Intraocular lenses (IOLs) may be used within the surface of an eye for restoring vision function, for example, via implant for patients of cataract surgery. IOLs include monofocal lenses, which provide a single focus or single optical power, multifocal lenses, which provide multiple focus or optical power, and accommodating lenses, which adjust the focus of a lens.
The IOL may be inserted in a folded state through a small 3 mm or less incision of the eye. A syringe-like device having a piston may be used to help apply and position the IOL into the capsular bag which previously housed the removed natural crystalline lens. Once in the eye, the IOL maybe unfolded to its natural state. When the incision size for inserting an IOL into the eye is larger than 2-3 mm undesired astigmatic changes of the cornea occur. Therefore ophthalmologists prefer to use the smallest incision possible for inserting an IOL into the eye. Therefore this makes a flexible and foldable IOL practically a necessity.
Corneal inlays, cortical on-lays and single vision and bifocal contact lenses are also used to correct vision of the patient. In many cases these are worn to correct for the patients distance and near vision needs. Each of these is a very thin optic and requires curvature when applied on or in the eye.
Presently all known electro-active elements within an electro-active lens are made of rigid materials. In a certain previous embodiment of the inventors with regards to an electro-active contact lens an electro-active element is housed within a flexible outer host material. However, the electro-active element is rigid and therefore may add some thickness to the contact lens.
Embodiments of the invention provide a flexible electro-active lens including a flexible refractive optic having a fixed refractive index, an electro-active element embedded within the flexible refractive optic, wherein the electro-active element has an alterable refractive index, and a controller electrically connected to the electro-active element wherein when power is applied thereto the refractive index of the electro-active element is altered. The flexible electro-active lens may include one or more intraocular lenses, intraocular optics, spectacle lenses, contact lenses, corneal onlays, corneal inlays, and inter-ocular lenses.
A specific embodiment of the present invention will be described with reference to the following drawings, wherein:
The method and apparatus of the present invention will be better understood by reference to the following detailed description of specific embodiments and the attached figures which exemplify such embodiments.
The following preferred embodiments as exemplified by the drawings is illustrative of the invention and is not intended to limit the invention as encompassed by the claims of this application.
A flexible electro-active lens 2 is illustrated in
The electro-active element (e.g., described in reference to
Terms such as “rigid”, “hard”, “inflexible”, “inelastic” and/or “not foldable”, may all be used to describe a material or structure adapted for resisting structural or shape changes when a force above a predetermined threshold is applied. Terms such as “bendable”, “soft”, “flexible”, “elastic”, and/or “foldable”, may all be used to describe a material or structure adapted for changing structure or shape when a force above the predetermined threshold is applied. Terms such as “unfolded”, “unfolded state”, “natural”, “flat”, and/or “relaxed”, may all be used to describe a material or structure in a relatively high entropy state (e.g., as shown in
In reference to the flexible housing 4 in
Referring again to
The electro-active element 6 may have an alterable refractive index. The electro-active element may be disposed between electrodes (e.g. shown in
Referring again to
In the present invention, for failsafe operation, when no power is applied (e.g., across the electrodes), the loss in optical power provided by the electro-active element may be minimal. For example, the lens 2 may function as a static lens having a fixed optical power, for example, adapted for correcting at either far, or alternatively at intermediate distance, or alternatively at near distance.
Referring to
When used as a corneal inlay, the diameter of the electro-active lens should not exceed the diameter of the cornea. In some embodiments of the invention, the outer surface of the housing may be curved to substantially match the curvature of the cornea (when used in a corneal inlay) or the surface of the eye (when used in a contact lens).
Referring to
The electrodes 10 may be electrically connected to the liquid crystal layer for applying power thereto. The controller 12 may be adapted for electrically driving the electrodes for modulating the power applied to the layer. The liquid crystal layer may have an alterable refractive index. When power is applied to the layer, for example, above a predetermined threshold, the refractive index thereof is altered.
The alignment layers 18 may orient the molecules of electro-active material 16 for providing an initial refractive index of the liquid crystal layer 22 when power below a first predetermined threshold is applied thereto. An electric field having power above a second predetermined threshold may be applied (e.g., across the electrodes) for aligning molecules of electro-active material for altering the refractive index of the liquid crystal layer.
The refractive index of the first and second films is typically fixed. In one example, the refractive index of the liquid crystal layer may alternate between matching and mismatching the fixed refractive index of the first and second films.
In
In
The electro-active elements may be activated in response to a control signal from a source external to the electro-active lens. Referring to
Referring again to
In
In the present invention, one or more of the elements 6c may be pixilated. The electrodes may apply power to the pixilated elements. By shunting certain electrodes it is possible to provide approximately 50% of the maximum optical power of the elements. In the example above, element 6c may provide a maximum optical power of +2.50D and a 50% reduced optical power of +1.25D.
