415632 | Vesnaver | Jul 2002 | B1 |
6430844 | Otis | Aug 2002 | B1 |
6449878 | Lyden | Sep 2002 | B1 |
6539752 | Apollonio | Apr 2003 | B1 |
6558784 | Norton et al. | May 2003 | B1 |
6588237 | Cole et al. | Jul 2003 | B2 |
6622312 | Rabinowicz | Sep 2003 | B2 |
6662469 | Belley et al. | Dec 2003 | B2 |
6665955 | Mizrahi et al. | Dec 2003 | B1 |
6708348 | Romay | Mar 2004 | B1 |
6735988 | Honeycutt | May 2004 | B1 |
6754983 | Hatfield et al. | Jun 2004 | B2 |
6779369 | Shepherd | Aug 2004 | B2 |
6871515 | Starbuck et al. | Mar 2005 | B1 |
6886367 | Mitchell et al. | May 2005 | B2 |
6899591 | Mitchell | May 2005 | B2 |
6910288 | Dua | Jun 2005 | B2 |
6922917 | Kerns et al. | Aug 2005 | B2 |
6931762 | Dua | Aug 2005 | B1 |
6944975 | Safdeye et al. | Sep 2005 | B2 |
6984596 | Dickerson | Jan 2006 | B2 |
6986183 | Delgorgue et al. | Jan 2006 | B2 |
6986269 | Dua | Jan 2006 | B2 |
D517297 | Jones et al. | Mar 2006 | S |
7016867 | Lyden | Mar 2006 | B2 |
7037571 | Fish et al. | May 2006 | B2 |
7043942 | Chapman | May 2006 | B2 |
7047668 | Burris et al. | May 2006 | B2 |
7051460 | Orei et al. | May 2006 | B2 |
7055267 | Wilson et al. | Jun 2006 | B2 |
7056402 | Koerwien et al. | Jun 2006 | B2 |
7059156 | Takeda et al. | Jun 2006 | B2 |
7081221 | Paratore et al. | Jul 2006 | B2 |
7107235 | Lyden | Sep 2006 | B2 |
7131296 | Dua et al. | Nov 2006 | B2 |
7179414 | Safdeye et al. | Feb 2007 | B2 |
7207125 | Jeppesen et al. | Apr 2007 | B2 |
7207196 | Lonati et al. | Apr 2007 | B2 |
7207961 | Benton et al. | Apr 2007 | B1 |
7213420 | Lynch et al. | May 2007 | B2 |
7240522 | Kondou et al. | Jul 2007 | B2 |
7346935 | Patterson et al. | Mar 2008 | B1 |
7347011 | Dua et al. | Mar 2008 | B2 |
7356946 | Hannon et al. | Apr 2008 | B2 |
7441348 | Dawson et al. | Oct 2008 | B1 |
7484318 | Finkelstein | Feb 2009 | B2 |
7543397 | Kilgore et al. | Jun 2009 | B2 |
7568298 | Kerns et al. | Aug 2009 | B2 |
7637032 | Sokolowski et al. | Dec 2009 | B2 |
7650705 | Donnadieu et al. | Jan 2010 | B2 |
7677061 | Mori et al. | Mar 2010 | B2 |
7682219 | Falla | Mar 2010 | B2 |
7721575 | Yokoyama | May 2010 | B2 |
7774956 | Dua et al. | Aug 2010 | B2 |
7805859 | Finkelstein | Oct 2010 | B2 |
7805860 | Fliri et al. | Oct 2010 | B2 |
7814598 | Dua et al. | Oct 2010 | B2 |
7854076 | Keppler et al. | Dec 2010 | B2 |
7882648 | Langvin | Feb 2011 | B2 |
8028440 | Sokolowski et al. | Oct 2011 | B2 |
8042288 | Dua et al. | Oct 2011 | B2 |
8056149 | Duclos et al. | Nov 2011 | B2 |
8099881 | Yamamoto | Jan 2012 | B2 |
8196317 | Dua et al. | Jun 2012 | B2 |
8209883 | Lyden | Jul 2012 | B2 |
8215132 | Dua et al. | Jul 2012 | B2 |
8225530 | Sokolowski et al. | Jul 2012 | B2 |
8266749 | Dua et al. | Sep 2012 | B2 |
8296970 | Jessiman et al. | Oct 2012 | B2 |
D673765 | Parker et al. | Jan 2013 | S |
8448474 | Tatler et al. | May 2013 | B1 |
8464383 | Sing | Jun 2013 | B2 |
8490299 | Dua et al. | Jul 2013 | B2 |
8522577 | Huffa | Sep 2013 | B2 |
8590345 | Sokolowski et al. | Nov 2013 | B2 |
8595878 | Farris et al. | Dec 2013 | B2 |
8621891 | Shaffer et al. | Jan 2014 | B2 |
8647460 | Koo | Feb 2014 | B1 |
8650916 | Thomas et al. | Feb 2014 | B2 |
8683718 | Fliri et al. | Apr 2014 | B2 |
8701232 | Droege et al. | Apr 2014 | B1 |
8745895 | Sokolowski et al. | Jun 2014 | B2 |
8745896 | Shaffer et al. | Jun 2014 | B2 |
8800172 | Dua et al. | Aug 2014 | B2 |
8839532 | Shaffer et al. | Sep 2014 | B2 |
8881430 | Baines et al. | Nov 2014 | B2 |
8898932 | Molyneux et al. | Dec 2014 | B2 |
8899079 | Podhajny et al. | Dec 2014 | B2 |
8959800 | Sokolowski et al. | Feb 2015 | B2 |
8959959 | Podhajny et al. | Feb 2015 | B1 |
8973410 | Podhajny et al. | Mar 2015 | B1 |
8978422 | Podhajny et al. | Mar 2015 | B2 |
8997529 | Podhajny et al. | Apr 2015 | B1 |
8997530 | Podhajny | Apr 2015 | B1 |
9003836 | Podhajny et al. | Apr 2015 | B1 |
9010157 | Podhajny et al. | Apr 2015 | B1 |
9027260 | Shaffer et al. | May 2015 | B2 |
9032763 | Meir et al. | May 2015 | B2 |
9060562 | Meir et al. | Jun 2015 | B2 |
9072335 | Podhajny | Jul 2015 | B1 |
9078488 | Podhajny et al. | Jul 2015 | B1 |
9084449 | Huffman et al. | Jul 2015 | B2 |
9095187 | Molyneux et al. | Aug 2015 | B2 |
9132601 | Beye et al. | Sep 2015 | B2 |
9139938 | Podhajny et al. | Sep 2015 | B2 |
9145629 | Podhajny | Sep 2015 | B2 |
9150986 | Shaffer et al. | Oct 2015 | B2 |
9192204 | Klug et al. | Nov 2015 | B1 |
9226540 | Podhajny et al. | Jan 2016 | B2 |
9297097 | Turner | Mar 2016 | B2 |
9301567 | Roulo et al. | Apr 2016 | B2 |
9339076 | Podhajny et al. | May 2016 | B2 |
9353469 | Meir et al. | May 2016 | B2 |
9357813 | Lyden | Jun 2016 | B2 |
9365959 | Turner | Jun 2016 | B2 |
9375046 | Meir | Jun 2016 | B2 |
9398784 | Baudouin et al. | Jul 2016 | B2 |
9498023 | Craig | Nov 2016 | B2 |
9723890 | Long | Aug 2017 | B2 |
9861160 | Podhajny | Jan 2018 | B2 |
9888742 | Follet | Feb 2018 | B2 |
10098412 | Hoffer et al. | Oct 2018 | B2 |
10455885 | Tamm | Oct 2019 | B2 |
20010016993 | Cagner | Aug 2001 | A1 |
20010024709 | Yoneda et al. | Sep 2001 | A1 |
20010032399 | Litchfield et al. | Oct 2001 | A1 |
20010054240 | Bordin et al. | Dec 2001 | A1 |
20010055684 | Davis et al. | Dec 2001 | A1 |
20020000002 | Hatch et al. | Jan 2002 | A1 |
20020002780 | Barthelemy et al. | Jan 2002 | A1 |
20020007570 | Girard | Jan 2002 | A1 |
20020012784 | Norton et al. | Jan 2002 | A1 |
20020026730 | Whatley | Mar 2002 | A1 |
20020035796 | Knoche et al. | Mar 2002 | A1 |
20020053148 | Haimerl | May 2002 | A1 |
20020078599 | Delgorgue et al. | Jun 2002 | A1 |
20020092199 | Fish et al. | Jul 2002 | A1 |
20020148142 | Oorei et al. | Oct 2002 | A1 |
20020148258 | Cole et al. | Oct 2002 | A1 |
20020152638 | Safdeye et al. | Oct 2002 | A1 |
20020152776 | Didier | Oct 2002 | A1 |
20020157281 | Safdeye et al. | Oct 2002 | A1 |
20030009908 | Sheets et al. | Jan 2003 | A1 |
20030009919 | Stein | Jan 2003 | A1 |
20030033837 | Higgins | Feb 2003 | A1 |
20030039882 | Wruck et al. | Feb 2003 | A1 |
20030051372 | Lyden | Mar 2003 | A1 |
20030069807 | Lyden | Apr 2003 | A1 |
20030079374 | Belley et al. | May 2003 | A1 |
20030097766 | Morgan | May 2003 | A1 |
20030106171 | Issler | Jun 2003 | A1 |
20030121179 | Chen | Jul 2003 | A1 |
20030126762 | Tseng | Jul 2003 | A1 |
20030131499 | Silverman | Jul 2003 | A1 |
20030191427 | Jay et al. | Oct 2003 | A1 |
20030192351 | Meckley et al. | Oct 2003 | A1 |
20030226280 | Paratore et al. | Dec 2003 | A1 |
20030227105 | Paratore et al. | Dec 2003 | A1 |
20040009731 | Rabinowicz | Jan 2004 | A1 |
20040043237 | Geisler | Mar 2004 | A1 |
