Flippable electrical connector

Information

  • Patent Grant
  • 9755368
  • Patent Number
    9,755,368
  • Date Filed
    Tuesday, December 13, 2016
    8 years ago
  • Date Issued
    Tuesday, September 5, 2017
    7 years ago
Abstract
A plug connector includes a connector body defining a front mating cavity with a first inner side and a second inner side opposite to the first inner side, and a rear cable supporting platform with a first surface and a second surface opposite to the first inner side and a plurality of terminals. The terminals include two rows of contacting sections arranged along the first and second inner sides of the mating cavity and soldering legs extending to the platform to be welded to a cable. The soldering legs are arranged in one row and exposing to the first surface of the platform while the second surface of the platform has no soldering legs to be welded to the cable.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to an electrical connector, and more particularly to a flippable plug connector used with a receptacle connector.


2. Description of Related Art


USB 3.0 Promoter Group issues a new specification which establishes a new type connector named as USB Type-C Cable and Connector, on Aug. 11, 2014. In the specification, the Type-C plug enhances ease of use by being plug-able in either upside-up or upside-down directions. The plug connector connecting with a cable defines two types, one type is USB Full-Featured Type-C Plug Interface with 22 pins, another type is USB 2.0 Type-C plug with 14 pins. The plug connector is connected to the cable via paddle card, which will enhance the whole cost of the cable connector.


Hence, a new and simple electrical plug connector and the complementary receptacle connector are desired to improve those disclosed in the aforementioned proposal.


SUMMARY OF THE INVENTION

Accordingly, the object of the present invention is to provide to a plug connector comprises a connector body defining a front mating cavity with a first inner side and a second inner side opposite to the first inner side, and a rear cable supporting platform with a first surface and a second surface opposite to the first inner side and a plurality of terminals. The terminals comprise two rows of contacting sections arranged along the first and second inner sides of the mating cavity and soldering legs extending to the platform to be welded to a cable. The soldering legs are arranged in one row and exposing to the first surface of the platform while the second surface of the platform has no soldering legs to be welded to the cable.


Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an assembled perspective view of a plug connector connecting with a cable of a first embodiment of the instant invention;



FIG. 2 is a partially exploded perspective view of the plug connector of FIG. 1;



FIG. 3 is a rear and top perspective view of the connector body in FIG. 2;



FIG. 4 is a rear and bottom perspective view of the connector body as shown in FIG. 3;



FIG. 5 is a rear and top perspective view of the terminals and the metallic latch of the connector body;



FIG. 6 is a rear and bottom perspective view of the terminals and the metallic latch of the connector body;



FIG. 7 is a rear and top perspective view of a plug connector connecting with a cable of a second embodiment of the instant invention without the outer molded cover;



FIG. 8 is a perspective view of the terminals and the metallic latch;



FIG. 9 is a rear and top perspective view of the connector body in FIG. 7;



FIG. 10 is a rear and bottom perspective view of the connector body as shown in FIG. 9;



FIG. 11 is a rear and top perspective view of a plug body of a plug connector of a third embodiment of the instant invention;



FIG. 12 is a rear and bottom perspective view of the plug body in FIG. 11;



FIG. 13 is a rear and top perspective view of the terminals and the metallic latch of the connector body in FIG. 11; and



FIG. 14 is a rear and bottom perspective view of the terminals and the metallic latch of the connector body in FIG. 11.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference will now be made in detail to the preferred embodiment of the present invention.


Referring to FIG. 1 through FIG. 6, a USB Type C plug connector 100 of a first embodiment of this present invention is illustrated, which comprises a front connector body 10 and a rear cable 20 connecting with the connector body 10. The connector body 10 defines a front mating cavity 11 opening forwards and two rows of terminals 40 with contacting sections 41 along opposite first inner side 111 and second inner side 112 of the mating cavity 11 in a diagonally symmetrical manner. Referring to FIGS. 2 and 3, the connector body 10 defines a cable supporting platform 12 at a rear end thereof, and soldering legs TP1(T), TCC1, TD1, TG1(T) of the terminals 40 are exposed to the platform 12. Wires 21 of the cable 20 are disposed on the platform 12 and welded to the corresponding soldering legs. An upper metallic shell 31 and a lower metallic shell 32 enclose the platform 12. A molded cover 33 encloses the connector body 10 and the cable 20, thereby forming the plug connector 100.


