This invention is directed to a closure assembly for a medical dispenser including a cover and a tip cap removably disposed therein. A flexible retaining member may be disposed within the cover in different positions which respectively retain the tip cap within the cover and prevent reinsertion thereof, subsequent to its removal from the cover.
In the medical field, it is a common procedure for authorized medical personnel to order medicine or other substances to be administered to a patient whether orally, by an injection or intravenously through an IV. It is also a relatively common procedure for a number of administering devices, such as a syringe, to be pre-filled by authorized personnel whether within the hospital or at another filling station. However, such a filling station is typically located in a remote part of the facility, relative to the patient care area, where the injection is to be administered. Because of the remote location of many nurse’s stations, relative to a filling station, a fluid or drug loaded syringe or other medical device is frequently given to another person for delivery to a nurse’s station for subsequent dosing of the patient. In the case where a prefilled drug in the syringe is very expensive or addictive such as, but not limited to, morphine, there is a danger of tampering, by a person seeking unauthorized access to the prefilled contents of the syringe or medical device.
If tampering does occur, the potential for serious consequences exists. For example, there is a possibility that the prescribed medicine will be replaced by some other, unauthorized substance. As an illustration of this, if saline solution were substituted for a dose of morphine or other medication, the result could be extremely serious. Thus, there is a problem of knowing if a sealed, pre-loaded syringe or other administering device has, or has not, been compromised by tampering and/or exposed to contamination so that it is no longer sterile.
In addition to the administration of drugs, medicine, etc., meaningful protection is required in the use of enteral feeding sets. As commonly recognized in the medical and related professions, the term “enteral” relates to the administration or removal of fluid to or from the gastrointestinal tract. Moreover, enteral connectors and/or fixtures of the type referred to herein relate to medical devices or accessories which are intended for use in enteral applications. Further, small-bore connectors for enteral application may be employed for delivery of enteral nutrition fluid from a fluid source to the patient. Additionally, it is pointed out that enteral feeding sets and extension sets may include a female fixture, wherein the source of fluid flows to the patient initially through the female fixture and to and through a cooperatively structured male enteral fixture.
Also, with regard to administering fluids to a patient by intravenous (IV) infusion, a variety of IV assemblies are used in the treatment of numerous medical conditions. Different types of connectors, such as a “female” connector may be attached to the discharge end or discharge port of an IV bag or like medical device/container. Such an appropriate female connector may be in the form of a female Luer connector which at least partially defines, along with a male Luer connector, a “Luer lock” connector assembly, as is well known in the medical profession. In periods of non-use, it is important to maintain such connectors associated with an IV facility, in a closed and fluid sealed condition in order to maintain sterility and integrity of the IV fluid prior to use.
Therefore, regardless of the known or conventional attempts to provide a fluid restricting closure to protect the contents of preloaded medical dispensers or administering devices including enteral devices, certain problems still remain in this field of art. Accordingly, there is a need in this area for an improved, closure assembly which provides a secure and reliable, fluid restricting or fluid sealing connection to the discharge port, fixture or connector of a medical device of the type set forth herein. If any such improved closure assembly were developed, it would preferably also overcome known disadvantages in the production and/or assembly of conventional closures, including tamper evident closures.
However, in order to do so, any such closure assembly would preferably also include a unique construction to help reduce, if not eliminate, the need for time-consuming, costly and overly complicated production techniques associated with the production of more conventional closures for medical devices. Also, if any such closure assembly were developed, it should further be capable of use with little or no structural modification on a variety of different connectors, fixtures, administering devices, discharge ports, etc.
Finally, if any such improved closure assembly were developed, it should also be structurally and operatively reliable, while improving the cost effectiveness associated with the manufacture and assembly thereof.
The present invention is directed to a closure assembly for a medical connector including a cover having an access opening, a hollow interior communicating with the access opening, and a closed end disposed opposite to the access opening. A tip cap is disposed within the cover and includes a flow restrictor disposed in communicating relation with the access opening of the cover. The tip cap is structured to establish a frictional, diametric interference fit and fluid sealing connection with the discharge port of the medical dispenser.
As used herein the term “discharge port” is meant to include the structure, section, segment, portion and/or component of the medical dispenser through which the contents of the dispenser pass, upon exiting the medical dispenser in the conventional manner. By way of non-limiting example and as represented herein, the medical dispenser may be in the form of, but not be limited to, a syringe, including a prefilled syringe. Moreover, when the medical dispenser is in the form of a prefilled syringe, the discharge port is meant to include, but not necessarily be limited to, a nozzle, a flow channel within the nozzle and a terminal opening formed in the outer end of the nozzle, through which the contents of the syringe pass upon exiting the interior thereof.
As indicated, at least one embodiment of the flow restrictor of the tip cap is structured to establish a frictional, removal resistant, fluid sealing connection with the discharge port of the medical dispenser. As explained in greater detail hereinafter, the fluid sealing connection determines and/or defines a removal force capable of concurrently removing the tip cap and the medical dispenser, when the discharge port and flow restrictor are attached. The removal force is established by creating a pulling force on the medical dispenser, exterior of the cover and/or concurrently on both. Further, due to the frictionally resistant fluid sealing connection, the removal force will be greater than a retaining force, serving to retain the tip cap within the cover.
