Floor treatment apparatus

Information

  • Patent Grant
  • 10555657
  • Patent Number
    10,555,657
  • Date Filed
    Wednesday, December 13, 2017
    6 years ago
  • Date Issued
    Tuesday, February 11, 2020
    4 years ago
Abstract
The present invention relates generally to an apparatus for cleaning or otherwise treating a floored surface that includes a platform adapted to support the weight of an operator. In addition, one embodiment of the present invention is capable of generally performing 360 degree turns to facilitate the treatment of difficult to access portions of the floored surface.
Description
FIELD OF THE INVENTION

The present invention relates to an apparatus for the treatment, such as cleaning, of a surface. More specifically, one embodiment of the present invention is an apparatus for surface cleaning that provides a standing or sitting location for the operator and is capable of operating in tight spaces.


BACKGROUND OF THE INVENTION

Cleaning machines are used extensively for cleaning flooring surfaces comprised of tile, stone, brick, wood, concrete, carpets and other common surfaces. Maintaining the cleanliness of these surfaces, especially in high volume areas in commercial, industrial, institutional and public buildings is an ongoing and time consuming process. The present invention relates to a highly maneuverable floor cleaning or treatment apparatus (hereinafter ATreatment apparatus@) that supports an operator during use. More specifically, some embodiments of the present invention are adapted to clean, sweep, vacuum, burnish, wax, etc. (hereinafter Atreat@) a floored surface, wherein the operator is supported by the cleaning device, thus increasing efficiency and productivity of the cleaning operation. As used herein, Afloored surface@, or more generally Asurface@, encompasses areas covered by concrete, tile, carpet, wood, plastic, stone, turf or any other substance known in the art. The prior devices address many issues that arise with cleaning such floored surfaces. Unfortunately, prior to the present invention, there was no one device that could address many, if not all, of the issues that arise in cleaning various surfaces in various environments at any given point in time.


Mop & Bucket Cleaning Devices


In the past, building maintenance staff and others often treat surfaces, such as tiled hallways or restroom floors, using traditional mop and bucket techniques. The bucket may include a detachable mop ringer and may be positioned on caster wheels to facilitate easy movement. Depending on the cleanliness of the equipment, a worker may be able to make a good start in treating a floor using the mop and bucket approach. However, soon the mop and fluid in the bucket becomes soiled or otherwise contaminated by germs and/or bacteria. From that point on, each time the worker plunges the mop into the bucket and rings the mop, both the mop and cleaning fluid become more and more dirty/contaminated.


Manually Propelled Cleaning Devices


The basic cleaning problems associated with the prior art mop & bucket approach to cleaning a surfaces have generally been addressed in the art, as shown in U.S. Pat. No. 6,206,980 to Robinson, entitled AMulti-functional Cleaning Machine,@ which is fully incorporated herein by reference. This type of cleaning machine generally includes a manually propelled wheeled body with two tanks, one concentrated chemical receptacle, a vacuum and blower motor and a fluid pumping system. Typically, such equipment includes only a single motor used for both vacuuming soiled fluid and blowing air that can be used to dry a cleaned surface. While such equipment is generally maneuverable and is an improvement over the earlier mop and bucket technology, the system is still labor intensive and slow. As a result, productivity of cleaning professionals, when using these type of systems is generally decreased over what it might be with other type of systems that are available.


Self Propelled Walk Behind Device


Productivity concerns have been addressed in the art by the creation of certain walk behind floor treatment apparatus. These apparatus typically have a scrub deck at the machine's front and a squeegee at its rear. The squeegee has the ability to “swing” or follow the path of the scrub deck as the machine changes direction. This type of equipment is generally more efficient in cleaning large surface areas than either the mop and bucket or the manually propelled devices. Unfortunately, however, the distance between the scrub deck and squeegee is relatively great. Also, walkbehinds typically have relatively wide squeegees. These characteristics limit such machine's maneuverability and limit the doorways they can easily pass through. Typical 3′ doorway allows a machine with no more than a 33″ squeegee to fit through without removal.


Small walk behind floor cleaning apparatus typically include a scrub deck in the middle of the machine and squeegees at the machine's rear. In this configuration the squeegee has little or no ability to swing or follow the path of the scrub deck as the machine changes direction. Small rider scrubbers typically have relatively narrow squeegees, and rely on “side squeegees” (unvacuumized squeegee blades) adjacent to the scrub deck to direct the water into the path of the main (vacuumized) squeegee. The problem with these side squeegees is that they do not perform very well for very long and tend to leave a film of water in turns because the vacuumized squeegee does not follow the true path of the scrub deck, only the path of the side squeegees (which leave the film of water). Finally, side squeegee are typically very heavy rubber blades and have significant down-pressure applied to them to direct the water—this makes them expensive and causes significant “drag” which increases the work for the propel unit and limits battery run-time. Thus, while more maneuverable than larger walk behind floor treatment machines, the small machines typically do not clean as well as the larger machines.


Storage Issues in Prior Art Devices


Further, known cleaning machines do not provide adequate onboard storage for cleaning supplies, tools, etc. Likewise, prior art machines do not often provide a flexible approach to adding storage facilities for trash and the like when the need for such arises. Machinery that addresses these issues is therefore needed.


Self-propelled Ride-on Devices


Self-propelled cleaning devices are generally also well known in the field and are employed to treat large floored surfaces, such as tiled, concrete or carpeted floors found in hospitals, department stores, schools, gyms, etc. These devices generally provide the operator with seating from which he/she can control operation of the device. These devices are ideal for cleaning large, open areas because they are capable of containing large amounts of waste fluids and/or debris without having to repeatedly perform time consuming fluid replacement or debris removal. Moreover, because these devices provide the user with seating, the user does not become prematurely fatigued, increasing overall worker productivity. Unfortunately, these large ride-on machines are not particularly well-suited for cleaning smaller, more confined floor surfaces, which are often found in hallways, small rooms, or even large rooms which have many obstacles therein.