20040045196 | Shepherd | Mar 2004 | A1 |
20040045955 | Rock et al. | Mar 2004 | A1 |
20040083622 | Mizrahi et al. | May 2004 | A1 |
20040107603 | Wei | Jun 2004 | A1 |
20040111920 | Cretinon | Jun 2004 | A1 |
20040111921 | Lenormand | Jun 2004 | A1 |
20040118018 | Dua | Jun 2004 | A1 |
20040139628 | Wiener | Jul 2004 | A1 |
20040139629 | Wiener | Jul 2004 | A1 |
20040143995 | McClelland | Jul 2004 | A1 |
20040163280 | Morris et al. | Aug 2004 | A1 |
20040168479 | Mcmurray | Sep 2004 | A1 |
20040181972 | Csorba | Sep 2004 | A1 |
20040198178 | Mitchell et al. | Oct 2004 | A1 |
20040205982 | Challe | Oct 2004 | A1 |
20040216332 | Wilson et al. | Nov 2004 | A1 |
20040226113 | Wright et al. | Nov 2004 | A1 |
20040237599 | Kondou et al. | Dec 2004 | A1 |
20040255486 | Pawlus et al. | Dec 2004 | A1 |
20040261467 | Chapman | Dec 2004 | A1 |
20050016023 | Burris | Jan 2005 | A1 |
20050028405 | Wilson et al. | Feb 2005 | A1 |
20050055843 | Morlacchi | Mar 2005 | A1 |
20050081402 | Orei et al. | Apr 2005 | A1 |
20050091725 | Alley et al. | May 2005 | A1 |
20050102863 | Hannon et al. | May 2005 | A1 |
20050108898 | Jeppesen et al. | May 2005 | A1 |
20050115274 | Douglas | Jun 2005 | A1 |
20050115281 | Mitchell et al. | Jun 2005 | A1 |
20050115282 | Starbuck | Jun 2005 | A1 |
20050115284 | Dua | Jun 2005 | A1 |
20050127057 | Rock et al. | Jun 2005 | A1 |
20050132614 | Brennan | Jun 2005 | A1 |
20050138845 | Haimerl | Jun 2005 | A1 |
20050155137 | Berger | Jul 2005 | A1 |
20050160626 | Townsend | Jul 2005 | A1 |
20050166426 | Donnadieu et al. | Aug 2005 | A1 |
20050166427 | Greene et al. | Aug 2005 | A1 |
20050193592 | Dua et al. | Sep 2005 | A1 |
20050208857 | Baron et al. | Sep 2005 | A1 |
20050268497 | Alfaro et al. | Dec 2005 | A1 |
20050273988 | Christy et al. | Dec 2005 | A1 |
20050284000 | Kerns | Dec 2005 | A1 |
20060006168 | Rock et al. | Jan 2006 | A1 |
20060010717 | Finkelstein | Jan 2006 | A1 |
20060016099 | Marco et al. | Jan 2006 | A1 |
20060021258 | Beck | Feb 2006 | A1 |
20060048413 | Sokolowski et al. | Mar 2006 | A1 |
20060059715 | Aveni | Mar 2006 | A1 |
20060059716 | Yamashita et al. | Mar 2006 | A1 |
20060117607 | Pare et al. | Jun 2006 | A1 |
20060130359 | Dua et al. | Jun 2006 | A1 |
20060162187 | Byrnes et al. | Jul 2006 | A1 |
20060174520 | Wu | Aug 2006 | A1 |
20060179549 | Huggins et al. | Aug 2006 | A1 |
20060243000 | Turlan et al. | Nov 2006 | A1 |
20070000027 | Ganzoni et al. | Jan 2007 | A1 |
20070003728 | Hannon et al. | Jan 2007 | A1 |
20070022627 | Sokolowski et al. | Feb 2007 | A1 |
20070074334 | Steel et al. | Apr 2007 | A1 |
20070144039 | Fliri | Jun 2007 | A1 |
20070180730 | Greene et al. | Aug 2007 | A1 |
20070197944 | Bruce et al. | Aug 2007 | A1 |
20070234593 | Beck | Oct 2007 | A1 |
20070271817 | Ellis, III | Nov 2007 | A1 |
20070283483 | Jacober et al. | Dec 2007 | A1 |
20080000108 | Ellis, III | Jan 2008 | A1 |
20080010860 | Gyr | Jan 2008 | A1 |
20080017294 | Bailey et al. | Jan 2008 | A1 |
20080032580 | Fukuoka et al. | Feb 2008 | A1 |
20080066499 | Andrieu et al. | Mar 2008 | A1 |
20080078102 | Kilgore et al. | Apr 2008 | A1 |
20080110048 | Dua et al. | May 2008 | A1 |
20080110049 | Sokolowski et al. | May 2008 | A1 |
20080155731 | Kasahara | Jul 2008 | A1 |
20080189830 | Egglesfield et al. | Aug 2008 | A1 |
20080196181 | Dua et al. | Aug 2008 | A1 |
20080235877 | Murray et al. | Oct 2008 | A1 |
20080250668 | Marvin et al. | Oct 2008 | A1 |
20080263893 | Hernandez et al. | Oct 2008 | A1 |
20080295230 | Wright et al. | Dec 2008 | A1 |
20080313939 | Ardill et al. | Dec 2008 | A1 |
20090049870 | Garus | Feb 2009 | A1 |
20090068908 | Hinchcliff et al. | Mar 2009 | A1 |
20090071036 | Hooper et al. | Mar 2009 | A1 |
20090107012 | Cheney et al. | Apr 2009 | A1 |
20090126225 | Jarvis | May 2009 | A1 |
20090126229 | Fuerst et al. | May 2009 | A1 |
20090134145 | Rock et al. | May 2009 | A1 |
20090172971 | Peikert et al. | Jul 2009 | A1 |
20090241374 | Sato et al. | Oct 2009 | A1 |
20090297794 | Lin | Dec 2009 | A1 |
20090300823 | Connaghan et al. | Dec 2009 | A1 |
20100018075 | Meschter et al. | Jan 2010 | A1 |
20100037483 | Meschter et al. | Feb 2010 | A1 |
20100043253 | Dojan et al. | Feb 2010 | A1 |
20100051132 | Glenn et al. | Mar 2010 | A1 |
20100064453 | Haimerl | Mar 2010 | A1 |
20100095550 | Sokolowski et al. | Apr 2010 | A1 |
20100107346 | Aveni | May 2010 | A1 |
20100107443 | Aveni et al. | May 2010 | A1 |
20100122475 | Purrington et al. | May 2010 | A1 |
20100154256 | Dua | Jun 2010 | A1 |
20100162590 | Bonigk | Jul 2010 | A1 |
20100170651 | Scherb et al. | Jul 2010 | A1 |
20100175276 | Dojan et al. | Jul 2010 | A1 |
20100229429 | Longuet | Sep 2010 | A1 |
20100269372 | Dua et al. | Oct 2010 | A1 |
20100299962 | Fliri | Dec 2010 | A1 |
20100325916 | Dua et al. | Dec 2010 | A1 |
20110005105 | Hong | Jan 2011 | A1 |
20110030244 | Motawi et al. | Feb 2011 | A1 |
20110061149 | Polacco et al. | Mar 2011 | A1 |
20110061265 | Lyden | Mar 2011 | A1 |
20110061842 | Li et al. | Mar 2011 | A1 |
20110078921 | Greene et al. | Apr 2011 | A1 |
20110088282 | Dojan et al. | Apr 2011 | A1 |
20110099845 | Miller | May 2011 | A1 |
20110113648 | Leick et al. | May 2011 | A1 |
20110154689 | Chung | Jun 2011 | A1 |
20110154693 | Oberschneider | Jun 2011 | A1 |
20110179677 | Jessiman | Jul 2011 | A1 |
20110219643 | Tai | Sep 2011 | A1 |
20110283567 | Yin | Nov 2011 | A1 |
20110302699 | Kaneda et al. | Dec 2011 | A1 |
20110302727 | Sokolowski et al. | Dec 2011 | A1 |
20110302810 | Borel et al. | Dec 2011 | A1 |
20110308108 | Berns et al. | Dec 2011 | A1 |
20110308110 | Berns et al. | Dec 2011 | A1 |
20120000252 | Funaki et al. | Jan 2012 | A1 |
20120005922 | Dua et al. | Jan 2012 | A1 |
20120011744 | Bell et al. | Jan 2012 | A1 |
20120023686 | Huffa et al. | Feb 2012 | A1 |
20120023778 | Dojan et al. | Feb 2012 | A1 |
20120055044 | Dojan et al. | Mar 2012 | A1 |
20120090077 | Brown et al. | Apr 2012 | A1 |
20120114883 | Kapur et al. | May 2012 | A1 |
20120144698 | McDowell | Jun 2012 | A1 |
20120144699 | Eggert et al. | Jun 2012 | A1 |
20120159813 | Dua et al. | Jun 2012 | A1 |
20120180195 | Shull et al. | Jul 2012 | A1 |
20120198730 | Burch et al. | Aug 2012 | A1 |
20120204448 | Bracken | Aug 2012 | A1 |
20120216423 | Lyden | Aug 2012 | A1 |
20120216430 | Stohr | Aug 2012 | A1 |
20120233878 | Hazenberg et al. | Sep 2012 | A1 |
20120233879 | Dojan et al. | Sep 2012 | A1 |
20120233880 | Chao et al. | Sep 2012 | A1 |
20120233882 | Huffa et al. | Sep 2012 | A1 |
20120233883 | Spencer et al. | Sep 2012 | A1 |