One or more of the electro-active elements may comprise a modal element. Modal elements may change optical power when an electrical potential gradient is applied to a variable focus modal lens. Modal elements can create a refractive optic using, for example, liquid crystal.
Referring again to
Bi-stable liquid crystal material may be used to reduce the amount of electrical power consumption required over time to power the electro-active lens. Upon application of an appropriate first voltage above a first predetermined threshold, the overall orientation of the each of the individual bi-stable liquid crystals may retain an orientation induced by the first voltage once the voltage is removed. They may be returned to their original state by applying a second voltage below a second predetermined threshold. Bi-stable liquid crystals may include, for example, surface stabilized ferroelectric liquid crystal (SSFLF), which is a smectic liquid crystal. The use of a bi-stable liquid crystal may reduce electrical power consumption, because voltage may be used to just switch the device between its states and typically not to maintain the states of operation.
Referring to
The electrodes 10 may be electrically connected to the electro-active element for applying power thereto. Referring to
Referring again to
In the present invention, the electrodes may be switched on and off in less than approximately one (1) second. The electrodes may be composed of a conductive or metal material such as aluminum, an optically transparent material, such as, indium tin oxide (ITO), a conductive organic material, such as, poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) and/or carbon nano-tubes. The electrodes may coat and surround the liquid crystal material. The transparent material may include thin traces of metals such as silver or aluminum for increasing conductivity. Power may be applied across the transparent electrodes for altering optical properties of the electro-active lens, as described herein. The thickness of the electrode layer may be, for example, less than 1 ?m but is preferably less than 0.1 ?m. The controller and/or drive electronics 12, the power source 26, the memory metal material 28, and other electronic components may be connected to the electrodes by the electrical connections 14. The electrical connections may include small wires or traces, which may also be transparent. The electrodes and electrical connections may be flexible.
Referring to
Referring to
Referring to
In each of these embodiments, the electrical power generated may be stored within the power source 26. The power source may include a battery, such as a thin film battery, which may be rechargeable and/or flexible. The thin film battery may be inductively charged by remote charging. In one embodiment a inductively enabled pillow (not shown) provides the inductive charge while the user of such an electro-active lens is sleeping.
In one embodiment, the memory metal material 28 may be used for biasing the electro-active lens toward the unfolded state.
In another embodiment, the memory metal material may be used for receiving control signals from a source external to the electro-active lens. The controller 12 may use the control signals for modulating power applied to the electro-active element. The memory metal material may be electrically connected to the controller and the electro-active element. For example, the memory metal material may function as an antenna, capacitor, inductive coil or the like.
In another embodiment, the memory metal material may be used for charging the power source 26. The memory material may form a coil and/or an antenna and may be adapted for inductively charging the power source using electrical power transmitted wirelessly from a device external to the electro-active lens.
In still another embodiment, the memory metal material may be used for programming and/or reprogramming the controller and/or drive electronics.
The memory metal material may be composed of, for example, titanium-palladium-nickel, nickel-titanium-copper, Gold-cadmium, Iron-zinc-copper-aluminum, Titanium-niobium-aluminum, hafnium-titanium-nickel, nickel-titanium-copper, gold-cadmium, iron-zinc-copper-aluminum, nickel-titanium, and/or iron-manganese-silicon, or any combination thereof.
Referring again to
The sensing device may include two or more photo-detector arrays with a focusing lens placed over each array for measuring distances. A sum of differences algorithm may be used to determine which array has the highest contrast ratio for determining the distance in which an object is placed from the electro-active lens.
The sensing device may include a range finder for detecting distances for focusing the electro-active lens and/or a solar cell for detecting light ambient and/or incident to the electro-active lens.
The sensing device may include a micro-electro-mechanical system (MEMS) gyroscope adapted for detecting head tilts or encyclorotation of the eye, an illustration of which is shown in
In response to the detection, the sensing device may trigger the activation and/or deactivation of one or more of the aforementioned elements of the electro-active lens, for example, by altering the electrical power applied thereto. The sensing device may be directly or indirectly coupled to the electronics and/or the electrical connections for electrically driving the electrodes. In one embodiment, the sensing device may detect the focusing distance at which a user is viewing and may alter or maintain the optical power of the electro-active element accordingly. In one example, if the sensing device detects that the user is focusing within the near distance range, the optical power of the element may be altered so that the electro-active lens provides correction for near distance viewing.
In the present invention, the electro-active lens may further include an over-riding remote switch (not shown) to manually over-ride and switch optical states of the electro-active lens. For example, the remote switch may activate, deactivate, or set a desired optical power. When the remote switch is activated, a remote switch signal may be sent to the electro-active lens via an antenna formed from the memory metal material 28.
