(a) Field of the Invention
The present invention relates to a flexible printed circuit board and more particularly to a flexible printed circuit board made through a water cleaning process. The flexible printed circuit board so made is practical for bonding to a member of an electronic product through forming, trimming and injection molding or pressure casting molding. The invention has the advantages of simple manufacturing process, environmental friendliness, high quality, and high yield rate.
(b) Description of the Prior Art
Regular printed circuit boards include hard printed circuit boards and flexible printed circuit boards. The process for manufacturing a hard printed circuit board comprises forming internal wires through photoresist application, exposing, image developing, etching and photoresist removing steps so as to form a circuit pattern on a substrate, and then coarsening copper surface by employing black oxidation or brown oxidation for adhesion of insulation resin. Substrates for inner and outer layers are then laminated together. Interconnections between the inner and outer layers are made by means of making apertures by a mechanical drilling machine or laser apparatus and plating the apertures with a metal coating. After circuit formation, the outer layer of the circuit board is coated with a solder mask ink. Antioxidation surface treatment may be employed to enhance the strength of the surface against oxidation.
The process for manufacturing a flexible printed circuit board comprises forming a flexible insulative layer and a copper foil layer. Flexible printed circuit boards are commonly used in 3C products (computer, communication and consumer electronics), particularly, cell phones and LCD displays. Flexible printed circuit boards use many materials including resin, copper foil, adhesive, coverlay, FCCL (flexible copper clay laminate), etc.
The process for manufacturing a flexible printed circuit board (FPC) includes the steps of forming a circuit pattern by means of photodevelopment, etching, and acid/alkaline cleaning. Acid/alkaline cleaning causes a wastewater problem. Because wastewater from acid/alkaline cleaning has a high concentration, its treatment is complicated and very costly. Further, it brings pollution to the environment. In addition, circuit pattern quality control is another severe problem during acid/alkaline cleaning. Because of the aforesaid problems, conventional flexible printed circuit board manufacturing methods have a low yield rate.
The present invention has been accomplished under the circumstances in view. The main object of the present invention is to provide a flexible printed circuit board which employs a water cleaning process to remove the removable layer instead of conventional etching and acid/alkaline cleaning, thereby simplifying the fabrication, meeting the environmental protection requirements, eliminating wastewater pollution problem, assuring high integrity of the circuit pattern, and increasing the yield rate.
Another object of the present invention is to provide a flexible printed circuit board by means of a water cleaning process, which, after shape forming and trimming, can be directly bonded to a member of a 4C product (computer, communication, consumer electronics and car electronics) during injection molding or pressure casting molding of the member, thereby simplifying the fabrication of the 4C product and enhancing the product competitiveness.
Still another object of the present invention is to provide a flexible printed circuit board by means of a water cleaning process, which has its bottom wall coated with a metal material such as Ni, Cr, Mg, or Al to form an EMI protective layer for protection against electromagnetic interference.
Referring to the annexed drawings in detail, a flexible printed circuit board made through a water cleaning process in accordance with the present invention comprises a substrate 1, a printed layer 2, and a conduction layer 3.
The substrate 1 is prepared from polymers or copolymers such as polyethylene terephthalate (PET), polyimide (PI), polypropylene (PP), polystyrene (PS), polymethylmethacrylate (PMMA), polycarbonate (PC), polyurethane (PU), polybutylene terephthalate (PBT), acrylonitrile butadiene styrene (ABS), nylon, etc.
The printed layer 2, as shown in
The conduction layer 3, as shown in
The semi-finished flexible printed circuit board formed of the substrate 1, the printed layer 2 and the conduction layer 3, with the optional electroplated layer 4, then undergoes a water cleaning process to remove the printed layer (release layer) 2, leaving a circuit pattern of the conduction layer 3 (or the combination of the conduction layer 3 and the electroplated layer 4) on the top side of the substrate 1 (see
The flexible printed circuit board 2 can be made by means of multiple printing processes, i.e., the circuit pattern can be formed of multiple layers stacked on one another.
After forming and trimming, the flexible printed circuit board can be directly molded on an internal or external part of a 4C product (computer, communication, consumer electronics and car electronics) by means of injection molding or pressure casting molding techniques. This application is most suitable for the fabrication of an electronic tag for RFID (radio frequency identification) system. As a result, it will increase the competitiveness of the product in the market.
Referring to
Referring to
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.