In more specific terms, the present invention further includes a flexible retaining member, at least initially disposed within the cover in a retaining relation to the tip cap and between the tip cap and the cover. Such a removable retaining relation restricts removal of the tip cap from the interior of the cover, until the aforementioned removal force is exerted on the medical dispenser and/or cover, resulting in a concurrent removal of the tip cap and the discharge port connected thereto.
The flexible retaining member comprises in a preferred embodiment, a plurality of flexible material fingers disposed in spaced relation to one another and angularly oriented between the tip cap and the interior of the cover. In different embodiments of the present invention, the angular orientation of the flexible material fingers varies. However, in each embodiment they are initially disposed in a retaining relation, which restricts removal of the tip cap from the interior of the cover. Further, each of a possible plurality of embodiments include the positioning and/or orientation of the flexible material fingers in a “blocking position”, which prevents reinsertion of the tip cap into the interior of the cover, once it has been removed therefrom. As a result, attempted tampering or authorized access to the contents of the medical dispenser will be evident.
Accordingly, one embodiment of the present invention includes the plurality of flexible fingers, defining the flexible retaining member, having a proximal end fixedly attached to the interior surface of the cover, in spaced relation to one another and extending angularly outward therefrom. The plurality of flexible fingers are all disposed in a predetermined angular orientation, which in this embodiment is preferably an acute angular orientation relative to the interior surface of the cover, to which they are attached. As a result, the plurality of flexible material fingers include a plurality of free ends, correspondingly disposed in a substantially collectively aligned position. While the number of fingers may vary, preferably they are sufficient in number to collectively extend in an open, substantially circular or continuous curvilinear configuration about the interior surface of the cover and may be generally in the range of 20 in number.
It is to be noted that the flexible material from which the plurality of fingers are formed is such as to maintain their fixed attachment to the cover upon the concurrent removal of the tip cap and the connected discharge port. Such a fixed positioning and connection allows for the disposition of the plurality of fingers in the aforementioned “blocking position”, which in turn, restricts reinsertion of the tip cap once it has been removed from the cover. The fixedly attached, flexible structuring of the plurality of fingers has the advantage of remaining intact before and after removal of the tip cap from the cover, upon the exertion of a removal force thereon. This provides an advantage over more conventional, frangible or removable retaining structures, by limiting the possibility of any broken parts or pieces remaining in the cover and/or tip cap upon a breakage of a frangible or other removable connection.
Further, in each of the embodiments of the present invention the plurality of fingers are preferably made of a ductile material such as, but not limited to, polypropylene. As such, the plurality of fingers are designed to flex rather than break, thereby limiting the aforementioned possibility of loose pieces or parts, after normal use. Also, the retention force exerted on the tip cap is established somewhat utilizing the principal associated with the deflection of multiple cantilever beams. In accordance therewith, upon removal of the tip cap through the plurality of flexible fingers, it will naturally follow the path of least resistance, as it passes through the plurality of fingers, out of the cover. By way of example only, if one or more of the fingers were significantly stiffer than the others, the tip cap will naturally move to the side of the cover corresponding to the more flexible fingers. The increased force associated with the “stiff fingers” is thereby at least partially mitigated, while maintaining a preferred or intended retaining force on the tip cap.
Therefore, in the embodiment defined by the plurality of flexible material fingers being fixedly attached to the cover, the retaining relation is defined by the plurality of fingers disposed in surrounding, movement interrupting relation to the tip cap, as they are positioned between the tip cap and the access opening of the cover. The aforementioned “retaining force” is determined by the degree of flexibility of the plurality of fingers and is overcome by a superior “removal force” exerted on the attached medical dispenser and/or exterior of the cover when they are pulled apart.
In turn, the aforementioned blocking position of the plurality of flexible fingers is defined by their disposition in the acute angle relative to the interior surface of the cover, as they extend angularly outward there from, at least generally towards the access opening. In such a “blocking position,” the free ends are disposed in interruptive engagement with portions of the tip cap as it passes through the access opening of the cover in an attempt to reinsert the tip cap into its original position, prior to removal. The inability to reinsert the tip cap in the cover will be evidence of tampering or authorized use.
Yet another embodiment of the present invention the retainer is defined by the plurality of flexible material fingers being fixedly attached to an exterior of the tip cap and extending angularly outward therefrom. Preferably, the angular outwardly extending orientation of the plurality of flexible material fingers relative to the tip cap is defined by an obtuse angle. Therefore, as originally assembled, the plurality of fingers include their proximal ends fixedly attached to the tip cap and the oppositely disposed free ends disposed in retaining engagement with interior surface portions of the cover.
However, subsequent to a concurrent removal of the tip cap and a discharge port connected thereto, the free ends of the plurality of flexible material fingers will be disposed in blocking engagement with portions of the interior surface of the cover, upon an attempted reentry of the tip cap, into the cover. Further, prevention of the reinsertion of the tip cap into the cover may be further facilitated by the provision of an obstruction integrally or otherwise fixedly formed on the interior surface of the cover in interruptive relation to the free ends of the fingers, as the tip cap passes through the access opening, in a reentry attempt.
