Embodiments herein relate generally to devices for fixation of a fractured bone.
Osteosynthesis plates for stabilization of bone fractures typically are applied with bone screws. Traditionally, bone screws compress a plate onto the bone surface to provide stable fixation. More recently, locking plates have been introduced, which typically have threaded receiving holes for positive, angle-stable engagement with the threaded head portion of a locking screw. These locking plates may provide more stable fixation in the ends of weak, osteoporotic bone compared to traditional, non-locking plates.
Clinically, plate osteosynthesis constructs face two principal challenges. First, an osteosynthesis construct may alter the load distribution in bone, which may either cause bone resorption in cases exhibiting load shielding, or bone fracture due to implant-induced stress risers. Second, the high stiffness of a plate osteosynthesis construct may suppress relative displacement between bone fragments, whereby this interfragmentary motion is important to promote the natural cascade of fracture healing by callus formation. Therefore, overly stiff locking plate constructs may delay or prevent fracture healing by callus formation.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.
In various embodiments, methods, apparatuses, and systems for fixation of a fractured bone are provided. In various embodiments, the systems and plates may provide elastic suspension of receiving holes relative to an osteosynthesis plate. In various embodiments, this elastic suspension may promote load distribution between screws that connect a bone segment to the plate, thereby reducing stress risers and the load shielding effect. In addition, in various embodiments, stress at the screw holes, and within the construct as a whole, may be reduced by incorporation of these elastic elements in the plate. Additionally, in some embodiments, for instance if fracture healing by callus formation is desired, elastic suspension of the receiving holes relative to the osteosynthesis plate may enable small, controlled amounts of relative motion between bone fragments connected by the plate, which may promote fracture healing by callus formation. In some embodiments, relative motion between bone fragments enabled by the elastic elements may be substantially parallel to an upper or lower surface of the bone plate, or substantially parallel to a bone surface.
Unlike other devices, bone plates in accordance with certain embodiments disclosed herein may be configured to be suspended above the surface of the bone, so that a gap is present between the lower surface of the plate and the upper surface of the bone. In various embodiments, this may be accomplished by using locking screws that are designed to engage with a threaded hole in the bone plate. In various embodiments, the coupling of a locking screw with a corresponding portion of a bone plate may ensure that the locking screw is only inserted to a certain extent, for instance the point where the screw locks into the hole of the bone plate. In another embodiment, the receiving hole elements may extend through the lower surface of the bone plate, for instance so that the plate remains suspended over the bone surface even if a bone fastener is used to compress the receiving hole element to the one bone.
In other embodiments, for instance if direct fracture healing is desired, elastic suspension of the receiving holes relative to the osteosynthesis plate may promote elastic compression across a fracture site, whereby the plate may be affixed to the bone with non-locking screws inserted in an eccentric manner in order to induce compression across the fracture. Thus, in various embodiments, it may be beneficial and desirable to stabilize a bone fracture with a plate as disclosed herein to enhance load distribution between screws, to promote fracture site motion when fracture healing by callus formation is desired, and/or to induce prolonged compression across a fracture when direct fracture healing is desired.
In various embodiments, the circular through-hole 105 of rivet 160 may be threaded, and the threads may extend into quasi-rectangular through hole 136 of screw hole member 105a. In various embodiments, a screw 110 with matching threads may be inserted from the upper plate surface 102 through the rivet 160, and the screw locking feature 109 may be sufficiently large to extend laterally across motion gap 107 of elastic segments 108. Thus, in various embodiments, the screw locking feature 109 may therefore limit deflection of screw hole member 105a toward lower plate surface 103. Additionally or alternatively, in some embodiments, the rivet head 148 may limit deflection of screw hole member 105a toward upper plate surface 102. Thus, the illustrated example may enable controlled translation of screw hole member 105a relative to the longitudinal axis of the plate, yet may limit translation relative to the plane of bone plate 101 when screw hole member 105a is guided between the screw locking feature 109 and rivet head 148.
Another example of a bone plate 201 that includes a rivet 260 is shown in
As discussed above and as illustrated in
In various embodiments, the locking screw 310 may include a correspondingly threaded head segment 318 with an outer diameter that is considerably larger than the core diameter. However, in various embodiments, the outer diameter of the thread 319 of the screw head segment 318 may be smaller than the outer diameter of thread 321 in screw hole member 305a. In various embodiments, the outer diameter of thread 319 in screw head segment 318 may remain large enough to extend across the motion gap 307 and into the plate member 301, once inserted into the screw hole 305. In some embodiments, screw head 328 may include a locking feature 309 at may enable rigid fixation of screw head 328 inside screw hole member 305a. In particular embodiments, once screw 310 is fixed to screw hole member 305a, screw hole member 305a may translate in a principally axial direction relative to the plate longitudinal axis, for instance, due to the difference in outer diameters between screw head 328, thread 319, and plate thread 321. However, in some embodiments, extension of screw head thread 319 across motion gap 307 and into plate member 301 may limit deflection of screw hole member 305a outside the plane of plate 301.