As is well known in the art, smaller self-propelled cleaning devices are also in existence that are ideal for cleaning the smaller rooms and hallways. However, smaller devices are usually pushed or pulled by an operator. Hence, the major drawback of these devices is that they often rely on operator strength to maneuver the device. Even if the device is self-propelled, it often employs manual steering. After a long shift of walking behind a treatment device, the operator is bound to become fatigued, wherein his or her attention will deviate from the task at hand, thereby possibly resulting in uneven treatment to the floored area. Thus, a subsequent crew may have to return and retouch certain areas that were not accurately treated during the first operation. In addition, human errors related to the amount of time a surface is exposed to a brush, may occur when the operator lingers over a single area for extended period of time. This situation is never good for a floor surface. The devices in the art are also difficult to maneuver and often are not adapted to operate around tight corners, wherein pre or post cleaning operations must be performed, thus increasing the time and expense of the entire task.


Thus, it is a long felt need in the field of floor cleaning or treatment to provide a device that allows the operator to ride thereon, and which is adapted to be used in small areas and/or around tight corners. The following disclosure describes an improved floor cleaning and treatment device that is adapted for use in small areas that includes a platform adapted to support the operator to ensure optimum floor cleaning or treatment.


SUMMARY OF THE INVENTION

It is one aspect of the present invention to provide a floor treatment apparatus that is easy to maneuver. More specifically, one embodiment of the present invention is constructed of a chassis section that includes an enclosure that houses at least a portion of the internal components of the treatment device and a location for installation of devices that are used during cleaning operations. In addition, one embodiment of the present invention provides a standing, leaning or sitting location for the operator. Another embodiment of the present invention is equipped with a powered steering device that allows for greater maneuverability in areas with tight corners, thereby ensuring that more of the flooring surface is treated without having to perform pre or post treatment operations. More specifically, one embodiment of the present invention is equipped with a self-propelled wheel and an easy to use steering device to provide increased maneuverability around obstacles. One embodiment of the present invention employs at least one wheel that provides thrust and/or steering capability. Yet another embodiment of the present invention employs wheels that are substantially centered under the chassis such that the entire apparatus is generally capable of 360E rotation without substantially traversing in any other direction, thus allowing it to treat tight corners of a surface. It is another aspect of the present invention to provide a cleaning apparatus that is cost effective to manufacture. Various aspects of the invention shall now be described in more detail.


Chassis


One embodiment of the present invention employs a chassis section that is designed to protect and house the internal workings of the apparatus and provide a location for interconnection of auxiliary treatment devices used therewith. One embodiment of the present invention employs a chassis that is constructed of rigid plastic, metal, or other common materials used in the art. The chassis of this embodiment also is equipped with a platform for the operator. Alternative embodiments of the present invention employ a foldable, removable or stationary operator seat. In addition, other safety features such as pads or belts may be employed to secure the operator into the cleaning device and thus his/her working environment.


It is yet another aspect of the present invention to provide a chasis with a small envelope. More specifically, one embodiment of the present invention is small enough to fit into and through tight spaces. Often facilities that employ the apparatus of the present invention include narrow doorways, aisles and elevators. In addition, especially in older buildings that have been retrofitted to comply with the Americans with Disabilities Act, elevators are of minimal volume and lifting capability. To fit into small elevators, the chasis is designed to have the smallest practical envelope, a distinct advantage over the prior art. Also, the apparatus of one embodiment of the present invention includes components that are easily removable or adjustable to reduce the profile of the apparatus. Thus, the embodiments of the present invention may be used in various structures.


Steering Mechanism


Another aspect of the present invention is to provide a cleaning apparatus that is easy to operate and maneuver. More specifically, one embodiment of the present invention is equipped with a steering mechanism that allows for inputs from the operator to be efficiently communicated to the steering wheels of the cleaning apparatus. Alternatively, other steering means may be used to facilitate maneuverability of the treatment apparatus, such as joy sticks, touch screens, buttons, remote control elements, etc.


It is still yet another aspect of the present invention to provide a cleaning apparatus that is adapted to efficiently clean areas with tight corners. More specifically, one embodiment of the present invention is adapted to generally perform 360E turns without appreciable lateral motion. This embodiment of the present invention is equipped with a turning mechanism generally under the center of the chassis with two powered exterior wheels adjacent thereto that provide power to the chassis to pivot around the centered wheel. The powered exterior wheels may be independently controlled by joy sticks, wherein movement thereof send directional inputs to each wheel. One embodiment of the invention is equipped with at least one joy stick wherein forward deflection will impart forward motion, rearward deflection will impart rearward motion, and a side-to-side deflection will cause the apparatus to turn. Alternatively, two joy sticks may be used in a similar manner, wherein rearward deflection of the left joy stick and forward deflection of the right joy stick will result in a left turn, and depending on the placement of the powered wheels, perhaps a 360E left hand turn.


Another embodiment of the present invention utilizes a steering wheel, handle bars, a yoke, or similar apparatus for steering. Embodiments may also include a power-assisted steering mechanism.


Power Plant


It is another aspect of the present invention to provide a treatment apparatus that is powered by commonly used power plants. More specifically, one embodiment of the present invention employs an electric motor to power the apparatus. The electric motor may be powered by batteries, solar energy or an electrical cord attached to a permanent power source. Alternatively, the present invention may be powered by an internal combustion engine. Other propulsion means may also be employed by the present invention without departing from its scope, as will be appreciated by one skilled in the art.


Floor Treatment Devices


One embodiment of the present invention employs a chassis that houses a fluid pump assembly and a vacuum assembly. The apparatus further includes at least two tanks, one for retaining a base cleaning fluid, such as water, and a second for retaining spent cleaning solution, dry debris, etc. The apparatus may also include one or more concentrated cleaning chemical receptacles designed to hold concentrated cleaning chemicals. The receptacles are preferably stored within a lockable structure, adding safety to the overall apparatus. These agents can be added to a base cleaning fluid just prior to application to a surface and as desired to facilitate cleaning of various surfaces.