As with the previously described embodiment, it is to be noted that the flexible, preferably ductile material from which the plurality of fingers are formed is such as to maintain their fixed attachment to the tip cap after the concurrent removal of the tip cap and connected discharge port from the cover. Such a fixed positioning and connection to the tip cap allows for the disposition of the plurality of fingers in the aforementioned “blocking position”, which in turn, restricts reinsertion of the tip cap once it has been removed from the cover. The fixedly attached, flexible structuring of the plurality of fingers has the advantage of remaining intact over more conventional frangible or removable retaining structures, as set forth in detail herein.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As represented in the accompanying Figures the present invention is directed a closure assembly for a medical dispenser, generally represented as 10 and 10′ in different embodiments of the present invention. Moreover, and as perhaps best shown in
For purposes of clarity, the term “discharge port”, as used herein, is meant to describe and include the structure, section, segment, portion and/or component of the medical dispenser through which the contents of the medical dispenser pass, upon removal from the interior thereof. By way of non-limiting example, and as represented herein, the medical dispenser may be in the form of, but not be limited to, a syringe, including a prefilled syringe. Moreover, and as shown in
As indicated hereinafter, the different embodiments of the closure assembly 10, 10′ may include different structural features, but also include a commonality of operation in the form of a flexible retaining member 24 and 24′ as best shown in
Still referring to
Therefore, and with reference now to
As represented in
With reference now to
Therefore, the frictional, fluid sealing connection between the discharge port 100 and the tip cap 14, via the sealing stem 25 of the discharge port 22, will allow a removal force to be exerted on the tip cap 14, once connected to the discharge port 100. Accordingly, the fluid sealing connection between the discharge port 100 and the tip cap 14, via the sealing stem 25, defines or determines a “removal force” which is greater than the retaining force, exerted on the tip cap 14 by the plurality of flexible material fingers 26. As a result, exertion of the pulling force on the tip cap 14 will not result in a separation of the tip cap 14 and the discharge port 100, since the removal force is sufficient to “overcome” the retaining force.
As described, the removal force is determined and defined by the frictional, fluid sealing connection between the sealing stem 25 and the discharge port 100. However, as will be explained in greater detail with reference to
As represented, the angular orientation of the plurality of flexible material fingers 26 is such that the correspondingly disposed, substantially aligned orientation of the free ends 26″ is smaller than the outer diameter of the access opening 16. The plurality of correspondingly positioned free ends 26″ are disposed and structured to substantially correspond to the diameter of the terminal end of the skirt 27. As a result, the angularly oriented plurality of flexible material fingers 26 are disposed in the aforementioned “blocking position” by virtue of their free ends 26″ disposed in interruptive engagement with the skirt 27.
Yet another embodiment of the closure assembly 10′ is generally represented in
As represented in
In a practical application, the flow restrictor 22′ is connected to a discharge port of a medical dispenser (not represented in
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