Also included in some embodiments, in the vicinity of receiving hole 605 are one or more slots 606 extending from the upper surface 602 to the bone contacting surface 603. In various embodiments, at least one substantially C-shaped, E-shaped, or semi-circular slot 606 may extend around a substantial portion of receiving hole 605. In some embodiments, a corresponding slot 606a may extend from the opposite side of the periphery around receiving hole 605. In some embodiments, the end segments of slot 606 may overlap, but not intersect the end segments of corresponding slot 606a. Thus, in various embodiments, the overlapping slots 606 and 606a may enclose elastic beam elements (e.g., spring elements) 608 that may enable elastic translation of receiving hole 605 relative to bone plate 601 in a direction principally parallel to the longitudinal axis 604 of bone plate 601.
In the embodiment illustrated in
In various embodiments, the dimensions and/or the configuration of the spring elements (e.g., elastic beam elements) and/or slots may be varied in order to achieve a desired stiffness and range of elastic displacement of the bone plate relative to the receiving holes.
Some embodiments of the flexible fixation bone plates may include curvilinear and/or spiral-shaped slots.
As shown in
In further embodiments,
As illustrated in
In various embodiments, for assembly, rivet 1338 may include two parts that may be inserted from opposite sides into receiving hole 1305, and the two parts may be rigidly coupled to each other, for instance by laser welding or by a thread feature between central cylinder 1340 and shoulder 1348. Alternatively, as illustrated in
In various other embodiments shown in
In further embodiments,
In still other embodiments,
In other embodiments,
Thus, in order to illustrate a method for elastic fixation of a bone fracture,
In order to illustrate a method for inducing principally parallel axial motion across a bone fracture,
In various other embodiments,
Thus, in order to illustrate a method for inducing elastic compression across a bone fracture,
As illustrated in
Thus, in some embodiments, having an opening with a major dimension in a transverse direction may effectively reduce the bending strength of bone plates, which may fail in bending. Thus in various embodiments, the flexible elements described herein may not have a major dimension extending in transverse direction. This orientation may cause the bone plate to retain a substantial amount of bending strength. As described elsewhere herein, it is desirable to maintain the bending strength of the construct while reducing the axial stiffness of plate, and additionally reducing stress at the screw hole(s) and in the construct as a whole. In various embodiments, stress at the screw hole(s) may cause undesirable or detrimental deformation of the hole(s).
In other embodiments, if the cantilever beam were located transversely ‘in-line’ with the screw hole, the transverse opening may extend over a substantial portion of the plate in order to derive flexibility, which in turn may reduce the bending strength of the plate. Thus, various embodiments disclosed herein employ a combination of two or more cantilever beams located above and below the screw hole (e.g., in the longitudinal plate direction), which may preserve bending strength of the plate.
In still other embodiments described herein, one or more pairs of cantilever beams may be employed, wherein the beams of each cantilever pair are located on opposite sides of the screw hole in longitudinal direction, rather than one cantilever beam element that extends in a principally transverse direction to either one or both sides of the screw hole (lug), depending if the screw hole is located offset from or located on the longitudinal plate midline, respectively.
Other embodiments disclosed herein use pairs of slots that extend through the plate edge, rather than a slot that defines the transverse opening and that surrounds the beam and lug element, wherein the slot remains within the plate surface and does not extend through the plate edge.
Still other embodiments include a set of slots per screw hole, wherein the set combines a central slot that partially surrounds the screw hole without extending through the plate edge with peripheral slots that penetrate through the longitudinal plate edge, rather than one continuous slot per screw hole, whereby the slot defines the transverse opening and surrounds the beam and lug element.