Referring again to
The housing 4 may be composed of a semi-permeable membrane. The housing may be coated with materials that are bio-compatible with anatomical objects in the eye. Bio-compatible materials may include, for example, polyvinyldene fluoride or non-hydrogel microporous perflouroether. The housing may optionally be coated with a sealer to prevent or retard the leaching of materials from the electro-active lens. The flexible housing 4 may be a semi-permeable substance. The liquid crystal electro-active element and the associated electronics may be hermetically sealed for preventing leaching out into the eye over time.
Referring again to
The electro-active lens may include intraocular lenses, which may be implanted with the greatest possible centration (an alignment of a center axis of the lens with a center axis or pupillary axis of the eye) to provide the best optical results. In a preferred embodiment of the present invention, the electro-active lens or a capsular bag housing the electro-active lens should be implanted directly behind the pupil with the greatest possible centration. The haptics 30 may be used to center the electro-active lens inside of the capsular bag. Alternately, the haptics may be attached directly to the eye, for example, the ciliary muscle, extending outside of the capsular bag. Because of anatomical asymmetry in the eye, the electro-active lens may be implanted decentral to a pupillary axis. Additional decentration may be found within the capsular bag (e.g., in a misalignment of a center axis of the capsular bag with a center axis of the electro-active lens inserted therein) and with a misaligned pupil (having a curved or misaligned pupillary axis). The eye is typically tolerant of moderate amounts of decentration. Due to anatomical asymmetry, a natural and unaltered eye may have approximately 0.1 or 0.2 mm of decentration. The electro-active lens may preferably accommodate at least 1 mm of decentration
The electro-active lens may be implanted in an eye already having an existing lens implant for correcting optical dysfunction provided by the existing lens implant (not shown). This technique may be referred to as “piggyback” lens implantation. The electro-active lens may be implanted in front of the existing lens implant (e.g., closer to the exposed surface of the eye), for example, into the posterior chamber in the ciliary sulcus. In other embodiments, the electro-active lens may be implanted behind the existing lens implant (e.g., farther from the exposed surface of the eye). In any of the above embodiments, the electro-active lens may be used in combination with another, for example, fixed crystalline lens. The lens may be positioned in the anterior or posterior chamber of the ciliary sulcus.
When embodiments described herein are used as a contact lens, the lens may include an attached soft hydrophilic skirt at or near the lens periphery for stabilizing the lens in a desired centrated position. The contact lens may further be stabilized by having a weighted orienting region or a truncated attachment surface. The contact lens may be inductively charged by a contact lens case (not shown), for example, when the lens is located in the case. The sensing device 32 of the contact lens (e.g., a photo-detector) may be located in or on the surface of the contact lens or skirt attached, in a location spaced from the pupillary axis to not interfere with the vision of a wearer. In one embodiment, the dimensions fitting parameters and/or components may be customized according to the anatomical needs and/or preferences of a user.
In any of the above embodiments, liquid crystalline material may be used. Liquid crystals include a state of aggregation that is intermediate between the crystalline solid and the amorphous liquid. Many liquid crystals are composed of rod-like molecules, and classified broadly as: nematic, cholesteric, and smectic.
The electro-active lens may be used to correct refractive errors of the eye including, presbyopia, myopia, hyperopia, astigmatism, and higher-order aberrations.