The present Non-Provisional Patent Application claims priority pursuant to 35 U.S.C. Section 119(e) to a currently pending and prior filed Provisional Patent Application, namely, that having Serial No. 62/693,197 filed on Jul. 2, 2018, and to another currently pending Provisional patent application filed on May 15, 2019 and having Serial No. 62/848,330, the contents of which are all incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
722943 | Chappell | Mar 1903 | A |
732662 | Smith | Jun 1903 | A |
1678991 | Marschalek | Jul 1928 | A |
1970631 | Sherman | Aug 1934 | A |
2477598 | Hain | Aug 1949 | A |
2739590 | Yochem | Mar 1956 | A |
2823674 | Yochem | Feb 1958 | A |
2834346 | Adams | May 1958 | A |
2875761 | Helmer et al. | Mar 1959 | A |
2888015 | Hunt | May 1959 | A |
2952255 | Hein, Jr. | Sep 1960 | A |
3122280 | Goda | Feb 1964 | A |
3245567 | Knight | Apr 1966 | A |
3323798 | Miller | Jun 1967 | A |
3364890 | Andersen | Jan 1968 | A |
3489268 | Meierhoefer | Jan 1970 | A |
3368673 | Cowley | Mar 1971 | A |
3574306 | Alden | Apr 1971 | A |
3598120 | Mass | Aug 1971 | A |
3610241 | LeMarie | Oct 1971 | A |
3674181 | Marks et al. | Jul 1972 | A |
3700215 | Hardman et al. | Oct 1972 | A |
3706307 | Hasson | Dec 1972 | A |
3712749 | Roberts | Jan 1973 | A |
3726445 | Ostrowsky et al. | Apr 1973 | A |
3747751 | Miller et al. | Jul 1973 | A |
3850329 | Robinson | Nov 1974 | A |
3872867 | Killinger | Mar 1975 | A |
3904033 | Haerr | Sep 1975 | A |
3905375 | Toyama | Sep 1975 | A |
3937211 | Merten | Feb 1976 | A |
3987930 | Fuson | Oct 1976 | A |
4005739 | Winchell | Feb 1977 | A |
4043334 | Brown et al. | Aug 1977 | A |
4046145 | Choksi et al. | Sep 1977 | A |
4068696 | Winchell | Jan 1978 | A |
4106621 | Sorenson | Aug 1978 | A |
4216585 | Hatter | Aug 1980 | A |
4216872 | Bean | Aug 1980 | A |
4244366 | Raines | Jan 1981 | A |
4252122 | Halvorsen | Feb 1981 | A |
4271972 | Thor | Jun 1981 | A |
4286591 | Raines | Sep 1981 | A |
4286640 | Knox et al. | Sep 1981 | A |
4313539 | Raines | Feb 1982 | A |
4369781 | Gilson et al. | Jan 1983 | A |
4420085 | Wilson et al. | Dec 1983 | A |
4430077 | Mittleman et al. | Feb 1984 | A |
4457445 | Hanks et al. | Jul 1984 | A |
4482071 | Ishiwatari | Nov 1984 | A |
D277783 | Beck | Feb 1985 | S |
4521237 | Logothetis | Jun 1985 | A |
4530697 | Kuhlemann et al. | Jul 1985 | A |
4571242 | Klein et al. | Feb 1986 | A |
4589171 | McGill | May 1986 | A |
4664259 | Landis | May 1987 | A |
4667837 | Vitello et al. | May 1987 | A |
4676530 | Nordgren et al. | Jun 1987 | A |
4693707 | Dye | Sep 1987 | A |
4726483 | Drozd | Feb 1988 | A |
4735617 | Nelson et al. | Apr 1988 | A |
4742910 | Staebler | May 1988 | A |
4743229 | Chu | May 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4760847 | Vaillancourt | Aug 1988 | A |
4813564 | Cooper et al. | Mar 1989 | A |
4832695 | Rosenberg et al. | May 1989 | A |
4834706 | Beck et al. | May 1989 | A |
4842592 | Caggiani et al. | Jun 1989 | A |
4844906 | Hermelin et al. | Jul 1989 | A |
4906231 | Young | Mar 1990 | A |
4919285 | Roof et al. | Apr 1990 | A |
4936445 | Grabenkort | Jun 1990 | A |
5009323 | Montgomery et al. | Apr 1991 | A |
5024323 | Bolton | Jun 1991 | A |
5049129 | Zdeb et al. | Sep 1991 | A |
5057093 | Clegg et al. | Oct 1991 | A |
5078696 | Nedbaluk | Jan 1992 | A |
D323392 | Byrne | Jan 1992 | S |
5085332 | Gettig et al. | Feb 1992 | A |
5090564 | Chimienti | Feb 1992 | A |
5133454 | Hammer | Jul 1992 | A |
5135496 | Vetter et al. | Aug 1992 | A |
5163922 | McElveen, Jr. et al. | Nov 1992 | A |
5165560 | Ennis, III et al. | Nov 1992 | A |
5230429 | Etheredge, III | Jul 1993 | A |
5267983 | Oilschlager et al. | Dec 1993 | A |
5292308 | Ryan | Mar 1994 | A |
5293993 | Yates, Jr. et al. | Mar 1994 | A |
5295599 | Smith | Mar 1994 | A |