Various other embodiments disclosed herein employ a set of slots to form a principally S-shaped spring element having an upper and a lower cantilever element that is diagonally connected by a central segment that contains the screw hole, rather than a generally I-shaped cantilever beam, for instance. Still other embodiments described herein employ cantilever elements of a width that is substantially smaller than the plate thickness, rather than a cantilever element of a width that is larger than the plate thickness. This may ensure a desired bending direction of the cantilever beam within the plane of the plate rather than out of the plane of the plate.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. Specifically, the disclosed invention may be practiced for fixation of a bone plate to one side of a fracture only, whereby the corresponding side of a fractured bone may be applied to the one plate by alternative means for flexible or rigid fixation. It is understood, therefore, that this disclosure is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present disclosure as defined by the appended claims.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 13/554,119, filed Jul. 20, 2012, which is a divisional of U.S. patent application Ser. No. 13/166,539, filed Jun. 22, 2011, now issued as U.S. Pat. No. 8,882,815, which claims priority to U.S. Provisional Patent Application No. 61/428,745 filed Dec. 30, 2010, entitled “FLEXIBLE PLATE FIXATION OF BONE FRACTURES,” and to U.S. Provisional Patent Application No. 61/357,855 filed Jun. 23, 2010, entitled “FLEXIBLE PLATE FIXATION OF BONE FRACTURES,” the disclosures of which are hereby incorporated by reference in their entirety.
This invention was made with government support under AR061201 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2406832 | Hardinge | Sep 1946 | A |
2580821 | Toufick | Jan 1952 | A |
3807394 | Attenborough | Apr 1974 | A |
4029091 | Von Bezold et al. | Jun 1977 | A |
4338296 | Lobmann et al. | Jul 1982 | A |
4361153 | Slocum et al. | Nov 1982 | A |
4743260 | Burton | May 1988 | A |
4905679 | Morgan | Mar 1990 | A |
4943292 | Foux | Jul 1990 | A |
5306310 | Siebels | Apr 1994 | A |
5423816 | Lin | Jun 1995 | A |
5468242 | Reisberg | Nov 1995 | A |
5578034 | Estes | Nov 1996 | A |
5578036 | Stone et al. | Nov 1996 | A |
5681311 | Foley et al. | Oct 1997 | A |
5709686 | Talos et al. | Jan 1998 | A |
5741258 | Klaue et al. | Apr 1998 | A |
5743913 | Wellisz | Apr 1998 | A |
5984925 | Apgar | Nov 1999 | A |
6093188 | Murray | Jul 2000 | A |
6206882 | Cohen | Mar 2001 | B1 |
6340632 | Fukada et al. | Jan 2002 | B1 |
6364881 | Apgar et al. | Apr 2002 | B1 |
6540746 | Buhler et al. | Apr 2003 | B1 |
6663632 | Frigg | Dec 2003 | B1 |
6755832 | Happomem et al. | Jun 2004 | B2 |
6986771 | Paul et al. | Jan 2006 | B2 |
6989011 | Paul et al. | Jan 2006 | B2 |
7048739 | Konieczynski et al. | May 2006 | B2 |
7175624 | Konieczynski et al. | Feb 2007 | B2 |
7189237 | Huebner | Mar 2007 | B2 |
7276070 | Mückter | Oct 2007 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7377921 | Studer et al. | May 2008 | B2 |
7452370 | Anderson | Nov 2008 | B2 |
7572282 | Boomer et al. | Aug 2009 | B2 |
7591840 | Suddaby | Sep 2009 | B2 |
D603503 | Kriska et al. | Nov 2009 | S |
D603504 | Kriska et al. | Nov 2009 | S |
D603505 | Kriska et al. | Nov 2009 | S |
D603507 | Kriska et al. | Nov 2009 | S |
D603508 | Kriska et al. | Nov 2009 | S |
D603510 | Kriska et al. | Nov 2009 | S |
D603511 | Kriska et al. | Nov 2009 | S |
D603961 | Kriska et al. | Nov 2009 | S |
