The present invention is directed generally to conductive transmission lines, and more particularly, flexible transmission lines utilizing flexible flat circuitry (“FFC”)for use in quickly transmitting signals between electronic devices.
One way to transfer signals between electronic devices is to use flat cable that may be twisted and flexed. This type of cable is known as either FFC or flexible flat cable. It is known, as demonstrated, by U.S. Pat. No. 4,798,918, issued Jan. 17, 1989, that one can arrange signal and ground traces in certain patterns to minimize cross talk between adjacent and opposing signal traces. This patent shows individual signal traces flanked by ground traces on each side and by a pair of ground traces on the opposite side of the FFC. It is difficult to maintain a constant impedance and high signal transfer speeds in certain transmission lines. When flexible printed circuitry (“FPC”) is used, there is a high signal attenuation. The multiple layer construction shown in the aforementioned '918 patent may increase the cost of the transmission line. The spacing of the ground and signal traces also becomes critical in controlling the impedance of the transmission line. The present invention is directed to a power contact that overcomes the aforementioned disadvantages.
It is therefore an object of the present invention to provide an improved low impedance, flexible transmission line for use in connecting two electronic devices together. Another object of the present invention is to provide a flexible flat circuitry extent having a pattern of signal and ground traces arranged on opposing sides of a substrate that promotes the transmission of differential signals through transmission line.
Still another object of the present invention is to provide a FFC transmission line which includes an insulating substrate as a base layer for the transmission line and which includes a plurality of signal traces arranged on a first surface of the substrate and at least one ground trace disposed on a second surface of the substrate.
Yet a further object of the present invention is to provide a FFC transmission line for use in transmitting differential signals, and which uses a pair of signal traces disposed on one side of a support base and a wide ground trace disposed on the other side of the support base.
Still yet another object of the present invention is to provide a FFC transmission line for use in transmitting differential signals, and which uses a pair of differential signal traces disposed on one side of a support base and a wide ground trace associated with the differential signal pair disposed on the other side of the support base, the two signal traces being spaced apart a first given length and the ground trace having a width sufficient to permit it to extend on the other side of the support base with one edge of the ground trace being aligned with at least a longitudinal center line of the first signal trace and a second edge of the ground trace being aligned with at least a longitudinal center line of the second signal trace, such that when viewed from an end thereof, the ground trace overlaps the first and second signal traces.
The present invention provides these and other objects by way of its structure, which is briefly described below and is described in greater detail in the detailed description and drawings to follow.
In one aspect of the present invention, an improved signal transmission line is provided that has a FFC basis and which utilizes an elongated support base having opposing top and bottom sides. The support base has a plurality of conductive traces arranged on both of its top and bottom sides, and in one embodiment of the invention, the traces arranged on one of the support base sides include a plurality of traces that are arranged in signal pairs, specifically differential signal pairs. The traces that are arranged on the other side of the support base include ground traces, each of which preferably has a width that is greater than the combined width of two signal traces that make up a signal pair.
The ground traces are aligned with the signal traces (on opposite sides of the support base) so that portions of the signal traces overlap edges of the ground traces or vice-versa. In this manner, the wide ground traces are associated with substantially only their particular pair of differential signal traces. The ground traces are space wider apart from each other than the traces of each differential signal pair, but are more narrowly spaced apart from each other than the spacing between adjacent differential signal pairs. In this manner, impedances of between 90 and 110 ohms can be reliably achieved.
These and other objects, features and advantages of the present invention will be clearly understood through a consideration of the following detailed description.
In the course of this detailed description, the reference will be frequently made to the attached drawings in which:
The support base supports a plurality of conductive traces on opposing or top and bottom, as shown, surfaces. The bottom surface is seen in
The two signal traces 104A, 104B of each pair of signal traces are spaced apart by a preselected distance WS. An associated ground trace 106, or “GND” is disposed on the opposite side of the substrate and is aligned with the pair of signal traces. As shown in
The second width shown in
Conversely, as the width of the ground trace decreases, the capacitance will decrease and so increase the impedance of the differential signal pair system. Thus, the width of the ground trace may be tailored to increase or decrease the impedance of the differential signal system, i.e., the overall transmission lines of the FFC. With this structure, it is possible to achieve reliable transmission line impedances of about 90 to 110 ohms.
The manufacturing cost for FFC of the present invention is lower than known FFC constructions in that it uses a simple structure with a dielectric tape as the substrate or support base. The support tape will preferably be PE, a polyimide or an FR-4 material, while the traces will be pure copper or tough-pitch cooper.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/043354 | 12/1/2005 | WO | 00 | 8/5/2009 |
Number | Date | Country | |
---|---|---|---|
60632215 | Dec 2004 | US |