Tanks


As briefly mentioned above, preferably at least one tank is provided that provides a solution that is directed towards the flooring surface to be cleaned to facilitate treatment. The tank may be constructed with multiple compartments wherein waste water from the surface is contained prior to disposal. More specifically, one embodiment of the present invention employs a tank that includes a movable membrane. In this configuration, the clean water and/or cleaning solution is deposited on a surface and agitated. Dirty water is next suctioned up and deposited back into a portion of the tank, thereby moving a membrane accordingly to accept the dirty water. Such a configuration is disclosed in U.S. Pat. No. 4,759,094, which is herein incorporated in its entirety by this reference. A similar selectively expandable fluid storage area can be created by utilizing a collapsible structure, which is placed inside of the primary fluid tank. This type of arrangement is disclosed in U.S. Pat. No. 4,196,492, which is also incorporated herein in its entirety by this reference.


Clean water can obviously come from an outside source such as a hose, rather than be stored on board the device. However, in order to facilitate maneuverability and usability of the present invention, it is envisioned that the chassis will house or hold at least one fluid tank and perhaps a plurality thereof.


Cleaning Solutions


In one type of treatment operation, fluid from the chemical receptacles flows through a tube to a chemical selector, which may include a metering valve. The selector preferably has a positive shut-off position, wherein fluid is prevented from flowing through the selector regardless of the fluid pressure in a fluid line. The selector is responsive to input from an operator selection of one of the several cleaning chemicals. Once a chemical is selected, it is free to flow through the chemical selector and appropriate amounts thereof may be provided to one of any number of inlets to a mixing tee. The amount of chemical allowed to flow may be adjusted by a metering valve built into the selector or separate from the selector, in a known fashion. A base cleaning fluid, such as water, may flow from a fluid tank and through a separate tube to a second leg of a mixing tee. The cleaning fluid and concentrated cleaning chemical then mix within the mixing tee to create a cleaning solution. That solution may then be passed through the selector outlet to a pressure pump, wherein the cleaning solution may be pressurized and communicated via appropriate tubing to a dispensing device. The pump, which draws fluid to and through the selector, also preferably includes a bypass system to facilitate regulation of pump pressure. Use of the pump to draw fluid is preferred as it does not create unwanted pressures in the fluid lines and the system, in general, is not subject to gravity feeding of fluid.


A solution may be applied to a surface using any type of dispensing device. In a preferred embodiment, the dispensing device or associated solution lines or tubes include an adjustable valve, which may be used to adjust the pressure and flow of solution allowed to exit the dispensing device. Because of the adjustability, the apparatus may be utilized as a pre-cleaner for various carpet treatments, including spotting or other treatments.


By use of the chemical selector, two or more receptacles of floor treatment chemicals may be fluidly connected to a mixing tee. In operation, a user is capable of creating any number of cleaning solutions without the need for adding receptacles or switching chemical feed lines from one receptacle to another or without changing metering tips that are easily misplaced, incorrectly interconnected, or damaged. Thus, the treatment process is safer because there is less chemical handling. Similarly, use of a metering valve will allow the operator to create a very precise floor treatment solution.


It is preferred that one-way check valves be used throughout the apparatus. For instance, check valves may be included in: delivery lines that supply cleaning chemicals to the metering tee; lines that supply water to the metering tee; lines that supply cleaning solution to the pump; lines that supply cleaning solution to the spray gun; or in the metering tee, itself. The check valves prevent reversal of fluid and prevent contamination of one fluid with another.


Blower


The treatment apparatus also may include a modular blower assembly. The blower assembly may be hand-held and operate completely apart from the overall cleaning machine. The blower assembly may be used to dry areas physically separate from where the apparatus is stored. Because the blower assembly possibly is separate from the apparatus, it may also be used for other blowing functions, such as blowing leaves, grass, dirt or other debris. The blower assembly may be used with a detachable hand nozzle, a flexible nozzle, an extension wand, etc., thereby increasing the overall flexibility of the blower assembly. The blower assembly may utilize an integrated on/off switch and be powered by electricity supplied by any typical extension cord, including the power source of the apparatus. The blower may be configured to be stored on the apparatus in one of any number of convenient ways. It will be appreciated by one skilled in the art that having a modular blower assembly of this type is very beneficial to the overall functionality of a multifunctional floor treatment apparatus.


Storage


Another aspect of one embodiment of the present invention is that the chassis includes bins, trays, bays and other storage devices preferably within easy reach of the operator. The storage devices provide the operator with substantial flexibility when cleaning a large building or area that has many types of surfaces that may need treatment. Also, the apparatus provides for modular trash/supply bins that may be added to or removed from the apparatus quickly and easily so that the machine can be configured for one of any number of floor treatment activities.


Primary Pump


It is yet another aspect of the present invention to provide an apparatus equipped with a secondary fluid pump that supplies fluid to the main fluid pump prior to ignition. More specifically, one embodiment of the present invention includes a secondary, or priming pump, which is activated prior to the activation of the main fluid pump. Often it is desirable to introduce fluid into a main fluid pump prior to that pump's activation, thereby expelling trapped air that may cause damage to the main fluid pump motor from vapor lock or cavitation, for example. This priming process may be conducted manually, but that is time consuming, wherein the user manually adds fluid to the pump or bleeds the air therefrom. Alternatively, and preferably, one embodiment of the present invention is equipped with a secondary pump that is activated for a brief moment when the fluid discharge apparatus is initially activated, thus ensuring that the main fluid pump will be substantially free of trapped air upon activation.


Squeegee


It is another aspect of the present invention to provide a device that includes a squeegee adjacent to the floor treatment device, both generally in the middle of the machine. The squeegee effectively swings, or follows the path of the floor and does not rely on unvacuumized side squeegees to channel water to the main vacuumized squeegee. Thus, it offers as good or better fluid pick-up when the apparatus is turning than is capable with a walk behind scrubber, and far superior than typical small riders since it does not rely on smearing side squeegees. One embodiment of the present invention, employs a squeegee that pivots about the steering axis with a linkage that is supported by a roller and track mechanism. The absence of side squeegees mean less drag and better use of available energy. In addition, some embodiments of the present invention include an adjustable squeegee, a skirt or a shroud that minimally contacts the floor, thus reducing drag and sparing battery charge. Alternatively, some embodiments of the present invention include stops that contact the floor, without marring the same.


