Flexible shaft extender and method of using same

Information

  • Patent Grant
  • 9955967
  • Patent Number
    9,955,967
  • Date Filed
    Tuesday, October 28, 2014
    10 years ago
  • Date Issued
    Tuesday, May 1, 2018
    6 years ago
Abstract
An extender for use in an electro-mechanical surgical system includes a surgical attachment that may be detachably coupled to an electro-mechanical driver device via a flexible shaft. The extender is a substantially rigid extender that includes a proximal end that may be detachably coupled to a distal end of the flexible shaft. The extender also includes a distal end that may be detachably coupled to the surgical attachment. The extender also includes at least one rotatable drive shaft configured to engage and be secured with a respective rotatable drive shaft of the flexible shaft such that rotation of the respective rotatable drive shaft of the flexible shaft by the electro-mechanical driver device causes the at least one rotatable drive shaft of the extender to rotate, thereby rotating a complementary connector of the surgical attachment so as to operate the surgical attachment.
Description
FIELD OF THE INVENTION

The present disclosure relates to a surgical device, and more particularly to a flexible shaft extender, and a method for using the same.


BACKGROUND

Various surgical systems are known in which a surgical attachment is attached to a flexible shaft. In these systems, a surgical attachment may typically be manipulated and/or positioned within the patient's body by the user holding the flexible shaft at a location near to the surgical attachment. For surgical locations within the patient's body that are difficult to access, the user may be required to hold the flexible shaft at a substantial distance from its point of connection to the surgical attachment. However, the flexibility of the flexible shaft may hinder a user's ability to accurately position the surgical attachment within the body. This may be problematic when the position of the surgical attachment is well within the patient's body and the user is forced to hold the flexible shaft at a substantial distance from its point of connection to the surgical attachment. The resulting lack of accuracy in positioning and manipulating the surgical attachment may negatively impact the effectiveness of the surgical attachment in performing the surgical procedure.


SUMMARY

The present invention relates to an extender for a flexible shaft of an electro-mechanical surgical system. The flexible shaft extender is substantially rigid. The flexible shaft extender is configured to be coupled at one end to the flexible shaft of an electro-mechanical surgical system and to be coupled at its other end to a surgical attachment. Advantageously, the flexible shaft extender includes a pair of rotatable drive shafts that are configured to engage and be secured with rotatable drive shafts of the flexible shaft of the electro-mechanical surgical system. In this manner, rotation of the rotatable drive shafts of the flexible shaft by an electro-mechanical driver device may cause the drive shafts of the flexible shaft extender to rotate, thereby rotating the complementary connectors of the surgical attachment so as to operate the surgical attachment.


Furthermore, the flexible shaft extender may include a data wiring harness or data cable which is configured to attach to and communicate with the surgical attachment and the data cable of the flexible shaft. In this manner, data, such as usage data, operating data, etc. may be conveyed via the flexible shaft extender between the surgical attachment and the data cable of the flexible shaft.


The present invention provides, in an example embodiment, for a surgical attachment used in an electro-mechanical surgical system that is coupleable to an electro-mechanical driver device via a flexible shaft, a substantially rigid extender that includes: a proximal end configured to be detachably coupled to a distal end of the flexible shaft; a distal end configured to be detachably coupled to the surgical attachment; at least one rotatable drive shaft configured to engage and be secured with a respective rotatable drive shaft of the flexible shaft such that rotation of the respective rotatable drive shaft of the flexible shaft by the electro-mechanical driver device causes the at least one rotatable drive shaft of the extender to rotate, thereby rotating a complementary connector of the surgical attachment so as to operate the surgical attachment. The extender may be autoclavable. The extender may include a memory unit. The memory unit may be configured to store one or more of serial number data, an attachment type identifier data and a usage data. One or more of the serial number data and the ID data may be configured as read-only data. The serial number data may be data uniquely identifying the extender. The ID data may be data identifying the type of the extender. The usage data may represent a number of times the extender has been used. The extender may include a data cable configured to transfer data between the memory unit and the electro-mechanical driver device. The extender may also include a data cable configured to transfer data-between a memory unit located in the surgical attachment and the electro-mechanical driver device.