When used herein, near viewing distance may describe distances from 18 inches up to approximately 12 inches from a view point; intermediate viewing distance may describe distances from greater than 18 inches to 29 inches and far viewing distance may describe distances greater than approximately 29 inches from ones face.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made. It will be appreciated by persons skilled in the art that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application is a continuation of U.S. application Ser. No. 12/017,858, now U.S. Pat. No. 9,155,614, filed Jan. 22, 2008, which claims priority to U.S. Provisional Application No. 60/881,514, filed Jan. 22, 2007, and to U.S. Provisional Application No. 60/960,607, filed Oct. 5, 2007; all of which are incorporated herein by reference in their entireties. This application is also related to U.S. Publication No. US 2006/0095128-Al, published May 4, 2006; U.S. Provisional Application No. 60/636,490, filed Dec. 17, 2004; U.S. Provisional Application No. 60/623,947, filed Nov. 2, 2004; U.S. Provisional Application No. 60/659,431, filed Mar. 9, 2005; U.S. Provisional Application No. 60/669,403, filed Apr. 8, 2005; and U.S. Provisional Application No. 60/960,607, filed Oct. 5, 2007; all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2437642 | Henroleau | Mar 1948 | A |
2576581 | Edwards | Nov 1951 | A |
3161718 | Bos et al. | Dec 1964 | A |
3245315 | Marks et al. | Apr 1966 | A |
3248460 | Naujokas | Apr 1966 | A |
3309162 | Kosanke et al. | Mar 1967 | A |
3614215 | Mackta | Oct 1971 | A |
3738734 | Tait et al. | Jun 1973 | A |
3791719 | Kratzer et al. | Feb 1974 | A |
4062629 | Winthrop | Dec 1977 | A |
4174156 | Glorieux | Nov 1979 | A |
4181408 | Senders | Jan 1980 | A |
4190330 | Berreman | Feb 1980 | A |
4264154 | Petersen | Apr 1981 | A |
4279474 | Belgorod | Jul 1981 | A |
4300818 | Schachar | Nov 1981 | A |
4320939 | Mueller | Mar 1982 | A |
4373218 | Schachar | Feb 1983 | A |
4395736 | Fraleux | Jul 1983 | A |
4418990 | Gerber | Dec 1983 | A |
4423929 | Gomi | Jan 1984 | A |
4457585 | DuCorday | Jul 1984 | A |
4461550 | Legendre | Jul 1984 | A |
4461629 | Legendre | Jul 1984 | A |
4466703 | Nishimoto | Aug 1984 | A |
4466706 | Lamothe, II | Aug 1984 | A |
4529268 | Brown | Jul 1985 | A |
4564267 | Nishimoto | Jan 1986 | A |
4572616 | Kowel et al. | Feb 1986 | A |
4577928 | Brown | Mar 1986 | A |
4601545 | Kern | Jul 1986 | A |
4609824 | Munier et al. | Sep 1986 | A |
4709996 | Michelson | Dec 1987 | A |
4712870 | Robinson et al. | Dec 1987 | A |
4756605 | Okada et al. | Jul 1988 | A |
4772094 | Sheiman | Sep 1988 | A |
D298250 | Kildall | Oct 1988 | S |
4781440 | Toda | Nov 1988 | A |
4787733 | Silva | Nov 1988 | A |
4787903 | Grendahl | Nov 1988 | A |
4795248 | Okada et al. | Jan 1989 | A |
4813777 | Rainville et al. | Mar 1989 | A |
4816031 | Pfoff | Mar 1989 | A |
4818095 | Takeuchi | Apr 1989 | A |
4836652 | Oishi et al. | Jun 1989 | A |
4842400 | Klein | Jun 1989 | A |
4869588 | Frieder et al. | Sep 1989 | A |
4873029 | Blum | Oct 1989 | A |
4880300 | Payner et al. | Nov 1989 | A |
4890903 | Treisman et al. | Jan 1990 | A |
4904063 | Okada et al. | Feb 1990 | A |
4907860 | Noble | Mar 1990 | A |
4909626 | Purvis et al. | Mar 1990 | A |
4919520 | Okada et al. | Apr 1990 | A |
4921728 | Takiguchi | May 1990 | A |
4927241 | Kuijk | May 1990 | A |
4929865 | Blum | May 1990 | A |
4930884 | Tichenor et al. | Jun 1990 | A |
4944584 | Maeda et al. | Jul 1990 | A |
4945242 | Berger et al. | Jul 1990 | A |
4952048 | Frieder et al. | Aug 1990 | A |
4952788 | Berger et al. | Aug 1990 | A |
4955712 | Barth et al. | Sep 1990 | A |
4958907 | Davis | Sep 1990 | A |
4961639 | Lazarus | Oct 1990 | A |