D603962 | Kriska et al. | Nov 2009 | S |
D603963 | Kriska et al. | Nov 2009 | S |
D603964 | Kriska et al. | Nov 2009 | S |
7621942 | Piehl | Nov 2009 | B2 |
7641675 | Lindemann et al. | Jan 2010 | B2 |
7651517 | Konieczynski et al. | Jan 2010 | B2 |
7749257 | Medoff | Jul 2010 | B2 |
7806914 | Boyd et al. | Oct 2010 | B2 |
7811312 | Stevens et al. | Oct 2010 | B2 |
7833256 | Biedermann et al. | Nov 2010 | B2 |
7842037 | Schulze | Nov 2010 | B2 |
7887569 | Frigg | Feb 2011 | B2 |
7887587 | Griffiths et al. | Feb 2011 | B2 |
7914561 | Konieczynski et al. | Mar 2011 | B2 |
8486070 | Morgan et al. | Jul 2013 | B2 |
8687865 | Wilson et al. | Apr 2014 | B2 |
8790379 | Madey et al. | Jul 2014 | B2 |
8882815 | Bottlang et al. | Nov 2014 | B2 |
8992583 | Bottlang et al. | Mar 2015 | B2 |
9101423 | Hulliger | Aug 2015 | B2 |
9295508 | Bottlang et al. | Mar 2016 | B2 |
9510879 | Bottlang et al. | Dec 2016 | B2 |
9700361 | Bottlang et al. | Jul 2017 | B2 |
20020150671 | Koulik et al. | Oct 2002 | A1 |
20040006343 | Sevrain | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040097937 | Pike et al. | May 2004 | A1 |
20040193155 | Castaneda | Sep 2004 | A1 |
20040220570 | Frigg | Nov 2004 | A1 |
20050090825 | Pfefferle et al. | Apr 2005 | A1 |
20050096657 | Autericque et al. | May 2005 | A1 |
20050116930 | Gates | Jun 2005 | A1 |
20050196421 | Hunter et al. | Sep 2005 | A1 |
20050216008 | Zwirnmann et al. | Sep 2005 | A1 |
20050273105 | Konieczynski et al. | Dec 2005 | A1 |
20050288668 | Brinkhaus | Dec 2005 | A1 |
20060058796 | Hartdegen et al. | Mar 2006 | A1 |
20060116682 | Longo | Jun 2006 | A1 |
20060155282 | Vese | Jul 2006 | A1 |
20060195099 | Bottlang | Aug 2006 | A1 |
20060241612 | Medoff | Oct 2006 | A1 |
20060247638 | Trieu et al. | Nov 2006 | A1 |
20060247639 | Anderson | Nov 2006 | A1 |
20060264949 | Kohut et al. | Nov 2006 | A1 |
20070055251 | Huebner et al. | Mar 2007 | A1 |
20070118127 | Serhan et al. | May 2007 | A1 |
20070213729 | Lindemann et al. | Sep 2007 | A1 |
20080027439 | Sasing | Jan 2008 | A1 |
20080083613 | Oi et al. | Apr 2008 | A1 |
20080147122 | Jackson | Jun 2008 | A1 |
20080147125 | Colleran et al. | Jun 2008 | A1 |
20080200955 | Tepic | Aug 2008 | A1 |
20080275509 | Clifford et al. | Nov 2008 | A1 |
20080306536 | Frigg et al. | Dec 2008 | A1 |
20090030467 | Sonohata et al. | Jan 2009 | A1 |
20090036930 | Allison | Feb 2009 | A1 |
20090043341 | Tyber et al. | Feb 2009 | A1 |
20090062915 | Kohm et al. | Mar 2009 | A1 |
20090118768 | Sixto, Jr. et al. | May 2009 | A1 |
20090118769 | Sixto, Jr. et al. | May 2009 | A1 |
20090118770 | Sixto, Jr. et al. | May 2009 | A1 |
20090125067 | Mazzuca et al. | May 2009 | A1 |
20090125069 | Sixto, Jr. et al. | May 2009 | A1 |
20090125070 | Sixto, Jr. et al. | May 2009 | A1 |
20090157121 | Harris et al. | Jun 2009 | A1 |
20090157123 | Appenzeller et al. | Jun 2009 | A1 |
20090222049 | Frigg et al. | Sep 2009 | A1 |
20090234393 | Sournac et al. | Sep 2009 | A1 |
20090270924 | Wing et al. | Oct 2009 | A1 |
20090318921 | White et al. | Dec 2009 | A1 |
20090318976 | Gabriel et al. | Dec 2009 | A1 |
20100010541 | Boomer et al. | Jan 2010 | A1 |
20100036430 | Hartdegen et al. | Feb 2010 | A1 |
20100076495 | Lindemann et al. | Mar 2010 | A1 |
20100094351 | Haggenmaker et al. | Apr 2010 | A1 |
20100114177 | Piehl | May 2010 | A1 |
20100131012 | Ralph et al. | May 2010 | A1 |
20100131013 | Ralph et al. | May 2010 | A1 |
20100217327 | Vancelette et al. | Aug 2010 | A1 |
20100249850 | Cerynik et al. | Sep 2010 | A1 |