The present invention also provides, in an example embodiment, a method for performing a surgical procedure, the method comprising the steps of: detachably coupling a proximal end of an extender to a flexible shaft, the flexible shaft being coupled to an electro-mechanical driver device, the extender being substantially rigid; detachably coupling a distal end of the extender to a surgical attachment such that at least one rotatable drive shaft engages and is secured with a respective rotatable drive shaft of the flexible shaft; rotating the respective rotatable drive shaft of the flexible shaft by the electro-mechanical driver device so as to cause the at least one rotatable drive shaft of the extender to rotate; and rotating, by the at least one rotatable drive shaft of the extender, a complementary connector of the surgical attachment so as to operate the surgical attachment. The method may include the step of storing in a memory unit of the extender one or more of serial number data, an attachment type identifier data and a usage data. The method may include the step of configuring one or more of the serial number data and the ID data as read-only data. The serial number data may be data uniquely identifying the extender. The ID data may be data identifying the type of the extender. The usage data may represent a number of times the extender has been used. The method may include the step of transferring, via a data cable located within the extender, data between the memory unit and the electro-mechanical driver device. The method may include the step of storing in a memory unit of the surgical attachment one or more of serial number data, an attachment type identifier data and a usage data. The method may also include the step of transferring, via a data cable located within the extender, data between the memory unit and the electro-mechanical driver device.


Additional features of the flexible shaft extender of the present invention are discussed in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a surgical system, according to an example embodiment of the present invention.



FIG. 1B is a side view, partially in section, of a flexible shaft, according to an example embodiment of the present invention.



FIG. 1C is a cross-sectional view of the flexible shaft taken along the line 1C-1C shown in FIG. 1B.



FIG. 1D is a rear end view of a first coupling of the flexible shaft, according to an example embodiment of the present invention.



FIG. 1E is a front end view of a second coupling of the flexible shaft, according to an example embodiment of the present invention.



FIG. 2 is an exploded perspective view of a flexible shaft extender, according to an example embodiment of the present invention.



FIGS. 3A to 3E illustrate various views of the distal tip assembly, according to an example embodiment of the present invention.



FIGS. 4A to 4D illustrate various views of the distal end tip, according to an example embodiment of the present invention.



FIGS. 5A to 5E illustrate various views of the DLU pin sealing element, according to an example embodiment of the present invention.



FIGS. 6A to 6C illustrate various views of the distal pin positioner, according to an example embodiment of the present invention.



FIGS. 7A to 7E illustrate various views of the tube assembly, according to an example embodiment of the present invention.



FIGS. 8A to 8C illustrate various views of the tube, according to an example embodiment of the present invention.



FIGS. 9A to 9C illustrate various views of the tube cap, according to an example embodiment of the present invention.



FIGS. 10A to 10D illustrate various views of the handle cap assembly, according to an example embodiment of the present invention.



FIGS. 11A to 11E illustrate various views of the handle cap, according to an example embodiment of the present invention.



FIGS. 12A to 12J illustrate various views of the keyplate, according to an example embodiment of the present invention.



FIGS. 13A to 13G illustrate various views of the quick connect collar, according to an example embodiment of the present invention.



FIG. 14 is an exploded view of the drive socket assembly, according to an example embodiment of the present invention.



FIGS. 15A to 15F illustrate various views of the drive socket spring, according to an example embodiment of the present invention.



FIGS. 16A and 16B illustrate various views of the drive socket sleeve, according to an example embodiment of the present invention.



FIGS. 17A to 17C illustrate various views of the drive shafts, according to an example embodiment of the present invention.



FIGS. 18A to 18C illustrate various views of the handle, according to an example embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1A is a surgical system 100, according to an example embodiment of the present invention. The surgical system 100 includes an electro-mechanical driver device 110 detachably coupled to a surgical attachment 120. Such an electro-mechanical driver device is described in, for example, U.S. patent application Ser. No. 09/723,715, entitled “Electro-Mechanical Surgical Device,” filed on Nov. 28, 2000, now issued as U.S. Pat. No. 6,793,652, U.S. patent application Ser. No. 09/836,781, entitled “Electro-Mechanical Surgical Device, filed on Apr. 17, 2001, now issued as U.S. Pat. No. 6,981,941, and U.S. patent application Ser. No. 09/887,789, entitled “Electro-Mechanical Surgical Device,” filed on Jun. 22, 2001, now issued as U.S. Pat. No. 7,032,798, each of which is expressly incorporated herein in its entirety by reference. The electro-mechanical driver device 110 may include, for example, a remote power console (RPC) 105, which includes a housing 115 having a front panel 125. Mounted on the front panel 125 are a display device 130 and indicators 135a, 135b. A connection slot 140 is also provided on the front panel 125. The electro-mechanical driver device 110 may also include a video display 145, e.g., a television monitor, computer monitor, CRT or other viewing device, attached to the RPC 105. The video display 145 may receive, for example, image signals (e.g., video signals) from an imaging device 195. The electro-mechanical driver device 110 may also include a reception system 150 having a receiver or transceiver 155 and circuitry 160 operable to convert signals received from the imaging device 195 into a form suitable for display on the video display 145. The reception system 150 may also include a memory device 165 for buffering and/or storing processed image data received from the imaging device 195.