4968127 | Russell et al. | Nov 1990 | A |
4981342 | Fiala | Jan 1991 | A |
4991951 | Mizuno et al. | Feb 1991 | A |
5015086 | Okaue et al. | May 1991 | A |
5030882 | Solero | Jul 1991 | A |
5050981 | Roffman | Sep 1991 | A |
5066301 | Wiley | Nov 1991 | A |
5067795 | Senatore | Nov 1991 | A |
5073021 | Marron | Dec 1991 | A |
5076665 | Petersen | Dec 1991 | A |
5089023 | Swanson | Feb 1992 | A |
5091801 | Ebstein | Feb 1992 | A |
5108169 | Mandell | Apr 1992 | A |
5114628 | Hofer et al. | May 1992 | A |
5130856 | Tichenor et al. | Jul 1992 | A |
5142411 | Fiala | Aug 1992 | A |
5147585 | Blum | Sep 1992 | A |
5150234 | Takahashi et al. | Sep 1992 | A |
5171266 | Wiley et al. | Dec 1992 | A |
5173723 | Volk | Dec 1992 | A |
5178800 | Blum | Jan 1993 | A |
5182585 | Stoner | Jan 1993 | A |
5184156 | Black et al. | Feb 1993 | A |
5200859 | Payner et al. | Apr 1993 | A |
5208688 | Fergason et al. | May 1993 | A |
5217490 | Sayano et al. | Jun 1993 | A |
5219497 | Blum | Jun 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5229885 | Quaglia | Jul 1993 | A |
5231430 | Kohayakawa | Jul 1993 | A |
5239412 | Naka et al. | Aug 1993 | A |
D342063 | Howitt et al. | Dec 1993 | S |
5305028 | Okano | Apr 1994 | A |
5306926 | Yonemoto | Apr 1994 | A |
5324930 | Jech, Jr. | Jun 1994 | A |
D350342 | Sack | Sep 1994 | S |
5352886 | Kane | Oct 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5375006 | Haas | Dec 1994 | A |
5382986 | Black et al. | Jan 1995 | A |
5386308 | Michel et al. | Jan 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5424927 | Schaller et al. | Jun 1995 | A |
5440357 | Quaglia | Aug 1995 | A |
5443506 | Garabet | Aug 1995 | A |
5451766 | Van Berkel | Sep 1995 | A |
5488439 | Weltmann | Jan 1996 | A |
5512371 | Gupta et al. | Apr 1996 | A |
5522323 | Grupp | Jun 1996 | A |
5552841 | Gallorini et al. | Jun 1996 | A |
5608587 | Grupp | Mar 1997 | A |
5615588 | Gottschald | Apr 1997 | A |
5653751 | Samiy et al. | Aug 1997 | A |
5654786 | Bylander | Aug 1997 | A |
5668620 | Kurtin et al. | Sep 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5683457 | Gupta et al. | Nov 1997 | A |
RE35691 | Theirl et al. | Dec 1997 | E |
5702819 | Gupta et al. | Dec 1997 | A |
5712721 | Large | Jan 1998 | A |
5728155 | Anello et al. | Mar 1998 | A |
5728156 | Gupta et al. | Mar 1998 | A |
5757458 | Miller et al. | Mar 1998 | A |
5739959 | Quagl Ia | Apr 1998 | A |
5777719 | Williams et al. | Jul 1998 | A |
5815233 | Morokawa et al. | Sep 1998 | A |
5815239 | Chapman et al. | Sep 1998 | A |
5859685 | Gupta et al. | Jan 1999 | A |
5861934 | Blum et al. | Jan 1999 | A |
5861936 | Sorensen | Jan 1999 | A |
5877876 | Birdwell | Mar 1999 | A |
5900720 | Kallman et al. | May 1999 | A |
5905561 | Lee et al. | May 1999 | A |
5949521 | Williams et al. | Sep 1999 | A |
5953098 | Lieberman et al. | Sep 1999 | A |
5956183 | Epstein et al. | Sep 1999 | A |
5963300 | Horwitz | Oct 1999 | A |
5971540 | Ofner | Oct 1999 | A |
5980037 | Conway | Nov 1999 | A |
5999328 | Kurtin et al. | Dec 1999 | A |
6040947 | Kurtin et al. | Mar 2000 | A |
6050687 | Bille et al. | Apr 2000 | A |
6069742 | Silver | May 2000 | A |
6086203 | Blum et al. | Jul 2000 | A |
6086204 | Magnante | Jul 2000 | A |
6095651 | Williams et al. | Aug 2000 | A |
6099117 | Gregory | Aug 2000 | A |
6115177 | Vossler | Sep 2000 | A |
6139148 | Menezes | Oct 2000 | A |
6145987 | Baude et al. | Nov 2000 | A |
6188525 | Silver | Feb 2001 | B1 |
6191881 | Tajima | Feb 2001 | B1 |
6199984 | Menezes | Mar 2001 | B1 |
6199986 | Williams et al. | Mar 2001 | B1 |
6213602 | Smarto | Apr 2001 | B1 |
6270220 | Keren | Aug 2001 | B1 |
6271915 | Frey et al. | Aug 2001 | B1 |
6282449 | Kamerling et al. | Aug 2001 | B1 |
6299311 | Williams et al. | Oct 2001 | B1 |