20100305569 | Leuenberger et al. | Dec 2010 | A1 |
20110029024 | Crainich | Feb 2011 | A1 |
20110118742 | Hulliger | May 2011 | A1 |
20110319942 | Bottlang et al. | Dec 2011 | A1 |
20120143193 | Hulliger | Jun 2012 | A1 |
20120277746 | Morgan et al. | Nov 2012 | A1 |
20120310289 | Bottlang et al. | Dec 2012 | A1 |
20130006310 | Bottlang et al. | Jan 2013 | A1 |
20130204304 | Bottlang et al. | Aug 2013 | A1 |
20140330275 | Bottlang et al. | Nov 2014 | A1 |
20150025588 | Bottlang et al. | Jan 2015 | A1 |
20150327896 | Bottlang et al. | Nov 2015 | A1 |
20160074082 | Cremer et al. | Mar 2016 | A1 |
20160081729 | Velikov et al. | Mar 2016 | A1 |
20160157905 | Arellano et al. | Jun 2016 | A1 |
20160166293 | Bottlang et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
104135953 | Nov 2014 | CN |
106794036 | May 2017 | CN |
0615728 | Sep 1994 | EP |
1926445 | Jun 2008 | EP |
2005978 | Dec 2008 | EP |
742618 | Jan 1933 | FR |
2634368 | Jan 1990 | FR |
2009501575 | Jan 2009 | JP |
2010521274 | Jun 2010 | JP |
2015507953 | Mar 2015 | JP |
WO-2005065557 | Jul 2005 | WO |
WO-2007009124 | Jan 2007 | WO |
WO-2007056874 | May 2007 | WO |
WO-2009039430 | Mar 2009 | WO |
WO-2010037984 | Apr 2010 | WO |
WO-2010111350 | Sep 2010 | WO |
WO-2010132252 | Nov 2010 | WO |
WO-2011163387 | Dec 2011 | WO |
WO-2013021357 | Feb 2013 | WO |
WO-2013116642 | Aug 2013 | WO |
WO 2016014977 | Jan 2016 | WO |
Entry |
---|
U.S. Appl. No. 15/047,702, filed Feb. 19, 2016, Bone Plate for Elastic Osteosynthesis. |
U.S. Appl. No. 14/308,286, filed Jun. 18, 2014, Flexible Plate Fixation of Bone Fractures. |
U.S. Appl. No. 14/308,314, filed Jun. 18, 2014, Flexible Plate Fixation of Bone Fractures. |
U.S. Appl. No. 14/808,773, filed Jul. 24, 2015, Flexible Plate Fixation of Bone Fractures. |
“U.S. Appl. No. 13/755,493, Advisory Action mailed Dec. 4, 2015”, 4 pgs. |
“U.S. Appl. No. 13/755,493, Examiner Interview Summary mailed Dec. 4, 2015”, 1 pg. |
“U.S. Appl. No. 13/755,493, Final Office Action mailed Jul. 9, 2015”, 12 pgs. |
“U.S. Appl. No. 13/755,493, Notice of Allowance mailed Dec. 23, 2015”, 5 pgs. |
“U.S. Appl. No. 13/755,493, Response filed Feb. 19, 2015 to Non-Final Office Action mailed Nov. 19, 2014”, 16 pgs. |
“U.S. Appl. No. 13/755,493, Response filed Nov. 12, 2015 to Final Office Action mailed Jul. 9, 2015”, 15 pgs. |
“U.S. Appl. No. 13/755,493, Response filed Dec. 9, 2015 to Advisory Action mailed Dec. 4, 2015”, 12 pgs. |
“U.S. Appl. No. 14/308,286, Notice of Allowance mailed Mar. 23, 2016”, 8 pgs. |
“U.S. Appl. No. 14/308,314, Non Final Office Action mailed Mar. 23, 2016”, 9 pgs. |
“Australian Application Serial No. 2011270934, Response filed Jun. 30, 2014 to First Examiner Report mailed Sep. 12, 2013”, 20 pgs. |
“Australian Application serial No. 2014265031, Non Final Office Action mailed Sep. 21, 2015”, 3 pgs. |
“Australian Application Serial No. 2014265031, Preliminary Amendment filed Jan. 28, 2015”, 13 pgs. |
“Chinese Application Serial No. 201380011448.7, Office Action mailed Dec. 25, 2015”, (W/ English Translation), 27 pgs. |
“European Application Serial No. 11798862.6, Extended European Search Report mailed Mar. 16, 2015”, 12 pgs. |
“European Application Serial No. 13743819.8, Extended European Search Report mailed Nov. 11, 2015”, 9 pgs. |
“European Application Serial No. 13743819.8, Preliminary Amendment filed Mar. 26, 2015”, 11 pgs. |
“International Application Serial No. PCT/US2013/024336, Written Opinion mailed May 15, 2013”, 8 pgs. |
“International Application Serial No. PCT/US2015/042057, International Search Report mailed Oct. 16, 2015”, 4 pgs. |