20120233884 | Greene | Sep 2012 | A1 |
20120233885 | Shaffer et al. | Sep 2012 | A1 |
20120233886 | Madore et al. | Sep 2012 | A1 |
20120233887 | Baker et al. | Sep 2012 | A1 |
20120233888 | Baker et al. | Sep 2012 | A1 |
20120234051 | Huffa | Sep 2012 | A1 |
20120234052 | Huffa et al. | Sep 2012 | A1 |
20120234111 | Molyneux et al. | Sep 2012 | A1 |
20120234467 | Rapaport et al. | Sep 2012 | A1 |
20120235322 | Greene et al. | Sep 2012 | A1 |
20120238376 | Knight et al. | Sep 2012 | A1 |
20120238910 | Nordstrom | Sep 2012 | A1 |
20120240429 | Sokolowski et al. | Sep 2012 | A1 |
20120246973 | Dua | Oct 2012 | A1 |
20120255201 | Little | Oct 2012 | A1 |
20120272548 | Downard et al. | Nov 2012 | A1 |
20120279260 | Dua et al. | Nov 2012 | A1 |
20120285039 | Lazaris et al. | Nov 2012 | A1 |
20120285043 | Dua et al. | Nov 2012 | A1 |
20120297557 | Koo et al. | Nov 2012 | A1 |
20120297642 | Schaefer et al. | Nov 2012 | A1 |
20120297643 | Shaffer et al. | Nov 2012 | A1 |
20120297645 | Berbert et al. | Nov 2012 | A1 |
20120318026 | Dua et al. | Dec 2012 | A1 |
20130000011 | Vaglio Tessitore | Jan 2013 | A1 |
20130025157 | Wan et al. | Jan 2013 | A1 |
20130031801 | Hatfield et al. | Feb 2013 | A1 |
20130036629 | Bramani et al. | Feb 2013 | A1 |
20130047471 | Liang | Feb 2013 | A1 |
20130055590 | Mokos | Mar 2013 | A1 |
20130061405 | Haimerl | Mar 2013 | A1 |
20130074364 | Lim | Mar 2013 | A1 |
20130091741 | Frank | Apr 2013 | A1 |
20130104426 | Bell | May 2013 | A1 |
20130118031 | Chenciner et al. | May 2013 | A1 |
20130139407 | Brongers et al. | Jun 2013 | A1 |
20130145652 | Podhajny et al. | Jun 2013 | A1 |
20130152424 | Dojan | Jun 2013 | A1 |
20130160323 | Hsiao | Jun 2013 | A1 |
20130174449 | Koyess et al. | Jul 2013 | A1 |
20130219749 | Dojan et al. | Aug 2013 | A1 |
20130232820 | Bramani et al. | Sep 2013 | A1 |
20130239438 | Dua et al. | Sep 2013 | A1 |
20130255103 | Dua et al. | Oct 2013 | A1 |
20130260104 | Dua et al. | Oct 2013 | A1 |
20130260629 | Dua et al. | Oct 2013 | A1 |
20130263468 | Ciccarelli | Oct 2013 | A1 |
20130269209 | Lang | Oct 2013 | A1 |
20130312284 | Berend et al. | Nov 2013 | A1 |
20130318837 | Dua et al. | Dec 2013 | A1 |
20140020923 | Su | Jan 2014 | A1 |
20140068968 | Podhajny et al. | Mar 2014 | A1 |
20140082965 | Greene et al. | Mar 2014 | A1 |
20140101824 | Spanks et al. | Apr 2014 | A1 |
20140123409 | Huffa et al. | May 2014 | A1 |
20140130373 | Baines et al. | May 2014 | A1 |
20140130374 | Minami et al. | May 2014 | A1 |
20140130375 | Baines et al. | May 2014 | A1 |
20140130376 | Fahmi et al. | May 2014 | A1 |
20140137433 | Craig | May 2014 | A1 |
20140137434 | Craig | May 2014 | A1 |
20140144190 | Tatler et al. | May 2014 | A1 |
20140150292 | Podhajny et al. | Jun 2014 | A1 |
20140150295 | Dua et al. | Jun 2014 | A1 |
20140150296 | Dua et al. | Jun 2014 | A1 |
20140157831 | Huffa et al. | Jun 2014 | A1 |
20140173934 | Bell | Jun 2014 | A1 |
20140196314 | Beye et al. | Jul 2014 | A1 |
20140209233 | Dua et al. | Jul 2014 | A1 |
20140223777 | Whiteman et al. | Aug 2014 | A1 |
20140237855 | Podhajny et al. | Aug 2014 | A1 |
20140237856 | Podhajny et al. | Aug 2014 | A1 |
20140238082 | Meir et al. | Aug 2014 | A1 |
20140238083 | Meir et al. | Aug 2014 | A1 |
20140245544 | Huffa et al. | Sep 2014 | A1 |
20140245546 | Huffa et al. | Sep 2014 | A1 |
20140245547 | Baudouin et al. | Sep 2014 | A1 |
20140245633 | Podhajny et al. | Sep 2014 | A1 |
20140245634 | Podhajny et al. | Sep 2014 | A1 |
20140245636 | Seamarks et al. | Sep 2014 | A1 |
20140245637 | Fahmi et al. | Sep 2014 | A1 |
20140245639 | Dua et al. | Sep 2014 | A1 |
20140245643 | Huffa et al. | Sep 2014 | A1 |
20140259760 | Dojan et al. | Sep 2014 | A1 |
20140310983 | Tamm et al. | Oct 2014 | A1 |
20140310984 | Tamm et al. | Oct 2014 | A1 |
20140310985 | Tran et al. | Oct 2014 | A1 |
20140310986 | Tamm et al. | Oct 2014 | A1 |
20140338226 | Zavala | Nov 2014 | A1 |
20140345158 | Fox | Nov 2014 | A1 |
20140352082 | Shaffer et al. | Dec 2014 | A1 |
20140352173 | Bell et al. | Dec 2014 | A1 |
20140360048 | Dehaven et al. | Dec 2014 | A1 |
20150013080 | Thomas et al. | Jan 2015 | A1 |
20150013188 | Baines et al. | Jan 2015 | A1 |
20150013394 | Huffa | Jan 2015 | A1 |
20150013395 | Huffa | Jan 2015 | A1 |
20150033585 | Otus | Feb 2015 | A1 |
20150040431 | Molyneux | Feb 2015 | A1 |
20150047225 | Dealey et al. | Feb 2015 | A1 |
20150059209 | Dekovic | Mar 2015 | A1 |
20150059211 | Podhajny et al. | Mar 2015 | A1 |
20150075031 | Podhajny et al. | Mar 2015 | A1 |
20150101212 | Dekovic et al. | Apr 2015 | A1 |
20150107307 | Kosui et al. | Apr 2015 | A1 |
20150143716 | Savage et al. | May 2015 | A1 |
20150143720 | Avar et al. | May 2015 | A1 |
20150216254 | Podhajny et al. | Aug 2015 | A1 |
20150216255 | Podhajny | Aug 2015 | A1 |
20150216257 | Meir et al. | Aug 2015 | A1 |
20150223552 | Love | Aug 2015 | A1 |
20150250256 | Podhajny et al. | Sep 2015 | A1 |
20150264995 | Hilderbrand, IV | Sep 2015 | A1 |
20150272261 | Huffman et al. | Oct 2015 | A1 |
20150342285 | Bell et al. | Dec 2015 | A1 |
20150359290 | Podhajny et al. | Dec 2015 | A1 |
20150366293 | Clarkson et al. | Dec 2015 | A1 |
20160029736 | Meir | Feb 2016 | A1 |
20160088894 | Podhajny et al. | Mar 2016 | A1 |
20160088899 | Klug et al. | Mar 2016 | A1 |
20160090670 | Meir | Mar 2016 | A1 |
20160095377 | Tamm | Apr 2016 | A1 |
20160166010 | Bruce et al. | Jun 2016 | A1 |
20160198797 | Ikenaka | Jul 2016 | A1 |
20160206039 | Cross et al. | Jul 2016 | A1 |
20160206040 | Cross et al. | Jul 2016 | A1 |
20160206042 | Cross et al. | Jul 2016 | A1 |
20160206046 | Cross | Jul 2016 | A1 |
20160295971 | Arnese et al. | Oct 2016 | A1 |
20170156434 | Tamm et al. | Jun 2017 | A1 |
20170258169 | Zavala | Sep 2017 | A1 |
20170311650 | Hupperets et al. | Nov 2017 | A1 |
20180064201 | Tran et al. | Mar 2018 | A1 |
20180092432 | Hoffer et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
386324 | Aug 1988 | AT |
989720 | May 1976 | CA |
2387640 | Apr 2003 | CA |
2044806 | Sep 1989 | CN |
1067566 | Jan 1993 | CN |
2187379 | Jan 1995 | CN |
2438730 | Jul 2001 | CN |
1392833 | Jan 2003 | CN |
1411762 | Apr 2003 | CN |
1429512 | Jul 2003 | CN |
1155597 | Jun 2004 | CN |
1960650 | May 2007 | CN |
101316526 | Dec 2008 | CN |
201356120 | Dec 2009 | CN |
102939023 | Feb 2013 | CN |
104413996 | Mar 2015 | CN |
71153 | Apr 1893 | DE |
627878 | Jul 1936 | DE |
870963 | Mar 1953 | DE |
1736512 | Dec 1956 | DE |
1785183 | Mar 1959 | DE |
1084173 | Jun 1960 | DE |
1910713 | Jul 1970 | DE |