6305802 | Roffman et al. | Oct 2001 | B1 |
6324429 | Shire et al. | Nov 2001 | B1 |
6325508 | Decreton et al. | Dec 2001 | B1 |
6338559 | Williams et al. | Jan 2002 | B1 |
6350031 | Lashkari et al. | Feb 2002 | B1 |
6359674 | Horiuchi | Mar 2002 | B1 |
6390623 | Kokonaski et al. | May 2002 | B1 |
6396622 | Alden | May 2002 | B1 |
6437762 | Birdwell | Aug 2002 | B1 |
6437925 | Nishioka | Aug 2002 | B1 |
6464363 | Nishioka et al. | Oct 2002 | B1 |
6491394 | Blum et al. | Dec 2002 | B1 |
6501443 | McMahon | Dec 2002 | B1 |
6554425 | Roffman et al. | Apr 2003 | B1 |
6609794 | Levine | Aug 2003 | B2 |
6614408 | Mann | Sep 2003 | B1 |
6616275 | Dick et al. | Sep 2003 | B1 |
6616279 | Davis et al. | Sep 2003 | B1 |
6618208 | Silver | Sep 2003 | B1 |
6626532 | Nishioka et al. | Sep 2003 | B1 |
6631001 | Kuiseko | Oct 2003 | B2 |
6638304 | Azar | Oct 2003 | B2 |
6643552 | Edell et al. | Nov 2003 | B2 |
6652096 | Morris et al. | Nov 2003 | B1 |
6667471 | Bos et al. | Dec 2003 | B2 |
6682195 | Dreher | Jan 2004 | B2 |
6705729 | Piers et al. | Mar 2004 | B2 |
6709105 | Menezes | Mar 2004 | B2 |
6709107 | Jiang et al. | Mar 2004 | B2 |
6709108 | Levine et al. | Mar 2004 | B2 |
6738199 | Nishioka | May 2004 | B2 |
6768536 | Okuwaki et al. | Jul 2004 | B2 |
6774871 | Birdwell | Aug 2004 | B2 |
6778246 | Sun et al. | Aug 2004 | B2 |
6793340 | Morris et al. | Sep 2004 | B1 |
6833938 | Nishioka | Dec 2004 | B2 |
6840619 | Dreher | Jan 2005 | B2 |
6851805 | Blum et al. | Feb 2005 | B2 |
6859333 | Ren et al. | Feb 2005 | B1 |
6883916 | Menezes | Apr 2005 | B2 |
6886938 | Menezes | May 2005 | B1 |
6893124 | Kurtin | May 2005 | B1 |
6894751 | Payne et al. | May 2005 | B2 |
6902271 | Perrott et al. | Jun 2005 | B2 |
6918570 | Ahn | Jul 2005 | B2 |
6918670 | Blum et al. | Jul 2005 | B2 |
6948818 | Williams et al. | Sep 2005 | B2 |
6951391 | Morris et al. | Oct 2005 | B2 |
6955433 | Wooley et al. | Oct 2005 | B1 |
6956682 | Wooley | Oct 2005 | B2 |
6976982 | Santini et al. | Dec 2005 | B2 |
6986579 | Blum et al. | Jan 2006 | B2 |
7008054 | Kurtin et al. | Mar 2006 | B1 |
7009757 | Nishioka et al. | Mar 2006 | B2 |
7018040 | Blum et al. | Mar 2006 | B2 |
7019890 | Meredith et al. | Mar 2006 | B2 |
7041133 | Azar | May 2006 | B1 |
7085065 | Silver | Aug 2006 | B2 |
7133172 | Nishioka | Nov 2006 | B2 |
7137702 | Piers et al. | Nov 2006 | B2 |
7137952 | Leonardi et al. | Nov 2006 | B2 |
7159981 | Kato | Jan 2007 | B2 |
7159983 | Menezes et al. | Jan 2007 | B2 |
7195353 | Blum et al. | Mar 2007 | B2 |
7209097 | Suyama | Apr 2007 | B2 |
7229173 | Menezes et al. | Jun 2007 | B2 |
7261736 | Azar | Aug 2007 | B1 |
9155614 | Blum et al. | Oct 2015 | B2 |
20010055094 | Zhang | Dec 2001 | A1 |
20020140899 | Blum et al. | Oct 2002 | A1 |
20020149739 | Perrott et al. | Oct 2002 | A1 |
20020186346 | Stantz et al. | Dec 2002 | A1 |
20030018383 | Azar | Jan 2003 | A1 |
20030060878 | Shadduck | Mar 2003 | A1 |
20030112523 | Daniell | Jun 2003 | A1 |
20030151721 | Lai et al. | Aug 2003 | A1 |
20030199978 | Lindsey et al. | Oct 2003 | A1 |
20030208265 | Ho et al. | Nov 2003 | A1 |
20030210377 | Blum et al. | Nov 2003 | A1 |
20040008319 | Lai et al. | Jan 2004 | A1 |
20040010130 | Katsuki et al. | Jan 2004 | A1 |
20040027501 | Blum et al. | Feb 2004 | A1 |
20040027536 | Blum et al. | Feb 2004 | A1 |
20040039298 | Abreu | Feb 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040117011 | Aharoni et al. | Jun 2004 | A1 |
20040130677 | Liang et al. | Jul 2004 | A1 |
20040179280 | Nishioka | Sep 2004 | A1 |
20040196435 | Dick et al. | Oct 2004 | A1 |
20040246440 | Andino et al. | Dec 2004 | A1 |
20050073739 | Meredith | Apr 2005 | A1 |
20050099594 | Blum | May 2005 | A1 |
20050113912 | Feenestra et al. | May 2005 | A1 |
20050124983 | Frey et al. | Jun 2005 | A1 |