Use of the Device


Various aspects of the inventions discussed briefly above combine to provide an effective and efficient tool, useful in the treatment of numerous areas in and around commercial, industrial, institutional and public buildings. Moreover, due to the various aspects of the present invention, a sanitation maintenance worker may clean a particular room or facility more efficiently than previously possible. The present invention may be used in various cleaning operations such as burnishing, vacuuming, scrubbing, sanding, waxing, sweeping, sealing, painting, polishing, etc. In order to accomplish these tasks, the present invention may be equipped with various combinations of floor treatment devices. More specifically, one embodiment of the present invention is equipped with a plurality of brushes and squeegees to agitate and collect debris from a flooring surface. In addition, suction mechanisms may be employed such that fluids and/or dry particulate matter are transferred into a container. It is also envisioned that one embodiment of the present invention include at least one solution applicator positioned adjacent to the scrub brushes, wherein solution is injected onto the surface after, or prior to, agitation by the brushes. The debris-entrained solution is then collected by the squeegee and subsequently vacuumed into the holding tank or expelled out of the chassis to an outside reservoir. The brushes and/or solution used in this embodiment may be adapted to clean, sweep, paint, burnish, sand, strip, varnish or wax a floor. It will be appreciated by one skilled in the art that any type of solution adapted to treat any flooring surface may be employed without departing from the scope of the present invention.


It is yet another aspect of the present invention provide a floor treatment apparatus that can be used in various floor maintenance operations. More specifically, one embodiment of the present invention is adapted for interconnection to a plurality of devices to perform a variety of floor treatment operations. It is envisioned that one embodiment of the present invention be capable of quick removal of certain treatment devices such that different devices may be then added to quickly change the scope of the apparatus, thereby providing a device adapted to scrub, clean carpets, wax floors, burnish floors, remove wax or varnish from floors, vacuum, etc. Thus, it is contemplated, that this system may be used for a plurality of cleaning or floor treatment operations.


Remote Control


It is yet another aspect of the present invention to provide a highly mobile floor treatment apparatus that can include a car washer assembly. As will be appreciated by those skilled in the art, if so configured, the device could include a car washer wand connected to appropriate pumps and could be utilized to pre-clean heavily soiled areas prior to final cleaning with use of the device.


It is still another aspect of the present invention to provide a floor treatment apparatus that does not require direct contact with an operator to perform its tasks. More specifically, one embodiment of the present invention is adapted to be remote controlled. This embodiment of the present invention is equipped with remote control mechanisms and software currently known in the art, such as taught by U.S. Pat. No. 6,625,843 to Kim et al., which is incorporated in its entirety herein. In addition, this embodiment of the present invention may be equipped with the plurality of cameras such that offsite monitoring and control may be performed. In a related embodiment of the present invention, software is installed in the cleaning apparatus such that human contact or monitoring is not required. More specifically, one embodiment of the present invention is adapted to learn its environment as it operates in an area such that remote controlling is not required. Alternatively, it is well within the scope of this invention to preprogram the dimension of floored surfaces into the smart treatment device, wherein the device is parameterized with the surface dimensions before the task is initiated. Apparatus of this type are known in the art, such as the RoombaJ device by iRobot Corporation, aspects of which are described in U.S. Pat. Nos. 6,594,844 and 6,535,793, which are both incorporated in their entirety herein.


Safety


It is another aspect of the present invention to provide a cleaning apparatus that is safe and comfortable to use. More specifically, one embodiment of the present invention includes an operator platform. This platform allows the operator to stand on the device during the treatment operation, thus increasing productivity and lowering the chances of injury or fatigue to the operator. It another embodiment of the present invention, a seat is provided wherein the operator may comfortably sit while completing his or her task. Other safety and comfort features such as rails, pads, and belts, may be provided depending on the needs of the operator.


Thus, it is one aspect of the present invention to provide a floor treatment apparatus which comprises:


a chassis with a lower surface, a front surface, an upper surface, a rear surface, a left surface and a right surface, wherein a platform is provided that is adapted to support the weight of an operator;


a powered wheel operably connected adjacent the lower surface of the chassis, the powered wheel being capable of at least one of transitioning and rotating the floor treating apparatus;


a steering mechanism adjacent to the upper surface that is accessible by the operator;


an operable floor treating device connected adjacent to the lower surface of the chassis;


an operable debris collection device connected adjacent to the lower surface of the chassis; and


wherein an operator controls the floor treatment apparatus from the platform.


The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. Some aspects of the present invention are set forth in various levels of detail in the Summary of the Invention, as well as in the attached drawings and the Detailed Description of the Invention. No limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these embodiments.



FIG. 1 is a perspective view of one embodiment of the present invention showing an operator standing on the platform thereon;



FIG. 2 is a perspective of an alternate embodiment of the present invention that is configured for fluid extraction, and which is controlled by at least one joy stick;



FIG. 3 is a perspective view and alternative embodiment of the present invention that is configured for burnishing operations;



FIG. 4 is a perspective view of an alternative embodiment of the present invention that is equipped with moveable brushes that are adapted to swing out to more efficiently treat a floor surface, and which also includes a wand for selectively cleaning difficult to reach areas;



FIG. 5 is a perspective view of an alternative embodiment of the present invention that is designed to rotate about an 360E axis without significantly traversing in other directions;



FIG. 6 is a perspective view of an alternative embodiment of the present invention that is designed to reach tight areas of floor surface;



FIG. 7 is a detailed perspective view of the embodiment shown in FIG. 6, showing the steering wheel, brush, and squeegee assembly used therewith;



FIG. 8 is a top plan view of a flooring surface;



FIGS. 9A-B are bottom plan views showing configurations of steering, cleaning, and power mechanisms;