1785183 | Nov 1971 | DE |
2044031 | Mar 1972 | DE |
1685690 | Jan 1973 | DE |
2162456 | Jun 1973 | DE |
2305693 | Aug 1973 | DE |
2505537 | Aug 1976 | DE |
2801984 | Jul 1979 | DE |
3820094 | Dec 1989 | DE |
4400739 | Jul 1995 | DE |
68922952 | Nov 1995 | DE |
4419802 | Dec 1995 | DE |
4419803 | Dec 1995 | DE |
4441555 | Jun 1996 | DE |
19629317 | Oct 1997 | DE |
19738433 | Apr 1998 | DE |
19728848 | Jan 1999 | DE |
4443002 | Feb 1999 | DE |
19855542 | Jun 2000 | DE |
19910785 | Sep 2000 | DE |
10022254 | Nov 2001 | DE |
10037728 | Feb 2002 | DE |
10145073 | Apr 2003 | DE |
10228143 | Nov 2003 | DE |
3903242 | Jul 2004 | DE |
4138836 | Jul 2004 | DE |
19910785 | Dec 2004 | DE |
602004000536 | Dec 2006 | DE |
102005030651 | Jan 2007 | DE |
10316979 | Feb 2007 | DE |
60031821 | Sep 2007 | DE |
102006009974 | Sep 2007 | DE |
102006022494 | Nov 2007 | DE |
202007011165 | Jan 2008 | DE |
202009010225 | Feb 2010 | DE |
202009011928 | Feb 2010 | DE |
102009018942 | Nov 2010 | DE |
102009028627 | Mar 2011 | DE |
102010037585 | Mar 2012 | DE |
102011055154 | May 2012 | DE |
202012100938 | May 2012 | DE |
202007019490 | Jan 2013 | DE |
202009018763 | Apr 2013 | DE |
202009018765 | Apr 2013 | DE |
102012206062 | Oct 2013 | DE |
202012013113 | Nov 2014 | DE |
202012013114 | Nov 2014 | DE |
202012013118 | Nov 2014 | DE |
202012013119 | Nov 2014 | DE |
202012013120 | Nov 2014 | DE |
0037629 | Oct 1981 | EP |
45372 | Feb 1982 | EP |
0105773 | Apr 1984 | EP |
279950 | Aug 1988 | EP |
0384059 | Aug 1990 | EP |
446583 | Sep 1991 | EP |
0472743 | Mar 1992 | EP |
499710 | Aug 1992 | EP |
508712 | Oct 1992 | EP |
0664092 | Jul 1995 | EP |
448714 | Jul 1996 | EP |
728860 | Aug 1996 | EP |
0733732 | Sep 1996 | EP |
758693 | Feb 1997 | EP |
845553 | Jun 1998 | EP |
864681 | Sep 1998 | EP |
898002 | Feb 1999 | EP |
0959704 | Dec 1999 | EP |
1004829 | May 2000 | EP |
1031656 | Aug 2000 | EP |
1091033 | Apr 2001 | EP |
0758693 | Oct 2001 | EP |
0833000 | Mar 2002 | EP |
1219191 | Jul 2002 | EP |
1233091 | Aug 2002 | EP |
1273693 | Jan 2003 | EP |
1275761 | Jan 2003 | EP |
1437057 | Jul 2004 | EP |
1148161 | Apr 2005 | EP |
1563752 | Aug 2005 | EP |
1602762 | Dec 2005 | EP |
1352118 | Oct 2006 | EP |
1972706 | Sep 2008 | EP |
2023762 | Feb 2009 | EP |
2079336 | Jul 2009 | EP |
2088887 | Aug 2009 | EP |
1571938 | Nov 2009 | EP |
2248434 | Nov 2010 | EP |
2378910 | Oct 2011 | EP |
1919321 | Aug 2012 | EP |
2485619 | Aug 2012 | EP |
2520188 | Nov 2012 | EP |
1571938 | May 2013 | EP |
2088887 | May 2013 | EP |
2591694 | May 2013 | EP |
2649898 | Oct 2013 | EP |
2716177 | Jul 2014 | EP |
2803283 | Jan 2015 | EP |
2904920 | Aug 2015 | EP |
2952346 | Dec 2015 | EP |
2977205 | Jan 2016 | EP |
2686467 | Apr 2016 | EP |
2713793 | Jun 2016 | EP |
2505092 | Aug 2016 | EP |
858875 | Dec 1940 | FR |
862088 | Feb 1941 | FR |
2171172 | Sep 1973 | FR |
2491739 | Sep 1982 | FR |
2506576 | Dec 1984 | FR |
2504786 | Jan 1986 | FR |
2648684 | Dec 1990 | FR |
2776485 | Apr 2000 | FR |
2780619 | Sep 2000 | FR |
2784550 | Jan 2001 | FR |
2848807 | Jul 2013 | FR |
109091 | Aug 1917 | GB |
273968 | Jul 1927 | GB |
323457 | Jan 1930 | GB |
413279 | Jul 1934 | GB |
538865 | Aug 1941 | GB |
674835 | Jul 1952 | GB |
761519 | Nov 1956 | GB |
782562 | Sep 1957 | GB |
832518 | Apr 1960 | GB |
1102447 | Feb 1968 | GB |
1219433 | Jan 1971 | GB |
1328693 | Aug 1973 | GB |
1539886 | Feb 1979 | GB |
2018837 | Oct 1979 | GB |
1572493 | Jul 1980 | GB |
1581999 | Dec 1980 | GB |
1603487 | Nov 1981 | GB |
2044073 | Mar 1983 | GB |
2133273 | Mar 1983 | GB |
2131677 | Jun 1984 | GB |
2214939 | Apr 1992 | GB |
317184 | Aug 2003 | GB |
413017 | Jul 2004 | GB |
2408190 | May 2005 | GB |
S39-16845 | Jun 1939 | JP |
S59-166706 | Nov 1984 | JP |
S63-57909 | Apr 1988 | JP |
02079336 | Mar 1990 | JP |
H02-116806 | Sep 1990 | JP |
H03-003203 | Jan 1991 | JP |
H05-176804 | Jul 1993 | JP |
H06-068722 | Mar 1994 | JP |
06113905 | Apr 1994 | JP |
H06-154001 | Jun 1994 | JP |
H06-248501 | Sep 1994 | JP |
H06-296507 | Oct 1994 | JP |
3005269 | Dec 1994 | JP |
H0759604 | Mar 1995 | JP |
H07-025804 | May 1995 | JP |
H07-148004 | Jun 1995 | JP |
H07-246101 | Sep 1995 | JP |
08109553 | Apr 1996 | JP |
H09-047302 | Feb 1997 | JP |
H09-238701 | Sep 1997 | JP |
H10-000103 | Jan 1998 | JP |
H10-130991 | May 1998 | JP |
H10-155504 | Jun 1998 | JP |
H10-179209 | Jul 1998 | JP |
H03-064834 | May 1999 | JP |
H11-229253 | Aug 1999 | JP |
11302943 | Nov 1999 | JP |
2000-015732 | Jan 2000 | JP |
2000-279201 | Oct 2000 | JP |
2001017206 | Jan 2001 | JP |
2001-104091 | Apr 2001 | JP |
2001-164407 | Jun 2001 | JP |
2001-164444 | Jun 2001 | JP |
2002-088512 | Mar 2002 | JP |
2002146654 | May 2002 | JP |
2004-230151 | Aug 2004 | JP |
2004-283586 | Oct 2004 | JP |
2006-150064 | Jun 2006 | JP |
2006-249586 | Sep 2006 | JP |
3865307 | Jan 2007 | JP |
2007204864 | Aug 2007 | JP |
2007236612 | Sep 2007 | JP |
2007239151 | Sep 2007 | JP |
4376792 | Dec 2009 | JP |
2010-030289 | Feb 2010 | JP |
2010-163712 | Jul 2010 | JP |
2010-275649 | Dec 2010 | JP |
2011-256506 | Dec 2011 | JP |
2012-500071 | Jan 2012 | JP |
4851688 | Jan 2012 | JP |
2012062615 | Mar 2012 | JP |
2012-512698 | Jun 2012 | JP |
2012-522551 | Sep 2012 | JP |
2012533404 | Dec 2012 | JP |
2013-151783 | Aug 2013 | JP |
2015-025223 | Feb 2015 | JP |
7304678 | Oct 1974 | NL |
7505389 | Nov 1975 | NL |
9003744 | Apr 1990 | WO |
9221806 | Dec 1992 | WO |
1997046127 | Dec 1997 | WO |
9843506 | Oct 1998 | WO |
9914415 | Mar 1999 | WO |
9943229 | Sep 1999 | WO |
0032861 | Jun 2000 | WO |
0033694 | Jun 2000 | WO |
0112003 | Feb 2001 | WO |
0112004 | Feb 2001 | WO |
0231247 | Apr 2002 | WO |
0241721 | May 2002 | WO |
2002072325 | Sep 2002 | WO |
2004064558 | Aug 2004 | WO |
2004066770 | Aug 2004 | WO |
2004098333 | Nov 2004 | WO |
2005004656 | Jan 2005 | WO |
2005025841 | Mar 2005 | WO |
2005055754 | Jun 2005 | WO |
2005074737 | Aug 2005 | WO |
2007005459 | Jan 2007 | WO |
2009143000 | Nov 2009 | WO |
2010020391 | Feb 2010 | WO |
2010090923 | Aug 2010 | WO |
2011108954 | Sep 2011 | WO |
2011138638 | Nov 2011 | WO |
2011138639 | Nov 2011 | WO |
2012018731 | Feb 2012 | WO |
2012125473 | Sep 2012 | WO |
2012125483 | Sep 2012 | WO |
2012125490 | Sep 2012 | WO |
2012138488 | Oct 2012 | WO |
2012151408 | Nov 2012 | WO |
2012166602 | Dec 2012 | WO |
2012166607 | Dec 2012 | WO |
2013086145 | Jun 2013 | WO |
2013121578 | Aug 2013 | WO |
2013126314 | Aug 2013 | WO |
2013192363 | Dec 2013 | WO |
2014078152 | May 2014 | WO |
2014078158 | May 2014 | WO |
2014078160 | May 2014 | WO |