5312367 | Nathan | May 1994 | A |
5312368 | Haynes | May 1994 | A |
5328466 | Demark | Jul 1994 | A |
5328474 | Raines | Jul 1994 | A |
5356380 | Hoekwater et al. | Oct 1994 | A |
5370226 | Gollobin et al. | Dec 1994 | A |
5380295 | Vacca | Jan 1995 | A |
5402887 | Shillington | Apr 1995 | A |
5405339 | Kohnen et al. | Apr 1995 | A |
5456668 | Ogle, II | Oct 1995 | A |
5458580 | Hajishoreh | Oct 1995 | A |
5468224 | Souryal | Nov 1995 | A |
5474178 | DiViesti et al. | Dec 1995 | A |
5505705 | Galpin et al. | Apr 1996 | A |
5531695 | Swisher | Jul 1996 | A |
5540666 | Barta et al. | Jul 1996 | A |
5549571 | Sak | Aug 1996 | A |
5558648 | Shields | Sep 1996 | A |
5584817 | van den Haak | Dec 1996 | A |
5588239 | Anderson | Dec 1996 | A |
5624402 | Imbert | Apr 1997 | A |
5662233 | Reid | Sep 1997 | A |
5674209 | Yarger | Oct 1997 | A |
5695470 | Roussigne et al. | Dec 1997 | A |
5700247 | Grimard et al. | Dec 1997 | A |
5702374 | Johnson | Dec 1997 | A |
5713485 | Liff et al. | Feb 1998 | A |
5776124 | Wald | Jul 1998 | A |
5785691 | Vetter et al. | Jul 1998 | A |
5797885 | Rubin | Aug 1998 | A |
5807343 | Tucker et al. | Sep 1998 | A |
5842567 | Rowe et al. | Dec 1998 | A |
D402766 | Smith et al. | Dec 1998 | S |
5876381 | Pond et al. | Mar 1999 | A |
5883806 | Meador et al. | Mar 1999 | A |
5884457 | Ortiz et al. | Mar 1999 | A |
5902269 | Jentzen | May 1999 | A |
5926922 | Stottle | Jul 1999 | A |
5951522 | Rosato et al. | Sep 1999 | A |
5951525 | Thorne et al. | Sep 1999 | A |
5954657 | Rados | Sep 1999 | A |
5957166 | Safabash | Sep 1999 | A |
5957314 | Nishida et al. | Sep 1999 | A |
5963136 | O'Brien | Oct 1999 | A |
5989227 | Vetter et al. | Nov 1999 | A |
5993437 | Raoz | Nov 1999 | A |
6000548 | Tsals | Dec 1999 | A |
D419671 | Jansen | Jan 2000 | S |
6021824 | Larsen et al. | Feb 2000 | A |
6027482 | Imbert | Feb 2000 | A |
6068614 | Kimber et al. | May 2000 | A |
D430293 | Jansen | Aug 2000 | S |
6126640 | Tucker et al. | Oct 2000 | A |
D431864 | Jansen | Oct 2000 | S |
6190364 | Imbert | Feb 2001 | B1 |
6193688 | Balestracci et al. | Feb 2001 | B1 |
6196593 | Petrick et al. | Mar 2001 | B1 |
6196998 | Jansen et al. | Mar 2001 | B1 |
6216885 | Guillaume | Apr 2001 | B1 |
6235376 | Miyazaki et al. | May 2001 | B1 |
6279746 | Hussaini et al. | Aug 2001 | B1 |
6280418 | Reinhard et al. | Aug 2001 | B1 |
6287671 | Bright et al. | Sep 2001 | B1 |
6322543 | Singh et al. | Nov 2001 | B1 |
6338200 | Baxa et al. | Jan 2002 | B1 |
6358241 | Shapeton et al. | Mar 2002 | B1 |
6375640 | Teraoka | Apr 2002 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6439276 | Wood et al. | Aug 2002 | B1 |
6485460 | Eakins et al. | Nov 2002 | B2 |
6488666 | Geist | Dec 2002 | B1 |
6491665 | Vetter et al. | Dec 2002 | B1 |
6500155 | Sasso | Dec 2002 | B2 |
6520935 | Jansen et al. | Feb 2003 | B1 |
6540697 | Chen | Apr 2003 | B2 |
6565529 | Kimber et al. | May 2003 | B1 |
6581792 | Limanjaya | Jun 2003 | B1 |
6585691 | Vitello | Jul 2003 | B1 |
6592251 | Edwards et al. | Jul 2003 | B2 |
6666852 | Niedospial, Jr. et al. | Dec 2003 | B2 |
6682798 | Kiraly | Jan 2004 | B1 |
6726652 | Eakins et al. | Apr 2004 | B2 |
6726672 | Hanly et al. | Apr 2004 | B1 |
6755220 | Castellano et al. | Jun 2004 | B2 |
6764469 | Broselow | Jul 2004 | B2 |
6796586 | Werth | Sep 2004 | B2 |
6821268 | Balestracci | Nov 2004 | B2 |
D501549 | McAllister et al. | Feb 2005 | S |
6921383 | Vitello | Jul 2005 | B2 |
6935560 | Andreasson et al. | Aug 2005 | B2 |
6942643 | Eakins et al. | Sep 2005 | B2 |
7036661 | Anthony et al. | May 2006 | B2 |
7055273 | Roshkoff | Jun 2006 | B2 |
7100771 | Massengale et al. | Sep 2006 | B2 |
7125397 | Woehr et al. | Oct 2006 | B2 |
7141286 | Kessler et al. | Nov 2006 | B1 |
7175081 | Andreasson et al. | Feb 2007 | B2 |