FIG. 10 is a bottom plan view of an alternate embodiment of the present invention showing an alternate configuration of steering, cleaning, and power mechanisms;



FIG. 11 is a perspective view of an alternative embodiment of the present invention that is adapted to be remotely controlled;



FIGS. 12A-H are views of a rotatable squeegee for use in one embodiment of the present invention;



FIGS. 13A-D are views of a waste fluid system showing a strain basket and a drainage port of one embodiment of the present invention;



FIGS. 14A-D are views of the rear housing and battery tray of one embodiment of the present invention;



FIG. 15 is a perspective view of a control panel and handles of one embodiment of the present invention;



FIG. 16 is a perspective view of an operator platform with a plurality of switches of one embodiment of the present invention;



FIGS. 17A-B is are views of a seat of one embodiment of the present invention;



FIGS. 18A-D are views of a tank and front housing of one embodiment of the present invention;



FIGS. 19A-B are views of a vacuum fan interconnected to the front housing of one embodiment of the present invention; and



FIG. 20 is a right elevation view of one embodiment of the present invention showing the waste water return hose.





To assist in the understanding of the present invention the following list of components and associated numbering found in the drawings is provided herein:
















Component
#



















Floor treating apparatus
2



Platform
4



Operator
6



Chassis
8



Bottom surface of chassis
10



Brush
12



Rotating brush
13



Scrubber
14



Squeegee
16



Wheel
18



Steering wheel
20



Joy stick
22



Handle Grip
24



Powered wheel
26



Burnishing pad
28



Swinging brush
30



Wand
32



Hose
34



Swing arm
36



Bearing
38



Track
40



Pivot point
42



Handle
44



Cam
46



Strainer basket
48



Waste tank cover
49



Waste fluid intake
50



Main Storage Tank
51



Clean fluid intake
52



Fitting
54



Flange
56



Waste fluid bag
58



Mandrill
60



Drain hose
62



Band Clamp
64



Rear housing
66



Battery
68



Tray
70



Drink holder
72



Housing pad
74



Control panel
76



Fastener
77



Operator presence switch
80



Throttle
82



Seat
84



Adjustment Mechanism
85



Hook
86



Front housing
88



Light
89



Vacuum fan
92



Vacuum exhaust channels
94



Waste H2O return hose
96



Hose channel
98



Tip over stops
100



Primary housing
104










It should be understood that the drawings are not necessarily to scale. In certain instances, details which are not necessary for an understanding of the invention or which render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.


DETAILED DESCRIPTION

Referring now to FIGS. 1-20 an apparatus 2 for cleaning or otherwise treating a floor surface is shown. More specifically, one embodiment of the present invention includes a chassis 8 with a platform 4 that is adapted to support the weight of an operator 6, thus increasing the efficiency of the entire floor treatment operation. In addition, various cleaning or floor treatment components may be interconnected to the bottom surface 10 of the chassis, such as brushes 12, scrubbers 14, squeegees 16, vacuum shoes, etc.


The chassis 8 also includes a plurality of wheels 18 operably interconnected to the bottom surface 10 to enable steering and provide stability. It is contemplated that the operator 6 will stand on the platform 4 and steer the apparatus 2 with either a steering wheel 20 or other type of steering mechanism, such as a joy stick 22. Such an embodiment of the present invention enables the floor surface to be cleaned or otherwise treated more efficiently, since the operator 6 does not have to push or pull an often heavy apparatus 2. In addition, since the human component of powering or otherwise moving the apparatus 2 is omitted, more consistent flooring treatment is achieved, thereby saving materials and reducing costs of the entire operation.


Referring now to FIG. 1, one embodiment of the present invention is shown. More specifically, the chassis 8 which includes the platform 4 adapted to support the operator 6 during the floor treatment operation is shown. The operator 6 preferably stands on the platform 4 that is generally parallel to the flooring surface. Preferably, the platform 4 is tilted, rear edge higher than the front edge, between about 3 to 8 degrees to increase ergonomics. However, as it will be appreciated by one skilled in the art, other support devices, such as seats, which may be operably folded into the chassis 8, may be provided to increase the comfort level of the operator 6. In addition, the embodiment of the present invention shown in FIG. 1 is equipped with a steering mechanism, such as a wheel 18, that allows the operator 6 to easily maneuver the apparatus 2 around the flooring surface.


The chassis 8 is constructed of any material, but preferably hard plastic will be used to reduce the weight of the apparatus 2. As shown herein, a plurality of wheels 18 are operably interconnected to the rear of the apparatus 2 to provide stability and perhaps power for locomotion. In addition, a squeegee 16 is included that is adapted to extract or funnel water or debris to a location where it is extracted via vacuum into a container generally, but not always, located at least partially inside the chassis 8. Further, this embodiment of the present invention includes a brush 12 that is used to agitate the flooring surface to loosen dirt, wherein spray nozzles may be employed situated behind the brush 12 to treat the flooring and capture the dirt so that it can be gathered by the squeegee 16 and suction system of the apparatus 2.


Referring now to FIG. 2, an alternate embodiment of the present invention that is used mainly for fluid extraction is shown. This embodiment of the present invention is similar to the apparatus described above, however alternate components are interconnected to the bottom surface 10 of the chassis 8 such that the apparatus is adapted to efficiently capture fluids or debris deposited on a floored surface. More specifically, this embodiment of the present invention is equipped with at least one brush 12 adapted to agitate water and/or debris and a squeegee 16 that is positioned adjacent to the rear surface of the chassis 8 that contains fluid and debris as the apparatus 2 moves forward. In one embodiment of the present invention, a suction device, such as a vacuum shoe, is positioned near the squeegee 16 such that dirty water is vacuumed from the surface and transferred back into a tank situated inside or adjacent to the chassis 8. Alternatively, another embodiment of the present invention is provided with a squeegee 16 with a plurality of suction holes that are the terminus of conduits that transport waste water to the storage tank.