A flexible shaft 170 may extend from the housing 115 and may be detachably secured thereto via a first coupling 175. The distal end 180 of the flexible shaft 170 may include a second coupling 185 adapted to detachably secure the surgical attachment 120 to the distal end 180 of the flexible shaft 170.


Disposed within the interior channel of the flexible shaft 170, and extending along the length thereof, may be rotatable shafts, steering cables, one or more data transfer cables and power transfer leads, all of which terminate at the second coupling 185 at the distal end 180 of the flexible shaft 170. The electro-mechanical driver device 110 may include a motor system (not shown), which includes one or more motors configured to rotate the drive shafts and to apply tension or otherwise drive the steering cables to thereby steer the distal end 180 of the flexible shaft 170.


Various types of surgical instruments or attachments 190 may be attached to the distal end 180 of the flexible shaft 170. The surgical instrument or attachment may be, for example, a surgical stapler, a surgical cutter, a surgical stapler-cutter, a linear surgical stapler, a linear surgical stapler-cutter, a circular surgical stapler, a circular surgical stapler-cutter, a surgical clip applier, a surgical clip ligator, a surgical clamping device, a vessel expanding device, a lumen expanding device, a scalpel, a fluid delivery device or any other type of surgical instrument. Such surgical instruments are described, for example, in U.S. patent application Ser. No. 09/324,451, entitled “A Stapling Device for Use with an Electromechanical Driver Device for Use with Anastomosing, Stapling, and Resecting Instruments,” now issued as U.S. Pat. No. 6,315,184, U.S. patent application Ser. No. 09/324,452, entitled “Electro-mechanical Driver Device for Use with Anastomosing, Stapling, and Resecting Instruments,” now issued as U.S. Pat. No. 6,443,973, U.S. patent application Ser. No. 09/351,534, entitled “Automated Surgical Stapling System,” now issued as U.S. Pat. No. 6,264,087, U.S. patent application Ser. No. 09/510,926, entitled “A Vessel and Lumen Expander Attachment for Use with an Electro-mechanical Driver Device,” now issued as U.S. Pat. No. 6,378,061, U.S. patent application Ser. No. 09/510,927, entitled “Electro-mechanical Driver and Remote Surgical Instruments Attachment Having Computer Assisted Control Capabilities,” now issued as U.S. Pat. No. 6,716,233, U.S. patent application Ser. No. 09/510,931, entitled “A Tissue Stapling Attachment for Use with an Electro-mechanical Driver Device,” now issued as U.S. Pat. No. 6,533,157, U.S. patent application Ser. No. 09/510,932, entitled “A Fluid Delivery Mechanism for Use with Anastomosing, Stapling, and Resecting Instruments,” now issued as U.S. Pat. No. 6,491,201, and U.S. patent application Ser. No. 09/510,933, entitled “A Fluid Delivery Device for Use with Anastomosing, Stapling, and Resecting Instruments,” now issued as U.S. Pat. No. 6,488,197, each of which is expressly incorporated herein in its entirety by reference thereto.


Referring to FIG. 1B, there is seen a side view, partially in section, of the flexible shaft 170. According to an example embodiment, the flexible shaft 170 includes a tubular sheath 28, which may include a coating or other sealing arrangement to provide a fluid-tight seal between the interior channel 40 thereof and the environment. The sheath 28 may be formed of a tissue-compatible, sterilizable elastomeric material. The sheath 28 may also be formed of a material that is autoclavable. Disposed within the interior channel 40 of the flexible shaft 170, and extending along the entire length thereof, may be a first rotatable drive shaft 30, a second rotatable drive shaft 32, a first steering cable 34, a second steering cable 35, a third steering cable 36, a fourth steering cable 37 and a data transfer cable 38. FIG. 1C is a cross-sectional view of the flexible shaft 170 taken along the line 1C-1C shown in FIG. 1B and further illustrates the several cables 30, 32, 34, 35, 36, 37, 38. Each distal end of the steering cables 34, 35, 36, 37 is affixed to the distal end 180 of the flexible shaft 170. Each of the several cables 30, 32, 34, 35, 36, 37, 38 may be contained within a respective sheath.