“International Application Serial No. PCT/US2015/042057, Written Opinion mailed Oct. 16, 2015”, 6 pgs. |
“Standard specification for wrought titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) alloy for surgical implant application, (UNS R56401)”, ASTM F136-11, (2003), 5 pgs. |
“Standard Test Methods for Equipment and Procedures Used in Evaluating the Performance Characteristics of Protective Headgear. Impact Test Apparatus.”, ASMT F1446-13, (2013), 12 pgs. |
Beaupre, G. S, et al., “A Comparison of Unicortical and Bicortical End Screw Attachment of Fracture Fixation Plates”, Journal of Orthopaedic Trauma 6(3), (Feb. 1992), 294-300. |
Bottlang, et al,, “A Nonlocking End Screw Can Decrease Fracture Risk Caused by Locked Plating in the Osteoporotic Diaphysis”, Journal of Bone & Joint Surgery, vol. 91, (2009), 620-627. |
Bottlang, et al., “Effects of Construct Stiffness on Healing of Fractures Stabilzed with Locking Plates”, Journal of Bone & Joint Surgery, vol. 92, (2010), 12-22. |
Davenport, Stephen R. et al., “Dynamic Compression Plate Fixation: A Biomechanical Comparison of Unicortical vs Bicortical Distal Screw Fixation”, Journal of Orthopaedic Trauma 2(2), (Feb. 1988), 146-150. |
Egol, Kenneth A, et al., “Biomechanics of Locked Plates and Screws”. Journal of Orthopaedic Trauma 18(8), (Oct. 2004), 488-493. |
Escott, Benjamin G. et al., “NeuFlex and Swanson Metacarpophalangeal Implants for Rheumatoid Arthritis: Prospective Randomized, Controlled Clinical Trial”, The Journal of hand surgery 35(1), (Jan. 2010), 44-51. |
Fitzpatrick, Dan C. et al., “Relative Stability of Conventional and Locked Plating Fixation in a Model of the Osteoporotic Femoral Diaphysis”, Journal of Clinical Biomechanics 24(2), (Feb. 2009), 203-209. |
Foliart, Donna E, “Synovitis and silicone joint implants: a summary of reported cases”, Journal of Plastic and Reconstructive Surgery 99(1), (Jan. 1997), 245-252. |
Gaggl, A, et al., “Biomechanical properties in titanium implants with integrated maintenance free shock absorbing elements”, Journal of Biomaterials 22(2001), (Nov. 15, 2001), 3061-3066. |
Gard, S. A, et al., “The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation.”, Journal of Rehabilitation Research and Development 40(2), (2003), 109-124. |
Gracis, S. E, et al., “Shock absorbing behavior of five restorative materials used on implants.”, The International journal of prosthodontics 4(3), (Jan. 1992), 282-291. |
“U.S. Appl. No. 14/308,286, Corrected Notice of Allowance mailed Jun. 28, 2016”, 4 pgs. |
“U.S. Appl. No. 14/308,286, Notice of Allowance mailed Aug. 5, 2016”, 7 pgs. |
“U.S. Appl. No. 14/308,314, Final Office Action mailed Aug. 25, 2016”, 8 pgs. |
“U.S. Appl. No. 14/308,314, Response filed Jul. 25, 2016 to Non Final Office Action mailed Mar. 23, 2016”, 11 pgs. |
“U.S. Appl. No. 15/047,702, Notice of Allowance mailed Oct. 7, 2016”, 5 pgs. |
“Australian Application Serial No. 2013214894, First Examiner Report mailed Oct. 6, 2016”, 3 pgs. |
“Australian Application Serial No. 2016203422, First Examiners Report mailed Oct. 19, 2016 ”, 4 pgs. |
“Chinese Application Serial No. 201380011448.7, Response filed Jul. 8, 2016 to Office Action mailed Dec. 25, 2015”, 7 pgs. |
Rockwood, Charles A. et al., Rockwood and Green's fractures in adults, Lippincott Company, (Jan. 1, 1991), 16 pgs. |
“U.S. Appl. No. 13/166,539, Final Office Action mailed May 21, 2014”, 9 pgs. |
“U.S. Appl. No. 13/166,539, Non Final Office Action mailed Jan. 2, 2014”, 10 pgs. |