2014078161 | May 2014 | WO |
2014081680 | May 2014 | WO |
2014085205 | Jun 2014 | WO |
2014085206 | Jun 2014 | WO |
2014113352 | Jul 2014 | WO |
2014115284 | Jul 2014 | WO |
2014134236 | Sep 2014 | WO |
2014134237 | Sep 2014 | WO |
2014134239 | Sep 2014 | WO |
2014134242 | Sep 2014 | WO |
2014134244 | Sep 2014 | WO |
2014134247 | Sep 2014 | WO |
2014137825 | Sep 2014 | WO |
2015030914 | Mar 2015 | WO |
2015076893 | May 2015 | WO |
2015134648 | Sep 2015 | WO |
2016018904 | Feb 2016 | WO |
Entry |
---|
Page 1 of Lyden Letter dated Apr. 21, 2010, redacted. |
Eberle et al., Excerpt from Clothing Technology, 2002, 3 pages. |
Compendium Warp Knitting, Sonderdruck, Karl Mayer GmbH, Aug. 1, 1978, 8 pages. |
Duolastic—an elastic fabric sets new standards, HKS 1 MSU E-Magazine—weft elastic tricot machine, Sonderdruck, Karl Mayer GmbH, Aug. 4, 1989, 8 pages. |
Fabric Pictures, www.karlmayer.com, Karl Mayer GmbH, undated, 7 pages. |
Jacquard Rashchel machine for the Production of Curtains, Karl Mayer GmbH, Jan. 12, 1996, 4 pages. |
Knitting Wear, SM8 Top 1, Santoni S.p.A. undated, 2 pages. |
MRSS 42 SU: for producing the finest laces with ground in 22 dtex monofilaments, Sonderdruck, Karl Mayer GmbH, Aug. 4, 1988, 3 pages. |
Multibar Jacquard Raschel Machine for Lace, Net Curtains and Patterned Elastic Products, Sonderdruck, Karl Mayer GmbH, Aug. 4, 1978, 6 pages. |
Exhibit 2008, Decision on Appeal in U.S. Reexam Application No. 95/001,320, filed in IPR2013-00067 on Dec. 28, 2012, 37 pages. |
Anand et al., Technical Fabric Structures—2. Knitted Fabrics, Handbook of Technical Textiles, Woodhead Publishing, 2000, 5 pages. |
Chinese Patent Application No. 2005800066703, Office Action dated Jun. 13, 2008, 17 pages. |
Chinese Patent Application No. 2005800066703, Office Action dated Jul. 27, 2007, 18 pages. |
Chinese Patent Application No. 2005800066703, Office Action dated Aug. 21, 2009, 19 pages. |
Chinese Patent Application No. 2005800066703, Office Action dated Feb. 15, 2008, 6 pages. |
Chinese Patent Application No. 2009101783949, Office Action dated May 13, 2011, 13 pages. |
European Patent Application No. 15187862.6, Search Report dated Mar. 4, 2016, 7 pages. |
German Patent Application No. 102014220087.3, Office Action dated Apr. 21, 2015, 6 pages (a brief description of the relevance is included with the transmittal page). |
Ebrlle et al., Clothing Technology, Sixth German Edition and Third English Edition, Veriag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co., D-42781 Haa-Guriten, ISBN 3-8085-6223-4, Nov. 28, 2012, 3 pages. |
Exhibit 2004, R. Shishoo, Chapter 16 of Textiles in Sport, filed in IPR2013-00067 on Nov. 28, 2012, 22 pages. |
Decision Institution of Inter Partes Review 37 C.F.R. § 42.108, filed in IPR2013-00067 on May 17, 2013, 38 pages. |
Decision Motion to Withdraw § 42.10(e) filed in IPR2013-00067 on Oct. 30, 2013, 3 pages. |
Exhibit 1001, Declaration and Curriculum Vitae of Dr. Edward C. Frederick filed in IPR2013-00067 on Nov. 28, 2012, 178 pages. |
Exhibit 2002, Declaration Edward C. Frederick with note filed in IPR2013-00067 on Aug. 19, 2013, 23 pages. |
Exhibit 2010, Declaration of Raymond Tonkel filed in IPR2013-00067 on Aug. 19, 2013, 101 pages. |
Exhibit 2009, Edward Frederick Deposition Transcript filed in IPR2013-00067 on Jul. 23, 2013, 187 pages. |
Exhibit 2013, Errata Sheet from Edward Frederick Deposition filed in IPR2013-00067 on Aug. 29, 2013, 1 page. |
Exhibit 2011, Excerpts from Man-Made Fiber and Textile Dictionary filed in IPR2013-00067 on Aug. 19, 2013, 4 pages. |
Exhibit 1015, Cross Examination Deposition of Raymond Tonkel filed in IPR2013-00067 on Nov. 12, 2013, 114 pages. |
Exhibit 1016, Declaration of Sabut Adanur Ph.D. filed in IPR2013-00067 on Nov. 12, 2013, 57 pages. |
Exhibit 1017, Excerpt of Knitted Fabrics filed in IPR2013-00067 on Nov. 12, 2013, 73 pages. |
Exhibit 1018, Excerpt of Bharat J. Gaijar, Wrap Knit Fabrics filed in IPR2013-00067 on Nov. 12, 2013, 16 pages. |
Exhibit 1019, J. Watel, the Milanese Machine: Little Progress Made in Development of Milanese Fabric filed in IPR2013-00067 on Nov. 12, 2013, 4 pages. |
Exhibit 1023, Supplemental Declaration of Edward C. Frederick filed in IPR2013-00067 on Nov. 12, 2013, 18 pages. |
Exhibit 2007, U.S. Pat. No. 7,347,011 with markings filed in IPR2013-00067 on Nov. 12, 2013, 22 pages. |
Exhibit 2015, Excerpts from Celanese Corporation Man-Made Fiber and Textile Dictionary filed in IPR2013-00067 on Dec. 11, 2013, 5 pages. |
Exhibit 2016, Excerpts from Hoechst Celanese “Dictionary of Fiber & Textile Technology” filed in IPR2013-00067 on Dec. 11, 2013, 4 pages. |
Exhibit 2017, Excerpts from Celanese Corporation Man-Made Fiber and Textile Dictionary filed in IPR2013-00067 on Dec. 11, 2013, 10 pages. |
Exhibit 2018, Excerpts from Hoechst Celanese Dictionary of Fiber & Textile Technology filed in IPR2013-00067 on Dec. 11, 2013, 11 pages. |
Exhibit 2020, Transcript of Dec. 3, 2013, second cross-examination deposition of Edward C. Frederick filed in IPR2013-00067 on Dec. 11, 2013, 59 pages. |
Exhibit 2021, Transcript of Dec. 3, 2013, cross-examination deposition of Sabit Adanur filed in IPR2013-00067 on Dec. 11, 2013, 139 pages. |
Exhibit 2022, Signature page for transcript of Dec. 3, 2013, Frederick deposition (Ex. 2020) filed in IPR2013-00067 on Jan. 7, 2014, 1 page. |
Exhibit 2023, Signature page for transcript of Dec. 3, 2013, Adanur deposition (Ex. 2021) filed in IPR2013-00067 on Jan. 7, 2014, 1 page. |
Exhibit 3001 filed in IPR2013-00067 on Apr. 28, 2014, 3 pages. |
Exhibit 3002 filed in IPR2013-00067 on Apr. 28, 2014, 4 pages. |
Exhibit 1003, File History for U.S. Pat. No. 7,347,011, filed in IPR2013-00067 on Nov. 28, 2012, 201 pages. |
Final Written Decision filed in IPR2013-00067 dated Apr. 28, 2014, 43 pages. |
Exhibit 1024, Hunter, Billy, viewpoint: Nike Flyknit Quantum Leap for Flat Knitting, www.knittingindustry.com, filed in IPR2013-00067 on Nov. 12, 2013, 5 pages. |
Exhibit 1025, Hunter, Billy, viewpoint: Nike Flyknit Ready, Steady, Go, www.knittingindustry.com, filed in IPR2013-00067 on Nov. 12, 2013, 5 pages. |
Nike, Inc. Notice of Appeal filed in IPR2013-00067 on Jun. 30, 2014, 5 pages. |
Nike's Motion to Amend filed in IPR2013-00067 on Aug. 19, 2013, 19 pages. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response filed in IPR2013-00067 on Dec. 4, 2012, 8 pages. |
Oral Hearing Transcript filed in IPR2013-00067 on Mar. 5, 2014, 41 pages. |
Order Conduct of the Proceeding filed in IPR2013-00067 on Jun. 19, 2013, 4 pages. |