Referring now to FIG. 1D, there is seen a rear end view of the first coupling 175. The first coupling 175 includes a first connector 44, a second connector 48, a third connector 52 and a fourth connector 56, each rotatably secured to the first coupling 175. Each of the connectors 44, 48, 52, 56 includes a respective recess 46, 50, 54, 58. As shown in FIG. 1D, each recess 46, 50, 54, 58 may be hexagonally shaped. It should be appreciated, however, that the recesses 46, 50, 54, 58 may have any shape and configuration to non-rotatably couple and rigidly attach the connectors 44, 48, 52, 56 to respective drive shafts of the motor arrangement contained within the housing 12, as more fully described below. It should be appreciated that complementary projections may be provided on respective drive shafts of the motor arrangement to thereby drive the drive elements of the flexible shaft 170 as described below. It should also be appreciated that the recesses may be provided on the drive shafts and complementary projections may be provided on the connectors 44, 48, 52, 56. Any other coupling arrangement configured to non-rotatably and releasably couple the connectors 44, 48, 52, 56 and the drive shafts of the motor arrangement may be provided.


One of the connectors 44, 48, 52, 56 is non-rotatably secured to the first drive shaft 30, and another one of the connectors 44, 48, 52, 56 is non-rotatably secured to the second drive shaft 32. The remaining two of the connectors 44, 48, 52, 56 engage with transmission elements configured to apply tensile forces on the steering cables 34, 35, 36, 37 to thereby steer the distal end 180 of the flexible shaft 170. The data transfer cable 38 is electrically and logically connected with the data connector 60. The data connector 60 includes, for example, electrical contacts 62, corresponding to and equal in number to the number of individual wires contained in the data cable 38. The first coupling 175 includes a key structure 42 to properly orient the first coupling 175 to a mating and complementary coupling arrangement disposed on the housing 115. Such key structure 42 may be provided on either one, or both, of the first coupling 175 and the mating and complementary coupling arrangement disposed on the housing 115. The first coupling 175 may include a quick-connect type connector, which may use, for example, a simple pushing motion to engage the first coupling 175 to the housing 115. Seals may be provided in conjunction with any of the several connectors 44, 48, 52, 56, 60 to provide a fluid-tight seal between the interior of the first coupling 175 and the environment.


Referring now to FIG. 1E, there is seen a front end view of the second coupling 185 of the flexible shaft 170. The second coupling 185 includes a first connector 66 and a second connector 68, each being rotatably secured to the second coupling 185 and each being non-rotatably secured to a distal end of a respective one of the first and second drive shafts 30, 32. A quick-connect type fitting 64 is provided on the second coupling 185 for detachably securing the surgical instrument or attachment thereto. The quick-connect type fitting 64 may be, for example, a rotary quick-connect type fitting, a bayonet type fitting, etc. A key structure 74 is provided on the second coupling 185 for properly aligning the surgical instrument or attachment to the second coupling 185. The key structure or other arrangement for properly aligning the surgical instrument or attachment to the flexible shaft 170 may be provided on either one, or both, of the second coupling 185 and the surgical instrument or attachment. In addition, the quick-connect type fitting may be provided on the surgical instrument or attachment. A data connector 70, having electrical contacts 72, is also provided in the second coupling 185. Like the data connector 60 of the first coupling 175, the data connector 70 of the second coupling 185 includes the contacts 72 electrically and logically connected to the respective wires of the data transfer cable 38 and the contacts 62 of the data connector 60. Seals may be provided in conjunction with the connectors 66, 68, 70 to provide a fluid-tight seal between the interior of the second coupling 185 and the environment.


Disposed within the housing 115 of the remote power console 105 are electro-mechanical driver elements configured to drive the drive shafts 30, 32 and the steering cables 34, 35, 36, 37 to thereby operate the electro-mechanical surgical device 10 and the surgical instrument or attachment attached to the second coupling 185. Electric motors, each operating via a power source, may be disposed in the remote power console 105. Any appropriate number of motors may be provided, and the motors may operate via battery power, line current, a DC power supply, an electronically controlled DC power supply, etc. It should also be appreciated that the motors may be connected to a DC power supply, which is in turn connected to line current and which supplies the operating current to the motors.



FIG. 2 is an exploded perspective view of a flexible shaft extender 10, according to an example embodiment of the present invention. The flexible shaft extender 10 provides a substantially rigid handle that attaches to the second coupling 185 at the distal end 180 of the flexible shaft 170. The flexible shaft extender 10 includes a distal tip assembly 201, a tube assembly 202, a distal end O-ring 203, a handle cap assembly 204, a pair of drive shafts 205, a retention pin 206, a handle 207, a handle screw 208, a handle O-ring 209, a pair of tubes (e.g., of teflon) 210, a bearing block 211 and a pin block 212.