In the illustrated embodiment, the operator 6 is able to control the apparatus 2 with a plurality of joy sticks 22. In addition, hand grips 24 are provided on the sides of the operator 6 to increase safety. Further, this embodiment of the present invention employs powered wheels 26 that allow the entire system to rotate on a single vertical axis without substantially transitioning in other directions. More specifically, this embodiment of the present invention is capable of performing a 360E turn, which aids cleaning of tight spaces.


An alternate embodiment of the present invention that is used for burnishing is shown in FIG. 3. This embodiment of the present invention includes a burnishing pad 28 operably interconnected to the bottom surface of the chassis 10. As before, the operator 6 stands on a platform 4 built into the chassis 8. One skilled in the art will appreciate that this embodiment of the present invention may also include a device for suctioning debris left over from the burnishing process, such as dust or wax particulates, for example.


Referring now to FIG. 4, an alternate embodiment of the present invention that employs swinging brushes 30 is shown. This embodiment of the present invention is very similar to those described above, however the brushes 30 used to agitate, scrub, or burnish are rotatably interconnected to the bottom surface 10 of the chassis 8. More specifically, the brushes 30 of this embodiment are capable of independently folding inwardly, thereby efficiently cleaning the interior portion of a floor when the apparatus is operating near a vertical surface such as a wall. As shown herein, the brushes 30 are independently movable and preferably spring loaded outward such that contact with a vertical surface causes the brush 30 to fold under the chassis 8. Alternatively, as one in the art will appreciate, the orientation of the brushes may be controlled by the operator. In addition, a wand 32 interconnected to a hose 34 may also be employed with this embodiment of the present invention to allow for selective application of cleaning solution or suction.


Referring now to FIG. 5, another embodiment of the present invention that utilizes centered powered wheels 26 is shown. More specifically, this embodiment of the invention is similar to those described above, however it is equipped with a plurality of wheels 26 that allow a 360E turning capability. This embodiment of the present invention is also similarly adapted for cleaning the surface of a floor with a brush 12 or a plurality thereof that is used to agitate the dirt wherein a squeegee contains and suctions debris into a container.


Referring now to FIGS. 6-8, an alternate embodiment of the present invention is shown that is equipped with a wheel 18 with brushes 12 therearound for cleaning in all directions. This embodiment of the present invention is equipped with brushes 12 that allow for cleaning or agitation of the flooring surface in any direction the apparatus 2 is moving, thus efficiently cleaning flooring without having to make multiple passes over the surface.


Referring now to FIG. 9A-B, one configuration of cleaning components interconnected to the bottom surface 10 of the chassis 8 is shown. More specifically, one embodiment of the present invention is adapted to either sweep or clean a floor. In the illustrated embodiment, a presweeping brush 12 agitates the carpet or hardwood floor to loosen debris. Next, rotating scrubbing brushes further agitate the surface and perhaps add fluid and cleaning solution thereto to help loosen and contain any loose debris. Finally, a squeegee 16 and preferably a suction system is provided that captures the dirty water and as the apparatus is moved forward. As shown herein, the drive unit is the center wheel 26, which is also adapted to selectively rotate upon steering commands from the operator 6.



FIG. 9B shows a configuration of cleaning components interconnected to the bottom surface 10 of the chassis 8 similar to what was shown in FIG. 9A. The difference, however, is that the pre-sweeping brush 12 has been replaced by three scrub brushes or three rotating brushes, 13A, 13B and 13C that may be used to either sweep, burnish or combinations thereof a floor surface. The brushes can rotate at speeds desired by the operator or at preselected speeds and in directions selected by the operator or in pre-selected directions.


Referring now to FIG. 10, an alternate configuration of the cleaning components interconnected to the bottom surface 10 of the chassis 8 is shown. More specifically, this configuration is substantially similar to that shown above in FIG. 9, however, the drive mechanism of the apparatus is a transaxled power plant that provides power to the rear wheels 26, wherein the steering is performed by a front wheel. In one embodiment of the present invention the drive mechanism is an electric monowheel drive. In another embodiment, the drive mechanism comprises rear wheels that are independently driven by drive motors.


Referring now to FIG. 11, yet another embodiment of the present invention performs a floor treatment operation without the need of physical human contact is shown. More specifically, this embodiment of the present invention is remote controlled or otherwise intelligent such that it cleans a floor surface without the direct contact of an operator. This embodiment of the present invention may be configured for any task, such as scrubbing, sweeping, vacuuming, burnishing, carpet cleaning, waxing, surfacing, cleaning, etc. It is envisioned that the operator be in a separate location, perhaps offsite from the actual cleaning operation, and aided by remote viewing devices. Alternatively, one embodiment of the present invention is programmed with the ability to automatically treat a floor surface, wherein the dimensions of the surface are either programmed into or learned as the apparatus is in use, thereby alleviating any need for human contact with the apparatus. This embodiment of the present invention may be deployed from a storage location automatically wherein quick disconnects to fluid sources or waste receptacles are remotely joined to it such that filling and emptying tanks or waste containers inside the chassis 8 is done without the need of a human operator as well. This embodiment of the present invention may be used in areas where it is dangerous for humans to operate, such as nuclear power plants, areas where asbestos exposure is likely, etc.


Referring now to FIG. 12A-G, a squeegee 16 for use in one embodiments of the present invention is shown. More specifically, some embodiments of the present invention include a pivot mechanism that allows the squeegee 16 to remain in place when the floor treating apparatus 2 is turning. Thus, the amount of fluid extracted when the apparatus 2 is making a tight turn is increased. In the illustrated embodiment, the squeegee 16 is connected to a swing arm 36 that pivots about a point adjacent to the front wheel 18 of the apparatus. The swing arm 36 is supported via rollers or bearings 38 on a track 40 that maintain the squeegee's 16 vertical position relative to the floor. Upon making a right or left hand turn, friction will tend to keep the squeegee 16 in a straight line, following the original path of the vehicle. Once a new line of travel is established, the squeegee 16 will fall back in place substantially under the apparatus 2. FIG. 12A shows the squeegee 16 in its upmost left position, while FIG. 12C shows the squeegee in its upmost right position. FIG. 12B shows the squeegee in a neutral position while FIG. 12D shows the squeegee in a neutral position but from a side view.