7182256 | Andreasson et al. | Feb 2007 | B2 |
7232066 | Andreasson et al. | Jun 2007 | B2 |
7240926 | Dalle et al. | Jul 2007 | B2 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7374555 | Heinz et al. | May 2008 | B2 |
7404500 | Marteau et al. | Jul 2008 | B2 |
7410803 | Nollert et al. | Aug 2008 | B2 |
7425208 | Vitello | Sep 2008 | B1 |
7437972 | Yeager | Oct 2008 | B2 |
D581046 | Sudo | Nov 2008 | S |
D581047 | Koshidaka | Nov 2008 | S |
D581049 | Sudo | Nov 2008 | S |
7482166 | Nollert et al. | Jan 2009 | B2 |
7497330 | Anthony et al. | Mar 2009 | B2 |
7503453 | Cronin et al. | Mar 2009 | B2 |
D589612 | Sudo | Mar 2009 | S |
7588563 | Guala | Sep 2009 | B2 |
7594681 | DeCarlo | Sep 2009 | B2 |
7608057 | Woehr et al. | Oct 2009 | B2 |
7611487 | Woehr et al. | Nov 2009 | B2 |
7632244 | Buehler et al. | Dec 2009 | B2 |
7641636 | Moesli et al. | Jan 2010 | B2 |
D608900 | Giraud et al. | Jan 2010 | S |
7681606 | Khan et al. | Mar 2010 | B2 |
D612939 | Boone, III et al. | Mar 2010 | S |
7698180 | Fago et al. | Apr 2010 | B2 |
7735664 | Peters et al. | Jun 2010 | B1 |
7748892 | McCoy | Jul 2010 | B2 |
7762988 | Vitello | Jul 2010 | B1 |
7766919 | Delmotte | Aug 2010 | B2 |
7802313 | Czajka | Sep 2010 | B2 |
7886908 | Farrar et al. | Feb 2011 | B2 |
7918830 | Langan et al. | Apr 2011 | B2 |
7922213 | Werth | Apr 2011 | B2 |
8034041 | Domkowski et al. | Oct 2011 | B2 |
8079518 | Turner et al. | Dec 2011 | B2 |
8091727 | Domkowski | Jan 2012 | B2 |
8118788 | Frezza | Feb 2012 | B2 |
8137324 | Bobst et al. | Mar 2012 | B2 |
8140349 | Hanson et al. | Mar 2012 | B2 |
8252247 | Ferlic | Aug 2012 | B2 |
8257286 | Meyer et al. | Sep 2012 | B2 |
8328082 | Bochenko et al. | Dec 2012 | B1 |
8348895 | Vitello | Jan 2013 | B1 |
8353869 | Ranalletta et al. | Jan 2013 | B2 |
8413811 | Arendt | Apr 2013 | B1 |
8443999 | Reinders | May 2013 | B1 |
D684057 | Kwon | Jun 2013 | S |
8512277 | Del Vecchio | Aug 2013 | B2 |
8528757 | Bisio | Sep 2013 | B2 |
8556074 | Turner et al. | Oct 2013 | B2 |
8579116 | Pether et al. | Nov 2013 | B2 |
8591462 | Vitello | Nov 2013 | B1 |
8597255 | Emmott et al. | Dec 2013 | B2 |
8597271 | Langan et al. | Dec 2013 | B2 |
8616413 | Koyama | Dec 2013 | B2 |
8672902 | Ruan et al. | Mar 2014 | B2 |
D701304 | Lair et al. | Mar 2014 | S |
8702674 | Bochenko | Apr 2014 | B2 |
8777910 | Bauss et al. | Jul 2014 | B2 |
8777930 | Swisher et al. | Jul 2014 | B2 |
8852561 | Wagner et al. | Oct 2014 | B2 |
8864021 | Vitello | Oct 2014 | B1 |
8864707 | Vitello | Oct 2014 | B1 |
8864708 | Vitello | Oct 2014 | B1 |
8911424 | Weadock et al. | Dec 2014 | B2 |
8945082 | Geiger et al. | Feb 2015 | B2 |
9016473 | Tamarindo | Apr 2015 | B2 |
9082157 | Gibson | Jul 2015 | B2 |
9101534 | Bochenko | Aug 2015 | B2 |
9125976 | Uber, III et al. | Sep 2015 | B2 |
D738495 | Strong et al. | Sep 2015 | S |
D743019 | Schultz | Nov 2015 | S |
9199042 | Farrar et al. | Dec 2015 | B2 |
9199749 | Vitello et al. | Dec 2015 | B1 |
9220486 | Schweiss et al. | Dec 2015 | B2 |
9220577 | Jessop et al. | Dec 2015 | B2 |
9227019 | Swift et al. | Jan 2016 | B2 |
D750228 | Strong et al. | Feb 2016 | S |
9272099 | Limaye et al. | Mar 2016 | B2 |
9311592 | Vitello et al. | Apr 2016 | B1 |
9336669 | Bowden et al. | May 2016 | B2 |
D756777 | Berge et al. | May 2016 | S |
D759486 | Ingram et al. | Jun 2016 | S |
D760384 | Niunoya et al. | Jun 2016 | S |
D760902 | Persson | Jul 2016 | S |
9402967 | Vitello | Aug 2016 | B1 |
9427715 | Palazzolo et al. | Aug 2016 | B2 |
9433768 | Tekeste et al. | Sep 2016 | B2 |
9463310 | Vitello | Oct 2016 | B1 |
D773043 | Ingram et al. | Nov 2016 | S |
D777903 | Schultz | Jan 2017 | S |
9662456 | Woehr | May 2017 | B2 |
9687249 | Hanlon et al. | Jun 2017 | B2 |
D789529 | Davis et al. | Jun 2017 | S |
9744304 | Swift et al. | Aug 2017 | B2 |