20050256571 | Azar | Nov 2005 | A1 |
20060044510 | Williams et al. | Mar 2006 | A1 |
20060095128 | Blum et al. | May 2006 | A1 |
20060113054 | Silvestrini | Jun 2006 | A1 |
20060122531 | Goodall et al. | Jun 2006 | A1 |
20060146281 | Goodall et al. | Jul 2006 | A1 |
20060164593 | Peyghambarian | Jul 2006 | A1 |
20060183986 | Rice | Aug 2006 | A1 |
20080208335 | Blum et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
ROC89113088 | Oct 2001 | CN |
4223395 | Jan 1994 | DE |
0154962 | Sep 1985 | EP |
0233104 | Aug 1987 | EP |
0237365 | Sep 1987 | EP |
0578833 | Jan 1994 | EP |
0649044 | Apr 1995 | EP |
0918248 | May 1999 | EP |
2169417 | Jul 1986 | GB |
2170613 | Aug 1986 | GB |
55-076323 | Jun 1980 | JP |
61156227 | Jul 1986 | JP |
61-502221 | Oct 1986 | JP |
1-237610 | Sep 1989 | JP |
05-100201 | Apr 1993 | JP |
7-28002 | Jan 1995 | JP |
H08-508826 | Sep 1996 | JP |
11352445 | Dec 1999 | JP |
2000-347154 | Dec 2000 | JP |
2003-230590 | Aug 2003 | JP |
2007-323062 | Dec 2007 | JP |
WO 8505466 | Dec 1985 | WO |
WO 8701931 | Apr 1987 | WO |
WO 9201417 | Feb 1992 | WO |
WO 9321010 | Oct 1993 | WO |
WO 9418599 | Aug 1994 | WO |
WO 1994023334 | Oct 1994 | WO |
WO 9427169 | Nov 1994 | WO |
WO 1994027169 | Nov 1994 | WO |
WO 9706751 | Feb 1997 | WO |
WO 9748004 | Dec 1997 | WO |
WO 9827863 | Jul 1998 | WO |
WO 9927334 | Jun 1999 | WO |
WO 0049452 | Aug 2000 | WO |
WO 03007851 | Jan 2003 | WO |
WO 03050472 | Jun 2003 | WO |
WO 03068059 | Aug 2003 | WO |
WO 04008189 | Jan 2004 | WO |
WO 04015481 | Feb 2004 | WO |
WO 2004015460 | Feb 2004 | WO |
WO 04034095 | Apr 2004 | WO |
WO 04072687 | Aug 2004 | WO |
WO 2005033782 | Apr 2005 | WO |
WO 2006050366 | May 2006 | WO |
Entry |
---|
Office Action in Canadian Application No. 2,675,772 dated Oct. 26, 2016, 5 pages. |
Office Action in Indian Application No. 4873/DELNP/2009, dated Aug. 16, 2016, 8 pages. |
Fifth Office Action in CN Application No. 201110405247.8 dated Oct. 5, 2015, 7 pages. |
Notice to Grant Patent Right, Chinese Application No. 201110405247.8, dated Mar. 7, 2016, 2 pages (English). |
Exam Report No. 1, Australian Application No. 2008207990, dated Aug. 7, 2012, 3 pages. |
Notice of Grant, Australian Application No. 2008207990, dated Dec. 19, 2013, 2 pages. |
Invitation to Respond to Written Opinion for Singapore Application No. 2012002556 dated Jun. 26, 2014, 2 pages. |
Notice of Allowance in Japanese. Application No. 2009-546572, dated Nov. 15, 2013, 6 pages. |
Office Action—Final Rejection in Korean Appln 10-2009-7015395, dated Apr. 23, 2014, 5 pages. |
Anderson, M. “Adaptive Optics: Liquid Crystals Lower the Cost of Adaptive Optics” Laser Focus World (Dec. 1999). |
Bertsch, A. et al., “The Sensing Contact Lens”, Medical Device Technology (2006); 17: 19-21. |
Bradley, Arthur, “Profile: Larry N. Thibos, PhD., and Donald T. Miller, PhD.” Indian Journal of Optometry; 2:1 (Spring 1999). |
Davis, Robert A. “Computer Vision Syndrome—The Eyestrain Epidemic” Review of Optometry (Sep. 15, 1997). |
Eggers, T. et al., “Wireless Intra-ocular Pressure Monitoring System Integrated in an Artificial Lens”, Presented at the First Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Lyon, France, Oct. 12-14, 2000; Paper 7: 466-469. |
Eyecare Business (Oct. 1997). |
Kowel, Stephen T., et al “Focusing by electrical modulation of refraction in a liquid crystal cell” Applied Optics23:2 (Jan. 15, 1984). |
Lazarus, Stuart M. “The Use of Yoked Base-Up and Base-In Prism for Reducing Eye Strain at the Computer” Journal of the American Optometric Association (Apr. 1996). |
Leonardi, M. et al., “A Soft Contact Lens with a MEMS Strain Gage Embedded for Intraocular Pressure Monitoring”, Transducers '03; The 12th International Conference on Solid Slate Sensors, Actuators and Microsyslems, Boston, Jun. 8-12, 2003; 3B2.5: 1043-1046. |