FIGS. 3A to 3E illustrate various views of the distal tip assembly 201. As shown in FIG. 3A, the distal tip assembly 201 includes a distal end tip 301, a pair of bearings 302, a pair of sealing elements 303, a distal pin positioner 304, a DLU pin sealing element 305 and a dowel pin 306. The distal tip assembly 201 is configured to have a surgical attachment attached thereto. When the flexible shaft extender 10 is assembled, the distal tip assembly 201 is attached to the distal end of the tube assembly 202.



FIGS. 4A to 4D illustrate various views of the distal end tip 301. The distal end tip 301 includes two stepped bores 3011 and 3012. In addition, the distal end tip 301 includes a centrally-located threaded bore 3013. In addition, the distal end tip 301 includes a rectangular longitudinal opening 3014.



FIGS. 5A to 5E illustrate various views of the DLU pin sealing element 305. FIGS. 6A to 6C illustrate various views of the distal pin positioner 304.


Referring back to FIGS. 3B and 3D, there is shown the various components of the distal tip assembly 201 in the assembled condition. As shown in FIG. 3B, the pair of bearings 302 are inserted within the two stepped bores 3011 and 3012 of the distal end tip 301. As shown in FIGS. 3D and 3E, the distal pin positioner 304 is inserted into the distal end tip 301 and fits within the rectangular longitudinal opening 3014 and is flush with the distal-most surface of the distal end tip. The DLU pin sealing element 305 maintains the distal pin positioner 304 within the rectangular longitudinal opening 3014 of the distal end tip 301.



FIGS. 7A to 7E illustrate various views of the tube assembly 202. For instance, FIG. 7E is an exploded view of the tube assembly 202. The tube assembly 202 includes a tube 901, a tube cap 902, a wire retention tube 903, a screw 904 and a distal end O-ring 905.



FIGS. 8A to 8C illustrate various views of the tube 901. FIGS. 9A to 9C illustrate various views of the tube cap 902. The tube cap 902 may include first second, third and fourth orifices 9021, 9022, 9023 and 9024 and a central orifice 9025.


Referring back to FIG. 7D, there is shown the various components of the tube assembly 202 in the assembled condition. As shown in FIG. 7D, the tube 901 may be welded to the tube cap 902. The wire retention tube 903 is arranged longitudinally within the tube 901 and may be welded to the tube cap 902 so as to be longitudinally aligned with the orifice 9022 of the tube cap 902. The screw 904 is inserted through the central orifice 9025 of the tube cap. The distal end O-ring 905 is retained around the screw 904 in a distal recess of the tube cap 902.



FIGS. 10A to 10D illustrate various views of the handle cap assembly 204. FIG. 10A is an exploded view of the handle cap assembly 204. The handle cap assembly 204 includes a handle cap 1601, a keyplate 1602, a quick connect collar 1603, a pair of bearings 1604, a pair of proximal sealing elements 1605, a screw 1606, a wiring harness assembly 1607, an outboard shim 1608, an inboard shim 1609, a spring 1610, a handle O-ring 1611, a drive socket assembly 1612, a drive socket spring 1613, a quick connect spring 1614, a bearing spacer 1615 and potting 1616.


The wiring harness assembly 1607 includes at its proximal end a device having a connector (e.g., for connection to the data transfer cable 38 of the flexible shaft 170), a memory unit 174 that may store various types of data, and one or more wires or cables extending distally therefrom. An exemplary memory unit 174 is described in, for example, U.S. patent application Ser. No. 09/723,715, entitled “Electro-Mechanical Surgical Device,” filed on Nov. 28, 2000, now issued as U.S. Pat. No. 6,793,652, U.S. patent application Ser. No. 09/836,781, entitled “Electro-Mechanical Surgical Device, filed on Apr. 17, 2001, now issued as U.S. Pat. No. 6,981,941, and U.S. patent application Ser. No. 09/887,789, entitled “Electro-Mechanical Surgical Device,” filed on Jun. 22, 2001, now issued as U.S. Pat. No. 7,032,798, each of which, as stated above, is expressly incorporated herein in its entirety by reference. For instance, the memory unit 174 may store, for instance, serial number data 180, an attachment type identifier data 182 and a usage data 184. Memory unit 174 may additionally store other data. Both the serial number data 180 and the ID data 182 may be configured as read-only data. In the example embodiment, serial number data 180 is data uniquely identifying the particular flexible shaft extender, whereas the ID data 182 is data identifying the type of the flexible shaft extender, such as, for example, a flexible shaft extender of a given length. The usage data 184 represents usage of the particular flexible shaft extender, such as, for example, the number of times the flexible shaft extender has been used.