The squeegee 16 of one embodiment of the present invention is provided with a plurality of wheels that interface with the floor to maintain the vertical clearance of the squeegee assembly. In addition, side rollers may be provided that prevent the squeegee 16 from contacting a vertical surface, such as a wall. These wheels and various portions of the squeegee assembly may be selectively adjustable such that the width of the squeegee 16 and the placement of the wheels (squeegee height) may be altered at will.


As shown herein, the swing arm 36 connects to a pivot 42 that utilizes the momentum of the squeegee 16 to swing it from the apparatus 2. However, one skilled in the art will appreciate other methods of transitioning the squeegee 16 from the floor treatment apparatus 2 may be utilized without departing from the scope of the invention. More specifically, a motorized system may be employed that is in communication with the steering system of the vehicle such that rotation of the steering wheel will swing the squeegee 16 away from the apparatus 2 in a predetermined manner.


An actuation system that selectively raises the squeegee 16 from the floor may also be included as shown in FIG. 12E. In accordance with some embodiments of the present invention, a handle actuated leverage system 44 is used and is in mechanical communication with a cam 46. The cam allows the user to apply minimal force to the handle 44 adjacent to the control panel to raise and lower the squeegee 16. One skilled in the art will also appreciate that this function may be performed alternatively with a motor.



FIG. 12H is a blow-up of a section of FIG. 12D showing positioning of the track 40 in relation to bearing 38.


Referring now to FIG. 13A-D, a recovery tank strainer basket 48 of one embodiment of the present invention is shown. Recovery tanks of some embodiments of the present invention are constructed out of resiliently deflectable material, such as a plastic bag. The bag is inserted into the clean fluid tank 51 of the apparatus. Once the clean fluid is transferred to the floor treatment tool of the apparatus, waste water may be suctioned into the waste fluid tank, thus expanding the bag and occupying the space once occupied by now dispensed clean fluid. Often, small metal shavings, wood splinters, glass, etc., may be suctioned with the waste fluid and deposited into the waste fluid tank, which may produce rips or tears in the bag and ultimately lead to leakage and contamination of the cleaning fluid. Thus, it is desirable to have a system that captures any dangerous debris such that it does not come in contact with the waste fluid tank. One embodiment of the present invention thus includes a strain basket 48 connected to the cover 49 of the waste fluid tank. In the illustrated embodiment, a generally rectangular straining device constructed of a rigid material with a plurality of apertures therethrough is provided. As the waste water is deposited into the tank through the cover, any large debris is captured by the strain basket 48. One skilled in the art will appreciate that any sized aperture may be employed to dictate the size of debris that is captured. Also, it should be specifically understood that any shape of strain basket 48 may be used without departing from the scope of the invention.


Referring now specifically to FIG. 13D, a fluid discharge system that is connected to the waste water tank 58 of one embodiment of the present invention is shown. More specifically, a fitting 54 with a flange 56 may be used that is connected to the main storage tank 51 of the apparatus. Preferably, the fitting 54 is spun at a high rate of speed and engaged with an aperture in the tank 51, thus creating friction induced heat between the two surfaces and welding them together. The opening of the waste water bag 58 is then fed through the fitting 54 and a mandrill 60 is added to sandwich the waste water bag 58 therebetween. The mandrill 60 is made out of a rigid material, such as aluminum to ensure an open flow path. A drain hose 62 is slid over the outer surface of the fitting 54 and is secured with a clamp 64. One skilled in the art will appreciate that the drain hose 64 is generally capped during use, wherein the user disconnects the cap to drain the waste water from the bag 58. To ensure that the bag 58 is entirely empty, a new solution may be added to the tank, thus squeezing the bag 58 to expel all the waste water contained therein.


Referring now to FIG. 14A-D, the rear portion of the floor treatment apparatus 2 is shown. More specifically, the rear of the apparatus 2 includes a removable housing 66. The housing 66 of the present invention is capable of selective rotation away from a primary housing 104 about an axis parallel to the rear axle of the apparatus 2. Alternatively, the rear housing 66 may be completely removable. This aspect of the present invention provides the ability to access batteries 68 that may provide power to the apparatus 2. The batteries 68 may reside on a removable tray 70 that is slidingly engaged to the apparatus 2, thus providing easy access for maintenance. The tray 70 resides on tracks that interface with a plurality of wheels, bearings, etc. The tray also includes a locking feature that securedly maintains the batteries 68 inside the vehicle. The rear housing 66 also includes other features, such as a cavity for securing various items and drink holders 72. A pad 74 may also be included that provides greater protection and comfort to the user.


Referring now to FIG. 15, a control panel 76 and associated structure of one embodiment of the present invention is shown. Embodiments of the present invention include a control panel 76 that includes minimal fasteners 77 for interconnection to the floor treatment apparatus 2. That is, thumb screws, or similar type of fasteners may be included such that quick and easy removal of the control panel 76 may be achieved to facilitate repair.


Embodiments of the present invention also include hand grips 24 adjacent to the control panel 76 to provide support for the operator. More specifically, during tight turns the inertial forces acting upon an individual may cause an operator to fall. Hand grips 24, which may be integrated onto the chassis of the apparatus, will give the operator a place to hold onto the device for added comfort and provide an additional safety feature. In addition they provide support when operating control switches located adjacent to handle grip 78.