9764098 | Hund et al. | Sep 2017 | B2 |
D797928 | Davis et al. | Sep 2017 | S |
D797929 | Davis et al. | Sep 2017 | S |
9821152 | Vitello et al. | Nov 2017 | B1 |
D806241 | Swinney et al. | Dec 2017 | S |
9855191 | Vitello et al. | Jan 2018 | B1 |
D807503 | Davis et al. | Jan 2018 | S |
D815945 | Fischer | Apr 2018 | S |
9987438 | Stillson | Jun 2018 | B2 |
D820187 | Parker | Jun 2018 | S |
10039913 | Yeh et al. | Aug 2018 | B2 |
D825746 | Davis et al. | Aug 2018 | S |
D831201 | Holtz et al. | Oct 2018 | S |
10124122 | Zenker | Nov 2018 | B2 |
10166343 | Hunt et al. | Jan 2019 | B1 |
10166347 | Vitello | Jan 2019 | B1 |
10183129 | Vitello | Jan 2019 | B1 |
10207099 | Vitello | Feb 2019 | B1 |
D842464 | Davis et al. | Mar 2019 | S |
D847373 | Hurwit et al. | Apr 2019 | S |
10300263 | Hunt | May 2019 | B1 |
10307548 | Hunt et al. | Jun 2019 | B1 |
10315024 | Vitello et al. | Jun 2019 | B1 |
10315808 | Taylor et al. | Jun 2019 | B2 |
10376655 | Pupke et al. | Aug 2019 | B2 |
D859125 | Weagle et al. | Sep 2019 | S |
10478262 | Niese et al. | Nov 2019 | B2 |
10758684 | Vitello, et al. | Sep 2020 | B1 |
10773067 | Davis et al. | Sep 2020 | B2 |
10888672 | Vitello | Jan 2021 | B1 |
10898659 | Vitello et al. | Jan 2021 | B1 |
10912898 | Vitello et al. | Feb 2021 | B1 |
10933202 | Banik | Mar 2021 | B1 |
10953162 | Hunt et al. | Mar 2021 | B1 |
11040149 | Banik | Jun 2021 | B1 |
11040154 | Vitello et al. | Jun 2021 | B1 |
11097071 | Hunt et al. | Aug 2021 | B1 |
11278681 | Banik et al. | Mar 2022 | B1 |
D948713 | Banik | Apr 2022 | S |
11357588 | Vitello et al. | Jun 2022 | B1 |
11413406 | Vitello et al. | Aug 2022 | A |
11426328 | Ollmann et al. | Aug 2022 | A |
11471610 | Banik et al. | Oct 2022 | B1 |
11523970 | Vitello et al. | Dec 2022 | B1 |
11541180 | Vitello et al. | Jan 2023 | B1 |
20010003150 | Imbert | Jun 2001 | A1 |
20010034506 | Hirschman et al. | Oct 2001 | A1 |
20010056258 | Evans et al. | Dec 2001 | A1 |
20020007147 | Capes et al. | Jan 2002 | A1 |
20020023409 | Py | Feb 2002 | A1 |
20020046962 | Vallans et al. | Apr 2002 | A1 |
20020079281 | Hierzer et al. | Jun 2002 | A1 |
20020097396 | Schafer | Jul 2002 | A1 |
20020099334 | Hanson et al. | Jul 2002 | A1 |
20020101656 | Blumenthal et al. | Aug 2002 | A1 |
20020104770 | Shapeton et al. | Aug 2002 | A1 |
20020133119 | Eakins et al. | Sep 2002 | A1 |
20030055685 | Cobb et al. | Mar 2003 | A1 |
20030146617 | Franko, Sr. et al. | Aug 2003 | A1 |
20030183547 | Heyman | Oct 2003 | A1 |
20030187403 | Balestracci | Oct 2003 | A1 |
20040008123 | Carrender et al. | Jan 2004 | A1 |
20040064095 | Vitello | Apr 2004 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040173563 | Kim et al. | Sep 2004 | A1 |
20040186437 | Frenette et al. | Sep 2004 | A1 |
20040225258 | Balestracci | Nov 2004 | A1 |
20050146081 | MacLean et al. | Jul 2005 | A1 |
20050148941 | Farrar et al. | Jul 2005 | A1 |
20050209555 | Middleton et al. | Sep 2005 | A1 |
20060084925 | Ramsahoye | Apr 2006 | A1 |
20060089601 | Dionigi | Apr 2006 | A1 |
20060169611 | Prindle | Aug 2006 | A1 |
20060173415 | Cummins | Aug 2006 | A1 |
20060189933 | Alheidt et al. | Aug 2006 | A1 |
20070060898 | Shaughnessy et al. | Mar 2007 | A1 |
20070106234 | Klein | May 2007 | A1 |
20070142786 | Lampropoulos et al. | Jun 2007 | A1 |
20070191690 | Hasse et al. | Aug 2007 | A1 |
20070219503 | Loop et al. | Sep 2007 | A1 |
20070257111 | Ortenzi | Nov 2007 | A1 |
20080068178 | Meyer | Mar 2008 | A1 |
20080097310 | Buehler et al. | Apr 2008 | A1 |
20080106388 | Knight | May 2008 | A1 |
20080140020 | Shirley | Jun 2008 | A1 |
20080243088 | Evans | Oct 2008 | A1 |
20080303267 | Schnell et al. | Dec 2008 | A1 |
20080306443 | Neer et al. | Dec 2008 | A1 |
20090084804 | Caspary et al. | Apr 2009 | A1 |