It should be appreciated that the flexible shaft extender 10 may be designed and configured to be used a single time or multiple times. Accordingly, the usage data 184 may be used to determine whether the flexible shaft extender 10 has been used and whether the number of uses has exceeded the maximum number of permitted uses. An attempt to use the flexible shaft extender 10 after the maximum number of permitted uses has been reached may generate an ERROR condition.



FIGS. 11A to 11E illustrate various views of the handle cap 1601. FIGS. 12A to 12J illustrate various views of the keyplate 1602. FIGS. 13A to 13G illustrate various views of the quick connect collar 1603.



FIG. 14 is an exploded view of the drive socket assembly 1612. The drive socket assembly 1612 includes a drive socket 2601 and a drive socket sleeve 2602. FIGS. 15A to 15F illustrate various views of the drive socket spring 2601. The drive socket spring 2601 has a longitudinal slit 2702 at its distal end and a centrally-disposed, longitudinally-arranged bore 2701. FIGS. 16A and 16B illustrate various views of the drive socket sleeve 2602.


Referring back to FIG. 10B, there is shown the various components of the handle cap assembly 204 in the assembled condition. As shown in FIG. 10B, the keyplate 1602 is mounted to the proximal surface of the handle cap 1601 by the screw 1606. The quick connect collar 1603 is retained against the proximal surface of the handle cap 1601 by being in locked engagement between the keyplate 1602 and the handle cap 1601. The quick connect collar 1603 is configured to be detachably coupled to the second coupling 185 at the distal end 180 of the flexible shaft 170. The pair of bearings 1604 fit within corresponding orifices 1617 of the handle cap 1601. The pair of orifices 1617 of handle cap 1601 are configured to engage and rotatably secure to a corresponding one of the first rotatable drive shaft 30 and the second rotatable drive shaft 32 of the electro-mechanical driver device 110. In particular, one each of the bearing spacers 1615, the proximal sealing elements 1605 and the bearings 1604 are mounted on a respective drive socket 2601, and operate to rotatably retain the drive socket 2601 within respective orifices 1617 of the handle cap 1601 and, in turn, the drive sockets 2601 non-rotatably retain corresponding rotatable drive shafts 30, 32 of the electro-mechanical driver device 110. The wiring harness 1607 is retained within the handle cap assembly 204 such that a proximal end is accessible via an opening in the keyplate 1602, and a distal end extends to the distal end of the tube assembly 202 and out of an orifice of the distal tip assembly 201. In this manner, data may be conveyed via the wiring harness 1607 from a surgical attachment attached to the distal tip assembly 201 to the data transfer cable 38 within the flexible shaft 170.



FIGS. 17A to 17C illustrate various views of the drive shafts 205. In the example embodiments discussed and illustrated herein, the flexible shaft extender 10 includes two drive shafts 205, though any number, e.g., one or more, drive shafts may be employed. The drive shafts 205 are rotatable within the flexible shaft extender 10 so as to rotate a respective component of the surgical attachment. The proximal ends of the drive shafts 205 are insertable within and rotatably secured within the bore 2701 of the drive socket 2601.



FIGS. 18A to 18C illustrate various views of the handle 207. When the flexible shaft extender 10 is assembled, the rotatable drive shafts 205 are positioned within the tubes 210, which may be made of a material, e.g., teflon, that minimizes the friction between the rotatable drive shafts 205 and the tubes 210.


In use, the quick connect collar 1603 is attached to the second coupling 185 at the distal end 180 of the flexible shaft 170. In this manner, the first connector 66 and the second connector 68 of the second coupling 185, that engage and are rotatably secured with first and second rotatable drive shafts 30 and 32, may also engage and be rotatably secured with the drive socket assembly 1612, which in turn engages and is rotatably secured with the proximal ends of the drive shafts 205.


In addition, a surgical attachment 190 may be attached to the distal tip assembly 201. In this manner, the distal ends of the drive shafts 205 may engage and be rotatably secured with complementary connectors of the surgical attachment 190. Rotation of the first and second rotatable drive shafts 30 and 32 of the flexible shaft 170 by the electro-mechanical driver device 110 cause the drive shafts 205 of the flexible shaft extender 10 to rotate, which thereby rotate the complementary connectors of the surgical attachment 190 so as to operate the surgical attachment 190. Furthermore, data, such as usage data, operating data, etc. may be conveyed between the surgical attachment 190 and the data transfer cable 38 of the flexible shaft 170, and from the memory unit 174 of the flexible shaft extender 10 to the data transfer cable 38 of the flexible shaft 170.