Combination with FIGS. 3 and 4 referring to FIGS. 5 and 6, the terminals 40 are arranged to be complied with USB Type C 2.0, and divided to two rows, a first row includes a pair of grounding terminals G1, a pair of power terminals P1, a CC detecting terminal CC and a pair of USB 2.0 terminals D (including D+, Dāˆ’), a second row includes a pair of grounding terminals G2, a pair of power terminals P2 and a Vconn detecting terminal V. The USB 2.0 terminals (D+, Dāˆ’) and the detecting terminal CC are independent pin, each comprises a front contacting section 411, a rear leg section 413 and a middle section 412 connecting with the contacting section 411 and the leg section 413. The leg sections 413 of the USB 2.0 terminals (D+, Dāˆ’) and the detecting terminal CC expose to the platform 12 and are functioned as said soldering legs TD1, TCC1 while the power and grounding terminals are not independent as described hereinafter.


The two pairs of power terminals P1, P2 have two pairs of contacting sections 411 (near to P1, P2 in FIGS. 5 and 6) and two pairs of leg sections. A first leg section TP1 extends from each of the two first power contacting sections, a second leg section TP2 extends from each of the two second power contacting section and the second power terminals are further joined together with a bridge section 415. One of said two first power leg section TP1 bends toward the second power leg sections TP2 and touches with one second power leg section TP2 in a stacked form and another second power leg section TP2 bends toward another first power leg section TP1 so that said four power leg sections are electrically connecting with each other and only one first leg section labeled as TP1(T) exposes to the first surface 120, that is, the four power contacting sections share a same power soldering leg TP1(T). The first power leg section TP1 exposes to a first surface 120 and is functioned as a power soldering leg TP1(T).


A first grounding leg section TG1 extends from a rear end of each first grounding contacting sections (near to G1 in FIGS. 5 and 6), a second grounding leg section TG2 extends from a rear end of the second grounding contacting sections (near to G2 in FIGS. 5 and 6), two second grounding leg sections TG2 further are joined together with a second bridge section 416. The first and second grounding leg sections TP1, TP2 are stacked with each other in the vertical direction so that the four grounding leg section are electrically connecting with each other. Only one first grounding leg section labeled as TG1(T) is exposed to the first surface 120 which is functioned as a grounding soldering leg TG1(T). That is, the four grounding contacting sections share a same grounding soldering leg TP1(T). Other leg sections of the power terminals and grounding terminals are wholly embedded in the platform 12.


The connector body 10 further includes a H-shape metallic latch 50, which includes a pair of side arms 51 with locking heads 511 projecting into the mating cavity 11 and two leg sections 52. The leg sections 52 and the first grounding leg sections TG1 are located side by side and abut against each other. The second grounding leg sections TG2 are stacked with the leg sections 52 in a vertical direction. Understandingly, the grounding soldering leg may be the first grounding leg section TG1, the second grounding leg section TG2 or the leg section 52 of the latch. Referring to FIGS. 3 and 4, the first surface 120 and the first inner side 111 of the mating cavity 11 are located at a same side of the connector body 10. Therefore, the first grounding leg section TG1 may be the best choice for manufacturing a same row of the terminals since the first grounding contacting section (near to G1 in FIGS. 5 and 6) and the detecting contacting section (near to CC in FIGS. 5 and 6) are located at a same side of the mating cavity 11 described hereinafter.