“U.S. Appl. No. 13/166,539, Non Final Office Action mailed Jun. 28, 2013”, 10 pgs. |
“U.S. Appl. No. 13/166,539, Notice of Allowability mailed Oct. 9, 2014”, 4 pgs. |
“U.S. Appl. No. 13/166,539, Notice of Allowance mailed Aug. 15, 2014”, 7 pgs. |
“U.S. Appl. No. 13/166,539, Notice of Non-compliant Amendment mailed Feb. 20, 2014”, 3 pgs. |
“U.S. Appl. No. 13/166,539, Preliminary Amendment filed Jul. 19, 2012”, 7 pgs. |
“U.S. Appl. No. 13/166,539, Response filed Jan. 28, 2014 to Non Final Office Action mailed Jan. 2, 2014”, 3 pgs. |
“U.S. Appl. No. 13/166,539, Response filed Jan. 30, 2014 to Non Final Office Action mailed Jan. 2, 2014”, 3 pgs. |
“U.S. Appl. No. 13/166,539, Response filed May 2, 2014 to Non Final Office Aciton mailed Feb. 20, 2014”, !4 pgs. |
“U.S. Appl. No. 13/166,539, Response filed May 6, 2013 to Restriction Requirement mailed Mar. 5, 2013”, 9 pgs. |
“U.S. Appl. No. 13/166,539, Response filed Jul. 21, 2014 to Final Office Action mailed May 21, 2014”, 13 pgs. |
“U.S. Appl. No. 13/166,539, Response filed Oct. 28, 2013 to Non Final Office Action mailed Jun. 28, 2013”, 10 pgs. |
“U.S. Appl. No. 13/166,539, Restriction Requirement mailed Mar. 5, 2013”, 6 pgs. |
“U.S. Appl. No. 13/490,249, Amendment filed Jan. 28, 2014”, 3 pgs. |
“U.S. Appl. No. 13/490,249, Non Final Office Action mailed Sep. 19, 2013”, 10 pgs. |
“U.S. Appl. No. 13/490,249, Notice of Allowance mailed Mar. 27, 2014”, 7 pgs. |
“U.S. Appl. No. 13/490,249, Response filed Jan. 21, 2014 to Non Final Office Action mailed Sep. 19, 2013”, 12 pgs. |
“U.S. Appl. No. 13/490,249, Response filed May 7, 2013 to Restriction Requirement mailed Mar. 7, 2013”, 11 pgs. |
“U.S. Appl. No. 13/490,249, Response filed Sep. 3, 2013 to Restriction Requirement mailed Jul. 2, 2013”, 6 pgs. |
“U.S. Appl. No. 13/490,249, Restriction Requirement mailed Mar. 7, 2013”, 7 pgs. |
“U.S. Appl. No. 13/490,249, Restriction Requirement mailed Jul. 2, 2013”, 8 pgs. |
“U.S. Appl. No. 13/490,249, Supplemental Amendment filed Jan. 30, 2014”, 3 pgs. |
“U.S. Appl. No. 13/554,119, Advisory Action mailed Feb. 12, 2014”, 2 pgs. |
“U.S. Appl. No. 13/554,119, Final Office Action mailed Sep. 19, 2013”, 9 pgs. |
“U.S. Appl. No. 13/554,119, Non Final Office Action mailed Mar. 13, 2013”, 6 pgs. |
“U.S. Appl. No. 13/554,119, Non Final Office Action mailed Jul. 16, 2014”, 7 pgs. |
“U.S. Appl. No. 13/554,119, Notice of Allowance mailed Nov. 24, 2014”, 5 pgs. |
“U.S. Appl. No. 13/554,119, Preliminary Amendment filed Jun. 20, 2012”, 5 pgs. |
“U.S. Appl. No. 13/554,119, Response filed Jan. 28, 2014 to Final Office Action mailed Sep. 19, 2013”, 3 pgs. |
“U.S. Appl. No. 13/554,119, Response filed Mar. 19, 2014 to Advisory Action mailed Feb. 12, 2014”, 13 pgs. |
“U.S. Appl. No. 13/554,119, Response filed Aug. 13, 2013 to Non Final Office Action mailed Mar. 13, 2013”, 8 pgs. |
“U.S. Appl. No. 13/554,119, Response filed Oct. 16, 2014 to Non Final Office Action mailed Jul. 16, 2014”, 12 pgs. |
“U.S. Appl. No. 13/755,493, Non Final Office Action mailed Nov. 19, 2014”, 13 pgs. |
“U.S. Appl. No. 13/755,493, Preliminary Amendment mailed Jan. 28, 2014”, 3 pgs. |
“U.S. Appl. No. 13/755,493, Response filed Oct. 28, 2014 to Restriction Requirement mailed Oct. 9, 2014”, 9 pgs. |
“U.S. Appl. No. 13/755,493, Restriction Requirement mailed Oct. 9, 2014”, 6 pgs. |
“U.S. Appl. No. 13/755,493, Supplemental Preliminary Amendment mailed Jan. 30, 2014”, 3 pgs. |
“U.S. Appl. No. 14/308,286, Preliminary Amendment filed Sep. 17, 2014”, 7 pgs. |
“U.S. Appl. No. 14/308,314, Preliminary Amendment filed Sep. 17, 2014”, 7 pgs. |