Order Conduct of the Proceeding filed in IPR2013-00067 on Aug. 2, 2013, 5 pages. |
Order Conduct of the Proceeding § 4.25 filed in IPR2013-00067 on Jan. 23, 2014, 3 pages. |
Order Trial Hearing filed in IPR2013-00067 on Jan. 13, 2014, 4 pages. |
Patent Owner Corrected Certificate of Service filed in IPR2013-00067 on Aug. 19, 2013, 3 pages. |
Patent Owner Opposition to Motion to Exclude filed in IPR2013-00067 on Jan. 21, 2014, 8 pages. |
Patent Owner's Motion to Amend U.S. Pat. No. 7,347,011 filed in IPR2013-00067 on Aug. 19, 2013, 19 pages. |
Patent Owner's Preliminary Response to Petition filed in IPR2013-00067 on Feb. 28, 2013, 8 pages. |
Patent Owner's Reply to Petitioner's Opposition to Motion to Amend filed in IPR2013-00067 on Dec. 11, 2013, 9 pages. |
Patent Owner's Trial Hearing Demonstratives filed in IPR2013-00067 on Feb. 6, 2014, 47 pages. |
Petition for Inter Partes Review Under 35 U.S.C. 311-319 and 37 CFR 42.100 et seq. filed in IPR2013-00067 on Nov. 28, 2012, 66 pages. |
Petitioner's Amended Notice of Cross Examination of Raymond Tonkel filed in IPR2013-00067 on Nov. 1, 2013, 3 pages. |
Petitioner's Opposition to Patent Owner's Motion to Amend filed in IPR2013-00067 on Nov. 12, 2013, 20 pages. |
Petitioner's Motion to Exclude Evidence filed in IPR2013-00067 on Jan. 7, 2014, 8 pages. |
Petitioner's Opposition to Patent Owner Motion to Amend filed in IPR2013-00067 on Nov. 12, 2013, 20 pages. |
Petitioner's Reply to Patent Owner's Opposition to Petitioner's Motion to Exclude Evidence filed in IPR2013-00067 on Jan. 28, 2014, 8 pages. |
Exhibit 2012, Random House Webster Dictionary Excerpts filed in IPR2013-00067 on Aug. 19, 2013, 4 pages. |
Revised Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 filed in IPR2013-00067 on Dec. 10, 2012, 64 pages. |
Submission of Patent Owner's Trial Hearing Demonstratives filed in IPR2013-00067 on Feb. 6, 2014, 3 pages. |
Exhibit 2006, U.S. Pat. No. 2,147,197 with markings filed in IPR2013-00067 on Aug. 19, 2013, 5 pages. |
Exhibit 2003, U.S. Pat. No. 4,354,318 filed in IPR2013-00067 on Aug. 19, 2013, 6 pages. |
PCT Patent Application No. PCT/US2005/004776, International Search Report and Written Opinion dated May 19, 2005, 15 pages. |
PCT Patent Application No. PCT/US2009/056795, International Search Report and Written Opinion dated Apr. 20, 2010, 16 pages. |
PCT Patent Application No. PCT/US2012/028534, International Preliminary Report on Patentability dated Sep. 17, 2013, 8 pages. |
PCT Patent Application No. PCT/US2012/028534, International Search Report and Written Opinion dated Oct. 17, 2012, 14 pages. |
PCT Patent Application No. PCT/US2012/028559, International Search Report and Written Opinion dated Oct. 19, 2012, 9 pages. |
PCT Patent Application No. PCT/US2012/028576, International Preliminary Report on Patentability dated Sep. 17, 2013, 7 pages. |
PCT Patent Application No. PCT/US2012/028576, International Search Report and Written Opinion dated Oct. 1, 2012, 10 pages. |
Spencer, “Knitting Technology”, Woodhead Publishing Limited, 1989 and 2001, 413 pages. |
Robert M. Lyden v. adidas America, Inc., adidas AG, adidas International Marketing B.V., The Finish Line, Inc., and Dick's Sporting Goods, Inc., “Original Complaint”, Case No. 3:14-CV-1586 MO, United States District Court, District of Oregon, Portland Division, filed Oct. 8, 2014, 54 pages. |
Freshness Magazine (Youtube Video), “The Story Behind Nike Flyknit Technology”, http://web.archive.org/web/20120225004803/http://www.freshnessmag.com/2012/02/21/the-story-behind-nike-flyknit-technology-video, published on Feb. 21, 2012, 3 pages (website screenshot submitted). |
Reissue Patent Application No. RE95/002,094, “Patent Owner's Rebuttal Brief”, filed Sep. 3, 2014, 40 pages. |
Reissue Patent Application No. RE95/002,094, “Patent Owner's Rebuttal Brief”, filed Sep. 22, 2014, 25 pages. |
Underwood, Jenny, “The Design of 3D Shape Knitted Preforms”, Ph.D. Thesis for School of Fashion and Textile, Design and Social Context Portfolio, RMIT University, Nov. 2009, 201 pages. |
ISO 8117:2003(E), “Textile Machinery—Knitting Machines—Nominal diameters of circular machines”, Second Edition, Feb. 15, 2003, 6 pages. |
Burall, Paul, “CoID Design Awards”, Design, Jun. 1969, pp. 46-47. |
IPR2016-00920, Petition for Inter Partes Review of U.S. Pat. No. 8,042,288 filed Apr. 19, 2016, 67 pages. |
IPR2016-00920, Exhibit 1003, Declaration of Lenny M. Holden, Apr. 19, 2016, 166 pages. |
IPR2016-00921, Petition for Inter Partes Review of U.S. Pat. No. 7,814,598 filed Apr. 19, 2016, 57 pages. |
IPR2016-00922, Petition for Inter Partes Review of U.S. Pat. No. 8,266,749 filed Apr. 19, 2016, 67 pages. |
IPR2016-00921 and IPR-00922, Exhibit 1003, Declaration of Lenny M. Holden, Apr. 19, 2016, 154 pages. |
“From Fiber To Fabric: Silk”, Clothing And Textiles, Utah State University Cooperative Extension, http://extension.usu.edu./files/publications/factsheet/FC_Clothing&Textiles_2012-25pr.pdf, 2011, 3 pages. |
Office Action, Chinese Patent Application No. 201510645049.7, dated Nov. 28, 2016, 8 pages. |
Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 Et Seq. with Exhibit 1003, Declaration of Lenny M. Holden, Inter Partes Review No. 2017-00263, Nov. 14, 2016. |
Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 Et Seq. with Exhibit 1003, Declaration of Lenny M. Holden, Inter Partes Review No. 2017-00264, Nov. 14, 2016. |
Federal Circuit Case No. 14-1719 , Federal Circuit Mandate to PTAB, Apr. 4, 2016, 1 page. |
Federal Circuit Case No. 14-1719 , United States Patent and Trademark Office's Solicitor's Brief to Federal Circuit, Apr. 9, 2015, 27 pages. |
Federal Circuit Case No. 14-1719 , Appellant's Reply Brief, May 27, 2015, 38 pages. |
Federal Circuit Case No. 14-1719 , Federal Circuit Decision, Feb. 11, 2016, 41 pages. |
Federal Circuit Case No. 14-1719 , Appellant's Opening Brief to Federal Circuit, Dec. 15, 2014, 47 pages. |
Federal Circuit Case No. 14-1719 , Appellee's Response Brief to Federal Circuit, Apr. 10, 2015, 76 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellant's Reply in Support of Motion to Remand, Jun. 5, 2018, 16 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellant's Motion for Remand to PTAB, May 24, 2018, 19 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellee's Opposition to Motion to Remand to PTAB, Jun. 1, 2018, 21 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Federal Circuit Decision to Remand to PTAB, Jul. 2, 2018, 4 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellant's Reply Brief, May 1, 2018, 41 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellee's Corrected Response Brief, Apr. 12, 2018, 75 pages. |