In the preferred embodiment, the contacting sections 411 of the terminals 40 includes a pair of USB 2.0 signal contacting sections, a pair of power contacting sections, a pair of first grounding contacting sections and a detecting contacting section commonly located at the first inner side 111 of the mating cavity 11, and a pair of second power contacting sections and a pair of second grounding contacting sections commonly located at the second inner side 112 of the mating cavity 11. The first and second power/grounding contacting sections are aligned with each other in the vertical direction. The soldering legs includes a pair of signal soldering legs TD1 respectively extending from the signal contacting sections, only one power soldering leg TP1(T) extending from the first and second power contacting sections, only one grounding soldering leg TG1(T) extending from the first and second grounding contacting sections and one detecting soldering leg TCC1 extending from the detecting contacting section. The detecting soldering leg TCC1 is located beside the pair of the signal soldering legs TD1, the grounding soldering leg TG1(T) and the power soldering leg TP1(T) are located at opposite sides of the detecting soldering leg TCC1 and the pair of the signal soldering legs TD1. Referring to FIG. 2, the wires 21 of the cable 20 includes a power wire 21P, a grounding wire 21G a pair of signal wires 21D, and a CC detecting wire 21C which are weldingly connecting with the corresponding soldering legs one by one. Understandingly, all the soldering sections are disposed directing to a same vertical direction and on a same horizontal plane, the wires 21 are arranged upon a same surface, i.e., the first surface 120 of the platform 12 without any wire of the cable on the second surface of the platform, which will facility the soldering process of the wires 21 to the soldering legs. Referring to FIG. 3, the first surface 120 further defines a plurality of recesses 124 partitioned by ribs 123 and running rearwards through the platform, which includes a grounding recess, a detecting recess and a power recess to receive corresponding wires of the cable. The soldering legs are flushed with the inner bottom 1231 of the recess 124. Therefore, the wires 21 are received and limited in the recesses 124. The power and grounding soldering legs are wider than the signal soldering legs TD1 and the detecting soldering leg TCC1 in a transverse direction perpendicular to the vertical direction and the front-rear direction. The leg sections 52 of the latch and the grounding soldering leg TG1(T) are commonly exposed to recess 124 for enlarger welding space. The first surface 120 further intentionally defines tine slits 125 beside the power soldering leg and the grounding soldering leg so as to allow solder material to be filled therein to join the corresponding leg sections, and to join the corresponding leg sections together when a soldering process is applied through a hot bar.



FIGS. 7 through 10 illustrate a second embodiment of a plug connector 200 which is similar to the plug connector 100 of the first embodiment. The first surface 120 is only exposed with a power soldering leg TP1(T), a grounding soldering leg TG1(T) and a detecting soldering leg TCC1, while the second surface 121 has no soldering legs exposed. The plug connector 200 is adapted for transmission larger power which is omitted the pair of the USB 2.0 signal terminals. As shown in FIG. 8, the connector body 10 only has the signal contacting sections D without any leg sections.



FIGS. 11 through 14 illustrate a third embodiment of a plug connector 300 which is similar to the plug connector 100 of the first embodiment. The first surface 120 is exposed with a pair of signal soldering legs TD1, a power soldering leg TP1(T), a grounding soldering leg TG1(T) and a detecting soldering leg TCC1, and the second surface 121 is exposed with a grounding leg section TP2 and a grounding leg section TG2. The second power and grounding leg sections on the second surface 121 is not used to be connected with wires of the cable or a resistor, therefore, those second power and grounding leg sections are not defined as soldering legs connecting with the cable. The second surface 121 further intentionally defines some tine slits 125 beside the second power leg section and the second grounding leg section so as to allow solder material to be filled therein to join the corresponding leg sections, and to join the corresponding leg sections together when a soldering process is applied through a hot bar. Compared with connector bodies 10 of the first and second embodiment of which the second surface 121 is whole filled with resin material without any slots, the slits 125 and the exposed leg sections benefit to manufacture of the connector body and the steady connecting of all the power/grounding leg sections. The second surface 121 further defines shallow recesses 126, but the shallow recesses 126 are not enough larger to receive the wires of the cable. Alternatively, other leg sections also can be exposed to the second surface, but said other leg sections has no functions of soldering legs.


However, the disclosure is illustrative only, changes may be made in detail, especially in matter of shape, size, and arrangement of parts within the principles of the invention.