“Australian Application Serial No. 2011270934, First Examiner Report mailed Sep. 12, 2013”, 4 pgs. |
“European Application Serial No. 11798862.6, Office Action mailed Feb. 1, 2013”, 2 pgs. |
“European Application Serial No. 11798862.6, Response filed Jul. 30, 2013 to Office Action mailed Feb. 1, 2013”, 8 pgs. |
“International Application Serial No. PCT/US2011/041484, International Preliminary Report on Patentability mailed Jan. 10, 2013”, 6 pgs. |
“International Application Serial No. PCT/US2011/041484, International Search Report mailed Feb. 17, 2012”, 4 pgs. |
“International Application Serial No. PCT/US2011/041484, Written Opinion mailed Feb. 17, 2012”, 4 pgs. |
“International Application Serial No. PCT/US2013/024336, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 10 pgs. |
“International Application Serial No. PCT/US2013/024336, International Search Report mailed May 15, 2013”, 4 pgs. |
“U.S. Appl. No. 14/308,314, Non Final Office Action dated Feb. 7, 2017”, 9 pgs. |
“U.S. Appl. No. 14/308,314, Response filed Nov. 23, 2016 to Final Office Action dated Aug. 25, 2016”, 10 pgs. |
“U.S. Appl. No. 14/808,773, Preliminary Amendment Filed Feb. 9, 2017”, 3 pgs. |
“U.S. Appl. No. 15/047,702, Notice of Allowance dated Feb. 7, 2017”, 5 pgs. |
“U.S. Appl. No. 15/047,702, PTO Response to Rule 312 Communication dated Feb. 17, 2017”, 2 pgs. |
“Australian Application Serial No. 2013214894, Amendment filed Mar. 8, 2017”, 2 pgs. |
“Australian Application Serial No. 2013214894, Response Filed Mar. 3, 2017 to Office Action dated Oct. 6, 2017”, 17 pgs. |
“Australian Application Serial No. 2016203422, Response Filed Mar. 2, 2017 to Office Action dated Oct. 19, 2016”, 9 pgs. |
“Canadian Application Serial No. 2,803,585, Office Action dated Jan. 25, 2017”, 4 pgs. |
“Chinese Application Serial No. 201380011448.7, Office Action dated Oct. 27, 2016”, (W/ English Translation), 19 pgs. |
“Chinese Application Serial No. 201380011448.7, Response filed Jan. 11, 2017 to Office Action dated Oct. 27, 2016”, (With English translation of claims), 10 pgs. |
“International Application Serial No. PCT/US2015/042057, International Preliminary Report on Patentability dated Feb. 9, 2017”, 8 pgs. |
“Japanese Application Serial No. 2014-555748, Office Action dated Nov. 15, 2016”, (W/ English Translation), 6 pgs. |
“Japanese Application Serial No. 2014-555748, Response Filed Feb. 15, 2017 to Office Action dated Nov. 15, 2016”, (W/ English Translation), 14 pgs. |
“Canadian Application Serial No. 2,803,585, Response filed Jul. 25, 2017 to Office Action dated Jan. 25, 2017”, 14 pgs. |
“Chinese Application Serial No. 201380011448.7, Office Action dated May 23, 2017”, (W/ English Translation), 4 pgs. |
“Chinese Application Serial No. 201380011448.7, Response filed Jul. 24, 2017 to Office Action dated May 23, 2017”, w/English Claims, 8 pgs. |
“European Application Serial No. 11798862.6, Communication Pursuant to Article 94(3) EPC dated May 19, 2017”, 10 pgs. |
“U.S. Appl. No. 14/308,314, Notice of Allowance dated Jun. 12, 2017”, 5 pgs. |
“U.S. Appl. No. 15/047,702, Notice of Allowance dated May 25, 2017”, 6 pgs. |
“U.S. Appl. No. 15/616,608, Preliminary Amendment filed Jun. 23, 2017”, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20150230840 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61357855 | Jun 2010 | US | |
61428745 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13166539 | Jun 2011 | US |
Child | 13554119 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13554119 | Jul 2012 | US |
Child | 14630938 | US |