Leonardi, M. et al., “First Steps toward Noninvasive IOP—Monitoring with a Sensing Contact Lens”, Investigative Ophthalmology & Visual Science (2004); 45(9): 3113-3117. |
Miller, Donald T. et al., “Requirements for the segmented spatial light modulators for diffraction-limited imaging through aberrated eyes,” G.D. Love, ed. Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine, World Scientific, Singapore, 63-68 (Jul. 1999). |
Naumov, A.F. “Control Optimization of Spherical Modal Liquid Crystal Lenses”, Optics Express 4:9; Optical Society of America (Apr. 26, 1999). |
Naumov, A.F. “Liquid Crystal Adaptive Lenses with Modal Control” Optics Letters, 23:13 Optical Society of America (Jul. 1, 1998). |
Optics, Org, Dec. 19, 2006 “Liquid Lenses Eye Commercial Breakthrough” Opto & Laser Europe (Nov. 2003). |
Pitchon, E.M. et al., “First In-Vivo Human Monitoring of Intraocular Pressure Fluctuation and Ocular Pulsation by a Wireless Soft Contact Lens Sensor.” Congress of the European Glaucoma Society, Berlin, Jun. 2008; Congres annuel de la Societe francaise d'ophtalmologie, Paris, May 2008; ARVO Meeting (The Association for Research in Vision and Ophthalmology), Apr. 27-May 1, 2008, Fort Lauderdale American Glaucoma Society, 18th Annual Meeting, Mar. 2008, Washington, 1 page. |
Tarascon et al., “Issues and challenges facing rechargeable lithium batteries” Nature 2001, 414:359-367 (Nov. 15, 2001). |
Thibos, Larry N., et al. “Use of Liquid-Crystal Adaptive-Optice to Alter the Refractive State of the Eye; Optometry and Vision Science” 74:7; Americn Academy of Optometry (Jul. 1997). |
Thibos, Larry N., et al. “Electronic Spectacles for the 21 Century” Indian Journal of Optometry, 2:1 (Spring 1999). |
Thibos, Larry N., et al. “Vision through a liquid-crystal spatial light modulator” Adaptive Optics Conference; Durham, UK (1999). |
Walter, P. et al., “Development of a completely encapsulated intraocular pressure sensor”, Ophthalmic Research (2000); 32: 278-284. |
International Search Report in International Application No. PCT/US09/037544 dated May 20, 2009. |
International Search Report in International Application No. PCT/US08/51649 dated Jul. 7, 2008. |
International Preliminary Report on Patentability for Application No. PCT/US2008/051649 dated Jul. 28, 2009. |
Supplementary Search Report for European Application No. 08713890 dated Aug. 6, 2012. |
ISA/US, Search Report and Written Opinion for Application PCT/US05/39101, dated Jul. 7, 2006. |
Supplementary European Search Report of Application No. EP 05824718 dated Nov. 19, 2007. |
Restriction Requirement in U.S. Appl. No. 12/017,858 dated Aug. 24, 2009, 7 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Jan. 22, 2010, 8 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Aug. 4, 2010, 13 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Dec. 9, 2011, 12 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Aug. 13, 2012, 11 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Jun. 6, 2014, 14 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated Oct. 23, 2014, 13 pages. |
Office Action in U.S. Appl. No. 12/017,858 dated May 21, 2015, 8 pages. |
Notice of Allowance in U.S. Appl. No. 12/017,858 dated Jul. 16, 2015, 5 pages. |
Office Action dated Jan. 22, 2017, for Israeli Application No. 252136, with partial translation, 4 pages. |
Extended European Search Report dated Dec. 22, 2017 from European Application No. 17187443.1, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20150378177 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
60881514 | Jan 2007 | US | |
60960607 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12017858 | Jan 2008 | US |
Child | 14850232 | US |