Claims
  • 1. A plug connector comprising: a cable comprising a power wire, a grounding wire and a detecting wire;a connector body defining a front mating cavity with a first inner side and a second inner side opposite to the first inner side in a vertical direction, and a rear cable supporting platform with a first surface and a second surface opposite to the first inner side;a pair of first power contacting sections, a pair of first grounding contacting sections and a detecting contacting section located on the first inner side of the mating cavity along a transverse direction;a pair of second power contacting sections, a pair of second grounding contacting sections located on the second inner side of the mating cavity along the transverse direction;wherein the first and the second grounding contacting sections are aligned with each other in the vertical direction, the first and the second power contacting sections are aligned with each other in the vertical direction, the first and second grounding contacting sections are electrically connecting with each other and simplify to a power soldering leg, the first and second grounding contacting sections are electrically connecting with each other and simplify to a grounding soldering leg, a detecting soldering leg extends from the detecting contacting section; the power soldering section and the grounding soldering section are located at opposite sides of the detecting soldering sections;wherein the platform further defines a plurality of recesses recessed from the first surface and running through a rear end thereof, and the power, grounding and detecting wires of the cable are received in corresponding recesses respectively and welded to corresponding grounding, power and grounding soldering sections exposed to corresponding recesses without any wire of the cable on the second surface of the platform.
  • 2. The plug connector as claimed in claim 1, wherein all the soldering sections are disposed directing to a same vertical direction.
  • 3. The plug connector as claimed in claim 1, wherein the power recess is deeper than the grounding recess in the vertical direction.
  • 4. The plug connector as claimed in claim 1, further comprising a metallic latch, wherein the metallic latch comprises pair of side arms with locking heads protruding into the mating cavity, the metallic latch are electrically connecting with the grounding soldering leg.
  • 5. The plug connector as claimed in claim 1, wherein all the soldering sections are disposed on a same horizontal plane.
  • 6. The plug connector as claimed in claim 1, further comprising a metallic latch, wherein the metallic latch comprises pair of side arms with locking heads protruding into the mating cavity.
  • 7. The plug connector as claimed in claim 1, wherein all the soldering sections are directing to a same vertical direction.
  • 8. The plug connector as claimed in claim 1, further comprising a metallic latch, wherein the metallic latch comprises pair of side arms with locking heads protruding into the mating cavity.
  • 9. The plug connector as claimed in claim 8, wherein the metallic latch comprises a leg section, the leg section is abutted against the grounding soldering leg in a side by side pattern.
  • 10. The plug connector as claimed in claim 1, wherein a ground recess of said recesses receiving corresponding grounding wire and a power recess of said recesses receiving corresponding power wire of the cable, are wider than a detecting recess of said recesses receiving corresponding detecting wire in the transverse direction.
  • 11. The plug connector as claimed in claim 10, wherein the power recess and the power recess are deeper than the detecting recess in the vertical direction.
  • 12. The plug connector as claimed in claim 1, wherein the platform defines a grounding recess, a power recess and a detecting recess recessed from the first surface thereof to receive corresponding wires of the cable, the grounding and power recesses not only deeper in the vertical direction, but also wider in the transverse direction than the detecting recess.
  • 13. The plug connector as claimed in claim 12, wherein the power recess is deeper than the grounding recess in the vertical direction.
  • 14. The plug connector as claimed in claim 1, wherein the second surface is exposed with a power leg section and a grounding leg section extending from corresponding contacting sections, which leave unused.