The flexible shaft extender 10 provides a substantially rigid device that may be inserted by a user into a surgical site. The flexible shaft extender 10 may provide a user with improved control of the surgical attachment 190, as compared to the use of, e.g., a surgical attachment 190, that is attached directly to, e.g., the flexible shaft 170. For instance, when a surgical attachment is attached to a conventional flexible shaft, the surgical attachment is typically manipulated and/or positioned within the patient's body by the user holding the flexible shaft at a location near to the surgical attachment. For surgical locations within the patient's body that are difficult to access, the user may be required to hold the flexible shaft at a substantial distance from its point of connection to the surgical attachment. However, the flexibility of the flexible shaft may hinder a user's ability to accurately position the surgical attachment within the body. This may be problematic when the position of the surgical attachment is well within the patient's body and the user is forced to hold the flexible shaft at a substantial distance from its point of connection to the surgical attachment. The resulting lack of accuracy in positioning and manipulating the surgical attachment may negatively impact the effectiveness of the surgical attachment in performing the surgical procedure. However, the present invention according to various embodiments thereof, provides a substantially rigid extender between the surgical attachment and the flexible shaft. In this manner, a surgical attachment may be manipulated and/or positioned within the patient's body by the user holding the extender. Thus, for any surgical locations within a patient's body, and particularly for those surgical locations that are difficult to access, the user may hold the extender at a substantial distance from its point of connection to the surgical attachment without the flexibility of the flexible shaft hindering the user's ability to accurately position the surgical attachment within the body. Even when the position of the surgical attachment is well within the patient's body and the user is forced to hold the extender at a substantial distance from its point of connection to the surgical attachment, the substantially rigid extender may enable improved control by the user of the surgical attachment when positioning or manipulating same. The resulting improvement of accuracy in positioning and manipulating the surgical attachment may improve the effectiveness of the surgical attachment in performing the surgical procedure.


Furthermore, the flexible shaft extender 10 may be autoclavable by virtue of the material with which it is constructed, as well as the sealing components that prevent moisture from entering the flexible shaft extender 10. When autoclavable, the flexible shaft extender may be re-used, e.g., for different patients, different types of surgical procedures and/or with different surgical attachments, thereby providing a significant cost savings relative to single-use devices.


Thus, the several aforementioned objects and advantages of the present invention are most effectively attained. Those skilled in the art will appreciate that numerous modifications of the exemplary embodiment described hereinabove may be made without departing from the spirit and scope of the invention. Although various exemplary embodiments of the present invention has been described and disclosed in detail herein, it should be understood that this invention is in no sense limited thereby.