20090099552 | Levy et al. | Apr 2009 | A1 |
20090149815 | Kiel et al. | Jun 2009 | A1 |
20090166311 | Claessens | Jul 2009 | A1 |
20090326481 | Swisher et al. | Dec 2009 | A1 |
20100050351 | Colantonio et al. | Mar 2010 | A1 |
20100084403 | Popish et al. | Apr 2010 | A1 |
20100126894 | Koukol et al. | May 2010 | A1 |
20100179822 | Reppas | Jul 2010 | A1 |
20100228226 | Nielsen | Sep 2010 | A1 |
20100252564 | Martinez et al. | Oct 2010 | A1 |
20100283238 | Deighan et al. | Nov 2010 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110046550 | Schiller et al. | Feb 2011 | A1 |
20110046603 | Felsovalyi et al. | Feb 2011 | A1 |
20120064515 | Knapp et al. | Mar 2012 | A2 |
20120096957 | Ochman | Apr 2012 | A1 |
20120110950 | Schraudolph | May 2012 | A1 |
20130018356 | Prince et al. | Jan 2013 | A1 |
20130056130 | Alpert et al. | Mar 2013 | A1 |
20130088354 | Thomas | Apr 2013 | A1 |
20130237949 | Miller | Sep 2013 | A1 |
20130269592 | Heacock et al. | Oct 2013 | A1 |
20140000781 | Franko, Jr. | Jan 2014 | A1 |
20140034536 | Reinhardt et al. | Feb 2014 | A1 |
20140069202 | Fisk | Mar 2014 | A1 |
20140069829 | Evans | Mar 2014 | A1 |
20140076840 | Graux et al. | Mar 2014 | A1 |
20140135738 | Panian | May 2014 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20140163465 | Bartlett, II et al. | Jun 2014 | A1 |
20140257843 | Adler et al. | Sep 2014 | A1 |
20140326727 | Jouin et al. | Nov 2014 | A1 |
20140353196 | Key | Dec 2014 | A1 |
20150013811 | Carrel et al. | Jan 2015 | A1 |
20150048045 | Miceli et al. | Feb 2015 | A1 |
20150112296 | Ishiwata et al. | Apr 2015 | A1 |
20150136632 | Moir et al. | May 2015 | A1 |
20150182686 | Okihara | Jul 2015 | A1 |
20150191633 | De Boer et al. | Jul 2015 | A1 |
20150246185 | Heinz | Sep 2015 | A1 |
20150302232 | Strassburger et al. | Oct 2015 | A1 |
20150305982 | Bochenko | Oct 2015 | A1 |
20150310771 | Atkinson et al. | Oct 2015 | A1 |
20160067144 | Chang | Mar 2016 | A1 |
20160067422 | Davis et al. | Mar 2016 | A1 |
20160090456 | Ishimaru et al. | Mar 2016 | A1 |
20160136352 | Smith et al. | May 2016 | A1 |
20160144119 | Limaye et al. | May 2016 | A1 |
20160158110 | Swisher et al. | Jun 2016 | A1 |
20160158449 | Limaye et al. | Jun 2016 | A1 |
20160176550 | Vitello et al. | Jun 2016 | A1 |
20160194121 | Ogawa et al. | Jul 2016 | A1 |
20160250420 | Maritan et al. | Sep 2016 | A1 |
20160279032 | Davis et al. | Sep 2016 | A1 |
20160328586 | Bowden et al. | Nov 2016 | A1 |
20160361235 | Swisher | Dec 2016 | A1 |
20160367439 | Davis et al. | Dec 2016 | A1 |
20170007771 | Duinat et al. | Jan 2017 | A1 |
20170014310 | Hyun et al. | Jan 2017 | A1 |
20170124289 | Hasan et al. | May 2017 | A1 |
20170173321 | Davis et al. | Jun 2017 | A1 |
20170203086 | Davis | Jul 2017 | A1 |
20170225843 | Glaser et al. | Aug 2017 | A1 |
20170239141 | Davis et al. | Aug 2017 | A1 |
20170297781 | Kawamura | Oct 2017 | A1 |
20170319438 | Davis et al. | Nov 2017 | A1 |
20170354792 | Ward | Dec 2017 | A1 |
20180001540 | Byun | Jan 2018 | A1 |
20180014998 | Yuki et al. | Jan 2018 | A1 |
20180064604 | Drmanovic | Mar 2018 | A1 |
20180078684 | Peng et al. | Mar 2018 | A1 |
20180089593 | Patel et al. | Mar 2018 | A1 |
20180098915 | Rajagopal et al. | Apr 2018 | A1 |
20180147115 | Nishioka et al. | May 2018 | A1 |
20190308006 | Erekovcanski et al. | Oct 2019 | A1 |
20190388626 | Okihara | Dec 2019 | A1 |
20220008645 | Ukai et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
202008018507 | Feb 2015 | DE |
0148116 | Jul 1985 | EP |
486367 | Jun 1938 | GB |
H08002544 | Jan 1996 | JP |
101159987 | Jun 2012 | KR |
2008000279 | Jan 2008 | WO |
2017086607 | May 2017 | WO |
Entry |
---|
Arai Tsugio, Pilfering Proof Cap, Jan. 1, 1996. |
Number | Date | Country | |
---|---|---|---|
62848330 | May 2019 | US | |
62693197 | Jul 2018 | US |