  • 15. The plug connector as claimed in claim 14, wherein the power and grounding soldering legs are flushed with inner bottoms of the recesses.
  • 16. The plug connector as claimed in claim 15, wherein the cable only comprises a pair of USB 2.0 signal wires, a power wire, a grounding wire and a detecting wire welded to corresponding soldering legs on the first surface of the platform.
  • 17. A plug connector comprising: a cable with a grounding wire, a power wire and a detecting wire;a connector body defining a front mating cavity with a first inner side and a second inner side opposite to the first inner side in a vertical direction, and a rear cable supporting platform with a first surface and a second surface opposite to the first inner side;a pair of first power contacting sections, a pair of first grounding contacting sections and a detecting contacting section located on the first inner side of the mating cavity along a transverse direction;a pair of second power contacting sections, a pair of second grounding contacting sections located on the second inner side of the mating cavity along the transverse direction;wherein the first and the second grounding contacting sections are aligned with each other in the vertical direction, the first and the second power contacting sections are aligned with each other in the vertical direction, the first and second grounding contacting sections are electrically connecting with each other and simplify to a power soldering leg, the first and second grounding contacting sections are electrically connecting with each other and simplify to a grounding soldering leg, a detecting soldering leg extends from the detecting contacting section; the power soldering section and the grounding soldering section are located at opposite sides of the detecting soldering sections;wherein all the grounding soldering section, power soldering section and the detecting soldering section are exposed to the first surface of the platform and directing to a same vertical direction to be welded with corresponding wires of the cable.
  • 18. The plug connector as claimed in claim 17, wherein the power and grounding soldering legs are flushed with inner bottoms of the recesses.
  • 19. A plug connector comprising: a connector body defining a front mating cavity with a first inner side and a second inner side opposite to the first inner side in a vertical direction, and a rear cable supporting platform with a first surface and a second surface opposite to the first inner side;a pair of first power contacting sections, a pair of first grounding contacting sections, a pair of USB 2.0 contacting sections and a detecting contacting section located on the first inner side of the mating cavity along a transverse direction;a pair of second power contacting sections, a pair of second grounding contacting sections located on the second inner side of the mating cavity along the transverse direction;wherein the first and the second grounding contacting sections are aligned with each other in the vertical direction, the first and the second power contacting sections are aligned with each other in the vertical direction, the first and second grounding contacting sections are electrically connecting with each other and simplify to a power soldering leg, the first and second grounding contacting sections are electrically connecting with each other and simplify to a grounding soldering leg, a detecting soldering leg extends from the detecting contacting section, a pair of USB 2.0 soldering legs extend from corresponding USB 2.0 contacting sections, respectively;wherein all the grounding soldering section, power soldering section, USB 2.0 contacting sections and the detecting soldering section are exposed to the first surface of the platform to be welded with corresponding wires of the cable.
  • 20. The plug connector as claimed in claim 19, wherein the power soldering leg and the grounding soldering legs are located at opposite of the detecting soldering leg, the pair of USB 2.0 soldering leg are located between the detecting soldering leg and the grounding soldering leg.
Priority Claims (1)
Number Date Country Kind
2015 2 0835946 U Oct 2015 CN national
CROSS REFERENCE TO CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/205,006 filed on Jul. 8, 2016, the contents of which are incorporated entirely herein by reference.