Federal Circuit Case Nos. 18-1180 & 18-1181 , Appellant's Opening Brief, Feb. 26, 2018, 79 pages. |
IPR2013-00067 , Patent Owner's Response Brief, Nov. 16, 2017, 12 pages. |
IPR2013-00067 , Petitioner's Opening Brief, Nov. 6, 2017, 12 pages. |
IPR2013-00067 , Exhibit 1027, Petitioner's Oral Hearing Demonstratives Slides, 25 pages. |
IPR2013-00067 , Exhibit 3003, Email regarding Aqua Products Conference Call, 3 pages. |
IPR2013-00067 , Order Conduct of Remand Proceeding, Aug. 10, 2016, 4 pages. |
IPR2013-00067 , Patent Owner's Notice of Appeal, Jun. 30, 2014, 5 pages. |
IPR2013-00067 , Petitioner's Reply Brief on Remand, Nov. 22, 2017, 6 pages. |
IPR2013-00067 , Decision on Remand, Sep. 18, 2018, 65 pages. |
IPR2016-00920 , Decision Denying Institution of Inter Partes Review, Oct. 20, 2016, 8 pages. |
IPR2016-00921 , Petitioners Brief Addressing Newly Instituted Ground, Sep. 10, 2018, 12 pages. |
IPR2016-00921 , Order Modifying Institution Decision and Granting Request for Additional Briefing, Aug. 24, 2018, 14 pages. |
IPR2016-00921 , Patent Owner's Response Brief Addressing the Newly Instituted Ground, Sep. 24, 2018, 14 pages. |
IPR2016-00921 , Decision on Institution of Inter Partes Review, Oct. 21, 2016, 24 pages. |
IPR2016-00921 , Petitioner's Reply to Patent Owner Response, Apr. 21, 2017, 32 pages. |
IPR2016-00921 , Patent Owner's Objection to Admissability of Evidence, Apr. 28, 2017, 4 pages. |
IPR2016-00921 , Petitioner's Notice of Supplemental Evidence in Response to Patent Owner's Objection to Evidence, May 12, 2017, 4 pages. |
IPR2016-00921 , Petitioner's Notice of Appeal, Nov. 13, 2017, 4 pages. |
IPR2016-00921 , Final Written Decision, dated Oct. 19, 2017, 49 pages. |
IPR2016-00921 , Patent Owner's Response Brief, Jan. 23, 2017, 64 pages. |
IPR2016-00921 & IPR2016-00922 , Exhibit 1014, Merriam-Webster Dictionary Definition of Impart, Apr. 10, 2017, 11 pages. |
IPR2016-00921 & IPR2016-00922 , Exhibit 2004, Transcript of Deposition of Lenny Holden, Jan. 10, 2017, 226 pages. |
IPR2016-00921 & IPR2016-00922 , Exhibit 3001, Random House Webster's College Dictionary Definition of Impart and Texture, Apr. 1999, 4 pages. |
IPR2016-00921 & IPR2016-00922 , Record of Oral Hearing, Jul. 26, 2017, 74 pages. |
IPR2016-00921 & IPR2016-00922 , Exhibit 1013, Analyzing the Color, Design and Texture of Fabric, 8 pages. |
IPR2016-00921 & IPR2016-00922 , Exhibit 1016, Adidas's Oral Hearing Demonstratives, Jul. 12, 2017, 84 pages. |
IPR2016-00922 , Petitioner's Brief Addressing Newly Instituted Ground, Sep. 10, 2018, 12 pages. |
IPR2016-00922 , Order Modifying Institution Decision and Granting for Additional Briefing, Aug. 24, 2018, 14 pages. |
IPR2016-00922 , Patent Owner's Response Brief Addressing Newly Instituted Ground, Sep. 24, 2018, 14 pages. |
IPR2016-00922 , Decision on Institution of Inter Partes Review, Oct. 21, 2016, 24 pages. |
IPR2016-00922 , Petitioner's Reply Brief, Apr. 21, 2017, 34 pages. |
IPR2016-00922 , Patent Owner's Objection to Admissability of Evidence, Apr. 28, 2017, 4 pages. |
IPR2016-00922 , Petitioner's Notice of Supplemental Evidence in Response to Patent Owner's Objections to Evidence 37 C.F.R. § 42.64(B)(1), May 12, 2017, 4 pages. |
IPR2016-00922 , Petitioner's Notice of Appeal, Nov. 13, 2017, 4 pages. |
IPR2016-00922 , Final Written Decision, dated Oct. 19, 2017, 52 pages. |
IPR2016-00922 , Patent Owner's Response Brief, Jan. 23, 2017, 66 pages. |
IPR2017-00263 , Decision Denying Institution of Inter Partes Review, Jun. 7, 2017, 11 pages. |
IPR2017-00263 , Decision Denying Request for Rehearing, Jul. 20, 2017, 12 pages. |
IPR2017-00263 , Petitioner's Request for Rehearing, Jul. 7, 2017, 17 pages. |
IPR2017-00263 , Patent Owner's Corrected Preliminary Response, dated Mar. 27, 2017, 24 pages. |
IPR2017-00263 , Patent Owner's Preliminary Response, dated Mar. 9, 2017, 24 pages. |
IPR2017-00264 , Decision Denying Request for Rehearing, Jul. 20, 2017, 12 pages. |
IPR2017-00264 , Decision Denying Institution of Inter Partes Review, Jun. 7, 2017, 12 pages. |
IPR2017-00264 , Petitioner's Request for Rehearing, Jul. 7, 2017, 17 pages. |
IPR2017-00264 , Patent Owner's Corrected Preliminary Response, dated Mar. 27, 2017, 24 pages. |
IPR2017-00264 , Patent Owner's Preliminary Response, dated Mar. 9, 2017, 24 pages. |
“Knitting Machine Wins Design Award—The Textile Institute & Industry”, EBSCO Host, Textile Institute & Industry, vol. 7, Issue 7, Jul. 1969, 3 pages. |
“Polyamide 6.6 Emana Yarn”, 5 pages. |
Aibibu et al., “Textile Cell-free Scaffolds for in Situ Tissue Engineering Applications”, Journal of Materials Science: Materials in Medicine, vol. 27, No. 3, Mar. 2016, 20 pages. |
Atalay et al., “Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties”, Sensors, vol. 14, No. 3, 2014, 8 pages. |
Atalay et al., “Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties , Sensors (Basel)”, vol. 13, No. 8, Aug. 21, 2013, 6 pages. |
Barton et al., “Development and Evaluation of a Tool for the Assessment of Footwear Characteristics”, Journal of Foot and Ankle Research, vol. 2, Apr. 23, 2009, 13 pages. |
Hamlin , “The Hamlin Cleanroom Bootie”, MO-LA Inc., Technical Developments, vol. 18, Mar. 1993, 2 pages. |
IPR2013-00067 , Excerpts from Man-Made Fiber and Textile Dictionary , Exhibit 2011, Aug. 19, 2013, 12 pages. |
Lo et al., “Effects of Custom-Made Textile Insoles on Plantar Pressure Distribution and Lower Limb Emg Activity During Turning”, Journal of Foot and Ankle Research, vol. 9, Jul. 13, 2016, 11 pages. |
Office Action, Japanese Patent Application No. 2015-193370, dated Jul. 17, 2018, 11 pages. |
Saenz-Cogollo et al., “Pressure Mapping Mat for Tele-Home Care Applications”, Sensors, vol. 16, No. 3, E365, Mar. 11, 2016, 9 pages. |
Singh et al., “Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries”, Journal of functional biomaterials, vol. 6, No. 3, Sep. 2015, 15 pages. |
Stoppa et al., “Wearable Electronics and Smart Textiles: A Critical Review”, Sensors, vol. 14, No. 7, Jul. 2014, 20 pages. |
Photograph of Adizero Prime SP Olympia, 2012. |
Photograph of Adios, 2012. |
Buckley et al., “New Textile Concepts for Use in Control of Body Environments”, Presented at RTO HFM Symposium on “Blowing Hot and Cold: Protecting Against Climatic Extremes”, Dresden, Germany, Oct. 8-10, 2001, 7 pages. |