Claims
  • 1. A surgical extender for selectively interconnecting a surgical attachment and at least one drive member of an electro-mechanical driver device of an electro-mechanical surgical system, the extender comprising: a handle;a substantially rigid tube coupled to the handle;a first coupling disposed on the handle, the first coupling being configured for detachable coupling to a coupling of the electro-mechanical driver device for providing operative connection to the at least one drive member of the electro-mechanical driver device, the first coupling including an integral electrical connector for connection with an electrical connector of the electro-mechanical driver device;a second coupling disposed at a free end of the rigid tube, the second coupling being configured for detachable coupling to a coupling of the surgical attachment; andat least two rotatable shafts disposed within the rigid tube, each rotatable shaft being configured to engage and be secured with a respective rotatable drive member of the electro-mechanical driver device such that rotation of the respective rotatable drive members by the electro-mechanical driver device causes the at least two rotatable shafts of the extender to rotate, thereby transmitting a force to the surgical attachment so as to operate the surgical attachment.
  • 2. The extender of claim 1, further comprising a wiring harness assembly disposed within the first coupling, the wiring harness including the integral electrical connector, and a memory unit.
  • 3. The extender of claim 2, wherein the memory unit is configured to store one or more of serial number data, an attachment type identifier data and a usage data.
  • 4. The extender of claim 3, wherein one or more of the serial number data and the identifier data is configured as read-only data.
  • 5. The extender of claim 4, wherein the serial number data is data uniquely identifying the extender.
  • 6. The extender of claim 5, wherein the identifier data is data identifying the type of the extender of a plurality of diverse and unique extenders.
  • 7. The extender of claim 3, wherein the usage data represents a number of times the extender has been used.
  • 8. The extender of claim 3, wherein the wiring harness assembly further includes a data cable configured to transfer data between the memory unit and the electro-mechanical driver device.
  • 9. The extender of claim 1, wherein the wiring harness assembly further includes a data cable configured to transfer data between a memory unit located in the surgical attachment and the electro-mechanical driver device.
  • 10. The extender of claim 1, wherein the first coupling of the handle is opposite the rigid tube.
  • 11. An electro-mechanical surgical system, comprising: an electro-mechanical driver device including at least one rotatable drive member and a coupling associated with the at least one rotatable drive member;a surgical attachment configured to perform a surgical function, the surgical attachment including a coupling for receiving an operative force from the electro-mechanical driver device; anda substantially rigid extender for electromechanically selectively interconnecting the surgical attachment and the at least one rotatable drive member of the electro-mechanical driver device, the extender including: a handle;a substantially rigid tube coupled to and extending from the handle;a first coupling disposed on the handle, the first coupling being configured for detachable coupling to the coupling of the electro-mechanical driver device for providing operative connection to the at least one drive member of the electro-mechanical driver device, the first coupling including an integral electrical connector for connection with an electrical connector of the electro-mechanical driver device;a second coupling disposed at a free end of the rigid tube, the second couplingbeing configured for detachable coupling to a coupling of the surgical attachment; andat least two rotatable shafts disposed within the rigid tube, each rotatable shaft being configured to engage and be secured with a respective rotatable drive member of the electro-mechanical driver device such that rotation of the respective rotatable drive members by the electro-mechanical driver device causes the at least two rotatable shafts of the extender to rotate, thereby transmitting a force to the surgical attachment so as to operate the surgical attachment.
  • 12. The electro-mechanical surgical system of claim 11, wherein the extender further comprises a wiring harness assembly disposed within the first coupling, the wiring harness assembly including the integral electrical connector, and a memory unit.
  • 13. The electro-mechanical surgical system of claim 12, wherein the memory unit of the extender is configured to store one or more of serial number data, an attachment type identifier data and a usage data.
  • 14. The electro-mechanical surgical system of claim 12, wherein the wiring harness assembly of the extender further comprises a data cable configured to transfer data between the memory unit and the electro-mechanical driver device.
  • 15. The electro-mechanical surgical system of claim 11, wherein the wiring harness assembly of the extender further comprises a data cable configured to transfer data between a memory unit located in the surgical attachment and the electro-mechanical driver device.
  • 16. The electro-mechanical surgical system of claim 11, wherein the surgical attachment is a surgical stapler-cutter.
  • 17. The electro-mechanical surgical system of claim 11, wherein the first coupling of the handle of the extender is opposite the rigid tube.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 13/875,640, filed May 2, 2013, now U.S. Pat. No. 8,888,762, which is a Continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 13/083,722, filed on Apr. 11, 2011, now U.S. Pat. No. 8,454,585, which is a Continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 11/194,950, filed on Aug. 1, 2005, now U.S. Pat. No. 7,947,034, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 60/592,778, filed on Jul. 30, 2004, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (315)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5653374 Young et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5779130 Alesi et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6017354 Culp et al. Jan 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8454585 Whitman Jun 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20020198554 Whitman et al. Dec 2002 A1
20030097133 Green et al. May 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20050187576 Whitman et al. Aug 2005 A1
20050214706 Harvey et al. Sep 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140207125 Applegate et al. Jul 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (55)
Number Date Country
2451558 Jan 2003 CA
101856251 Oct 2010 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
1690502 Aug 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1 769 754 Apr 2007 EP
1 813 203 Aug 2007 EP
1813199 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2165664 Mar 2010 EP
2 236 098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377472 Oct 2011 EP
2 462 880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2815705 Dec 2014 EP
2861574 May 2005 FR
20120022521 Mar 2012 KR
0072760 Dec 2000 WO
0072765 Dec 2000 WO
2003000138 Jan 2003 WO
03026511 Apr 2003 WO
03077769 Sep 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007026354 Mar 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2011108840 Sep 2011 WO
Non-Patent Literature Citations (53)
Entry
Extended European Search Report corresponding to EP No. 11 17 8021.9, dated Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 dated Jul. 15, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 dated Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 dated Sep. 25, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 dated Oct. 1, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 dated Oct. 1, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 dated Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 dated Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 dated Oct. 15, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 dated Oct. 31, 2008; (7 pp).
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 dated Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 dated Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 dated Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 dated Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 dated Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 dated Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 dated Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 dated Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 dated May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 dated Feb. 12, 2013; (6 pp.).
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp).
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014.
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014.
Extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014.
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013.
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Related Publications (1)
Number Date Country
20150048144 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
60592778 Jul 2004 US
Continuations (3)
Number Date Country
Parent 13875640 May 2013 US
Child 14525973 US
Parent 13083722 Apr 2011 US
Child 13875640 US
Parent 11194950 Aug 2005 US
Child 13083722 US