US Referenced Citations (30)
Number Name Date Kind
5073130 Nakamura Dec 1991 A
6755689 Zhang Jun 2004 B2
7534140 Zheng May 2009 B2
7758379 Chen Jul 2010 B2
7824219 Wang Nov 2010 B2
7914299 Lee Mar 2011 B2
8087944 Kumamoto et al. Jan 2012 B2
8087977 Gallagher Jan 2012 B2
8517773 Lee Aug 2013 B2
8968031 Simmel et al. Mar 2015 B2
9281642 Tseng et al. Mar 2016 B1
9300095 Lin et al. Mar 2016 B2
9312641 Wang et al. Apr 2016 B2
9318856 MacDougall et al. Apr 2016 B2
9379499 Miyoshi et al. Jun 2016 B2
20070049100 Tsai Mar 2007 A1
20090156027 Chen Jun 2009 A1
20100267261 Lin Oct 2010 A1
20130095702 Golko Apr 2013 A1
20140024257 Castillo Jan 2014 A1
20140302709 Zhao Oct 2014 A1
20150162684 Amini et al. Jun 2015 A1
20150171562 Gao et al. Jun 2015 A1
20150214673 Gao et al. Jul 2015 A1
20150214674 Simmel et al. Jul 2015 A1
20150295362 Tziviskos et al. Oct 2015 A1
20150340813 Ng et al. Nov 2015 A1
20150340815 Gao et al. Nov 2015 A1
20150340825 Ng et al. Nov 2015 A1
20160118752 Guo et al. Apr 2016 A1
Foreign Referenced Citations (45)
Number Date Country
CN201868687 Jun 2011 CM
1253402 May 2000 CN
2454802 Oct 2001 CN
2724249 Sep 2005 CN
2728006 Sep 2005 CN
201029143 Feb 2008 CN
201078847 Jun 2008 CN
201107821 Aug 2008 CN
201230066 Apr 2009 CN
101573840 Nov 2009 CN
201708399 Jan 2011 CN
201717435 Jan 2011 CN
201741935 Feb 2011 CN
201741937 Feb 2011 CN
201868687 Jun 2011 CN
202076514 Dec 2011 CN
10228073213 Dec 2011 CN
102437482 May 2012 CN
102544812 Jul 2012 CN
202423735 Sep 2012 CN
202513384 Oct 2012 CN
202737282 Feb 2013 CN
103081253 May 2013 CN
203242848 Oct 2013 CN
103427263 Dec 2013 CN
203326282 Dec 2013 CN
203481540 Mar 2014 CN
103762479 Apr 2014 CN
203521683 Apr 2014 CN
204577669 Aug 2015 CN
M288035 Feb 2006 TW
M357077 May 2009 TW
M391213 Oct 2010 TW
M398256 Feb 2011 TW
M398262 Feb 2011 TW
M426911 Apr 2011 TW
I427870 Jun 2011 TW
M414692 Oct 2011 TW
M443957 Dec 2012 TW
M453995 May 2013 TW
M454654 Jun 2013 TW
M471688 Feb 2014 TW
M475728 Apr 2014 TW
WO2009147791 Dec 2009 WO
WO2013020359 Feb 2013 WO
Non-Patent Literature Citations (3)
Entry
Universal Serial Bus Type-C Cable and Connector Specification Revision 0.7 Working Draft Jan. xx, 2014, p. 13-14, 20-21, 33, 38.
USB Type-C Specification 0.9c05ā€”20140518, p. 24-44,47,53-64,84-86.
Universal Serial Bus Type-C Cable and Connector Specification Revision 1.0 Aug. 11, 2014, p. 18-19, 28-48, 51, 55, 58, 59-63, 65-67, 70, 93, 96-99.107, 110-113.
Related Publications (1)
Number Date Country
20170093091 A1 Mar 2017 US
Provisional Applications (19)
Number Date Country
62021066 Jul 2014 US
62002934 May 2014 US
62026046 Jul 2014 US
62035472 Aug 2014 US
61977115 Apr 2014 US
61940815 Feb 2014 US
61943310 Feb 2014 US
61949232 Mar 2014 US
61917363 Dec 2013 US
61926270 Jan 2014 US
61916147 Dec 2013 US
61919681 Dec 2013 US
61875096 Sep 2013 US
61863896 Aug 2013 US
61866037 Aug 2013 US
61687584 Aug 2013 US
61856077 Jul 2013 US
61857687 Jul 2013 US
61899276 Nov 2013 US
Continuations (1)
Number Date Country
Parent 15205006 Jul 2016 US
Child 15377893 US
Continuation in Parts (10)
Number Date Country
Parent 15169004 May 2016 US
Child 15205006 US
Parent 14698876 Apr 2015 US
Child 15169004 US
Parent 14667632 Mar 2015 US
Child 14698876 US
Parent 14558732 Dec 2014 US
Child 14698876 US
Parent 14542550 Nov 2014 US
Child 15205006 US
Parent 14497205 Sep 2014 US
Child 14542550 US
Parent 14477889 Sep 2014 US
Child 15205006 US
Parent 14454737 Aug 2014 US
Child 15205006 US
Parent 14337180 Jul 2014 US
Child 15205006 US
Parent 14517941 Oct 2014 US
Child 15205006 US