Hong et al., “The Development of 3D Shaped Knitted Fabrics for Technical Purposes on a Flat Knitting Machine”, Indian Journal of Fibre & Textile Research, vol. 19, pp. 189-194, Sep. 1994, 6 pages. |
Lu et al. , “The Development of the Flat-Knitted Shaped Uppers Based on Ergonomics”, AUTEX Research Journal, vol. 16, No. 2, pp. 67-74, Jun. 2016, 8 pages. |
U.S. Appl. No. 14/257,668 , Final Office Action, dated Feb. 1, 2019, 29 pages. |
U.S. Appl. No. 14/257,719 , Final Office Action, dated Jan. 24, 2019, 15 pages. |
U.S. Appl. No. 14/257,737 , Final Office Action, dated Jan. 2, 2019, 15 pages. |
U.S. Appl. No. 14/619,586 , Non-Final Office Action, dated Jan. 14, 2019, 10 pages. |
Federal Circuit Case No. 19-1262, Principal Brief of Appellant Nike, Inc., May 17, 2019, 59 pages. |
IPR2016-00921, Petitioner adidas AG's Notice of Appeal, Apr. 19, 2019, 71 pages. |
IPR2016-00922, Petitioner adidas AG's Notice of Appeal, Apr. 19, 2019, 75 pages. |
Office Action, Japanese Patent Application No. 2015-193370, dated Jun. 4, 2019, 11 pages. |
Federal Circuit Case No. 19-1262, Appellee Adidas AG's Response Brief, Aug. 9, 2019, 60 pages. |
IPR2019-1787, Appellant Adidas AG's Opening Brief, Aug. 30, 2019, 319 pages. |
“Adjacent”, dictionary.com. Web, Available online at: https://www.dictionary.com/browse/adjacent, Jun. 8, 2019, 7 pages. |
Appellee Nike Response to Citation of Supplemental Authority, Federal Circuit Case No. 19-1987, May 20, 2020, 3 pages. |
Decision of Dismissal of Amendment, Japanese Patent Application No. 2015-193370, Mar. 3, 2020, 10 pages. |
Decision of Refusal, Japanese Patent Application No. 2015-193370, dated Mar. 3, 2020, 2 pages. |
Federal Circuit Case No. 19-1262, Reply Brief of Appellant Nike, Inc., Sep. 13, 2019, 38 pages. |
Federal Circuit Case No. 19-1787, Appellant Adidas Citation of Supplemental Authority, May 15, 2020, 31 pages. |
Federal Circuit Case No. 19-1787, Reply Brief for Appellant Adidas AG, Dec. 23, 2019, 40 pages. |
Federal Circuit Case No. 19-1787, Joint Appendix, Dec. 30, 2019, 582 pages. |
Federal Circuit Case No. 19-1787, Appellee Nike, Inc.'s Response Brief, Nov. 25, 2019, 77 pages. |
Federal Circuit Case No. 2019-1262, Appellant's Citation of Supplemental Authority Pursuant to Rule 28(j), Jan. 29, 2020, 11 pages. |
“Symmetrical”, dictionary.com, Available online at https://www.dictionary.com/browse/symmetrical, Jun. 8, 2019, 8 pages. |
U.S. Appl. No. 14/873,605, Final Office Action, dated Feb. 8, 2019, 6 pages. |
U.S. Appl. No. 14/873,605, Non-Final Office Action, dated Jun. 28, 2018, 17 pages. |
U.S. Appl. No. 14/873,605, Notice of Allowance, dated Jun. 3, 2019, 12 pages. |
U.S. Appl. No. 14/873,605, Restriction Requirement, dated Jan. 11, 2018, 6 pages. |
U.S. Appl. No. 14/873,605, Supplemental Notice of Allowability, dated Aug. 6, 2019, 2 pages. |
U.S. Appl. No. 14/873,605, Supplementary Notice of Allowability, dated Sep. 30, 2019, 2 pages. |
Chamberlain, “Knitted Fabrics”, Pitman's Common Commodities and Industries, 1919, 13 pages. |
Chamberlain, “Principles of Machine Knitting”, Textile Institute, 1951, 3 pages. |
Federal Circuit Case No. 19-1262, Decision on Appeal, Apr. 9, 2020, 17 pages. |
Federal Circuit Case No. 19-1262, Judgment, Apr. 9, 2020, 1 page. |
IPR2013-00067, IDS under 37 C.F.R. 1.501, Exhibit 1026, Nov. 12, 2013, 2 pages. |
IPR2013-00067, IDS under 37 C.F.R. 1.501, Exhibit 1004, Nov. 28, 2012, 2 pages. |
IPR2013-00067, List of Related Matters, Dec. 14, 2012, 3 pages. |
IPR2013-00067, Mandatory Notice Information, Jan. 25, 2013, 4 pages. |
IPR2013-00067, Mandatory Notice Information, Feb. 28, 2013, 5 pages. |
IPR2013-00067, Nike's Notice of Appeal, Nov. 20, 2018, pp. 1-69. |
IPR2013-00067, Notice of Stipulation, Jun. 14, 2013, 3 pages. |
IPR2013-00067, Patent Owner Exhibit List, Aug. 19, 2013, 6 pages. |
IPR2013-00067, Patent Owner Exhibit List, Aug. 29, 2013, 6 pages. |
IPR2013-00067, Patent Owner's List of Proposed Motions, Jun. 14, 2013, 5 pages. |
IPR2013-00067, Patent Owner's Notice of Cross Examination, Jul. 17, 2013, 4 pages. |
IPR2013-00067, Petitioner Power of Attorney, Nov. 28, 2012, 2 pages. |
IPR2013-00067, Petitioner's Exhibit List, Nov. 12, 2013, 23 pages. |
IPR2013-00067, Petitioner's Opposition to Patent Owner's Motion to Amend, Nov. 12, 2013, 53 pages. |
IPR2013-00067, Petitioner's Power of Attorney, Jul. 11, 2013, 3 pages. |
IPR2013-00067, Scheduling Order, May 17, 2013, 7 pages. |
IPR2013-00067, Submission of Power of Attorney, Jan. 25, 2013, 5 pages. |
IPR2016-00921, Decision on Remand—35 USC 144 and 37 CFR 42.5(a), Feb. 19, 2019, pp. 1-67. |
IPR2016-00921-00922, Hearing Transcript, Nov. 29, 2018, 37 pages. |
IPR2016-00921-00922, Nike's Demonstratives for Additional Oral Hearing, Nov. 15, 2018, pp. 1-21. |
IPR2016-00921-00922, Patent Owner Nike's Demonstratives, Jul. 11, 2017, pp. 1-27. |
IPR2016-00921-00922, Petitioner's Demonstratives for Supplemental Oral Hearing , Nov. 7, 2018, pp. 1-21. |
IPR2016-00921-00922, Record of Oral Hearing, Nov. 15, 2018, 37 pages. |
IPR2016-00921-00922, Transcript of Proceedings, Oct. 15, 2018, pp. 1-44. |
IPR2016-00922, Decision on Remand—35 USC 144 and 37 CFR42.5(a), Feb. 19, 2019, 67 pages. |
Wignall, “Knitting”, Pitman's Common Commodities and Industries, 1964, 12 pages. |
Federal Circuit Case Nos. 19-1787 and 19-1788, Opinion, dated Jun. 25, 2020, 8 pages. |
IPR2013-00067, Exhibit 2024, Intervener's Petition for Panel Hearing, Appeal No. 2015-1928, Feb. 5, 2018, 38 pages. |
IPR2013-00067, Patent Owner's Opening Brief on Second Remand, Aug. 20, 2020, 12 pages. |
IPR2013-00067, Patent Owner's Reply Brief on Second Remand, Sep. 3, 2020, 7 pages. |
IPR2013-00067, Petitioner's Opening Brief on Remand, Aug. 20, 2020, 12 pages. |
IPR2013-00067, Petitioner's Response Brief on Remand, Sep. 3, 2020, 7 pages. |
Order—Conduct of the Proceeding on Remand, IPR Case No. 2013-00067, Jul. 24, 2020, 6 pages. |
Final Written Decision on Remand, IPR2013-00067, dated Mar. 1, 2021, 40 pages. |
Patent Owner's Notice of Appeal, IPR2013-00067, Apr. 26, 2021, 44 pages. |
European Extended Search Report, European Patent Application No. 21182385.1, dated Oct. 11, 2021, 9 pages. |
Non-Final Office Action, U.S. Appl. No. 16/575,961, dated Jun. 24, 2021, 6 pages. |
Notice of Allowance, U.S. Appl. No. 16/575,961, dated Nov. 3, 2021, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20220330649 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16575961 | Sep 2019 | US |
Child | 17668499 | US | |
Parent | 14873605 | Oct 2015 | US |
Child | 16575961 | US |