Referring now to FIG. 16, the platform 4 of one embodiment of the present invention is shown. More specifically, one embodiment of the present invention includes a platform 4 with an operator presence switch 80, a platform switch and a throttle 82. The platform 4 also may include a suspension system and be cushioned to increase operator comfort. In addition, the platform 4 may be foldable such that the envelop of the apparatus may be selectively reduced. In some embodiments of the present invention the platform 4 is located above an axis defined by the centers of the wheels located near the rear of the floor cleaning machine, as specifically shown at least in FIGS. 12A-12D, and 19A. In some embodiments of the present invention, the platform 4 is located below an axis defined by the centers of the wheels located near the rear of the floor cleaning machine, as specifically shown at least in FIG. 14B. In some other embodiments of the present invention, the outer surface of the wheels located near the rear of the floor cleaning machine define a cylindrical volume, and the platform 4 is located such that a portion thereof penetrates the volume defined by the wheels, as specifically shown at least in FIGS. 12A-12D, 14A, 14B, 16 and 20. In some embodiments of the present invention, the platform 4 is located below an uppermost point of the wheels located near the rear of the floor cleaning machine. As shown in FIG. 16, one embodiment of the present invention includes a platform with a left sidewall and a right sidewall that extend above the surface that receives the operator's feet. Embodiments of the present invention may also include a front wall extending from a front, inner surface that receives the operator's feet. Further, as shown in FIG. 9B, the platform may be associated with rear wheels that are not interconnected.


The operator presence switch 80 of one embodiment of the present invention is designed to act as a safety feature that interrupts the throttle pedal when not depressed. This ensures that the operator has both feet positioned on the platform when the machine is in use. Upon deactivation of the switch, for example if the operator removes a foot from the switch, a neutral mode may be engaged such that no power or forward or rearward motion of the device is possible. In addition, the operator presence switch 80 may ensure that sufficient weight is maintained on the platform at all times as a safety feature.


In the typical use, the platform switch is in operable connection with the platform, such that it is activated when the operator stands on the platform. The operator must then engage a reset device, preferably on the control panel, to initiate motion. The purpose of the platform switch and reset switch is to act as a safety feature such that the machine does not immediately move when the operator steps on to the peddle platform. Upon deactivation of the switch, for example if the operator steps from the apparatus, a neutral mode may be engaged such that no power and forward or rearward motion is possible.


The throttle 82 of some embodiments of the present invention is adapted to selectively increase or decrease the speed of the apparatus depending on the desires of the operator. More specifically, various speed ranges may be included: neutral, first, second, third, reverse, etc. (or slow, medium, fast, etc.). In some embodiments, cleaning operations are performed at slow speeds, while transportation from location to location is performed at higher speeds. When the operator sets the speed range to first, for example, the activation of the throttle 82 will propel the apparatus within that speed range, such that it cannot transition from the first range to the second range without a manual shift of the range. Thus, embodiments of the present invention include a hand speed range selector, wherein the throttle 82 simply turns the desired speed range to an activated mode. The neutral mode may also be set by the operator, wherein no amount of throttle 82 engagement will increase the speed of the apparatus. In addition, as mentioned briefly above, when the operator removes his or her foot from the operator presence switch 80, the apparatus automatically disengages the throttle. One skilled in the art will appreciate however, that a throttle 82 may be provided that provides selective speed increments, such as employed on an automobile, without departing from the scope of the invention.


It is likewise known that a throttle used on an electric motor drive device could operate by switches which regulate power delivered from batteries to a motor. For instance, and referring now to FIG. 10 from incorporated by reference Pat. No. 4,196,492: “batteries 240 are connected through a manually operable switch 117 to a solenoid operated switch 134. Switch 134 has two sets of normally open contacts 132 and two sets of normally closed contacts 133. All the contacts 132 and 133 are mechanically coupled together by means of a rod 135 for simultaneous ganged operation when coil 136 is energized. In the operation of cleaning machine 202, when the manually operable switch 117 is closed by the operator, coil 136 is energized causing the contacts 132 to close. This feeds power through to a potentiometer 131. Potentiometer 131 may be used to vary the voltage there through to adjust the speed of drive motor 108. From the potentiometer 131, the power passes through a forward and reverse switch 120. Forward and reverse switch 120 is identical to that disclosed in FIG. 7 and has for its purpose the changing of the polarity of the voltage applied to drive motor 108 to drive that motor in forward or reverse directions. However, indicator lights generally indicated as 260 and 262 are wired into the forward and reverse switch 120. When the motor 108 is being driven in a forward direction, the green indicator light 260 will light. Conversely, when the motor 108 is being driven in a reverse direction, the red indicator light 262 will be lit.”


Embodiments of the present invention also include a braking mechanism. For example, when an operator removes his or her foot from the operator presence switch 80, throttle, or disengages the platform switch, a braking mechanism may be employed such that any motion of the apparatus automatically or gradually ceases. The braking mechanism may be electro mechanical, mechanical or hydraulic. Alternatively, the foot brake may be provided adjacent to the throttle 82 or operator presence switch 80 that provides the same halting capability. Further, hand or emergency brakes may be employed adjacent to the control panel of the apparatus.


Referring now to FIG. 17A-B, a seat 84 of one embodiment of the present invention is shown. More specifically, embodiments of the present invention include a selectively connectable seating device 84 for engagement with the chassis to increase the operator comfort. Seats 84 of some embodiments of the present invention are selectively adjustable 85, thus making them easy to accommodate any sized individual. In operation, a receiver hitch, or similar connection mechanism, is connected to the rear portion of the platform 4 and a mating device for interconnection to the receiver hitch, or other device, is provided on the seat 84. The seat 84 may also include a plurality of hooks, shelves, cup holders, etc. for the securement of cords, bags, or any other type of cleaning or comfort related item. Further, the receiver hitch may be used when the seat 84 is engaged or not engaged, for example, to transport other items such as a supplemental wheeled device that may accommodate extra power sources, cleaning supplies, tanks, etc.


Referring now to FIG. 18A-D, a tank 50 of one embodiment of the present invention is shown. Some embodiments of the present invention include a tank 50 that is equipped with a plurality of lights 89 and/or horns that facilitate cleaning and/or act as additional safety features. Alternatively, lights may be integrated into bumpers positioned adjacent to the tank 50 or on the sides of the apparatus.


Although not shown, a filter may be provided in fluid communication with the fluid pump. This filter is designed to capture any debris that may adversely affect the operation of the pump. Unfortunately on many cleaning machines, the filter is placed in a hard to access location, such that repair or monitoring thereof is very difficult. Thus, one embodiment of the present invention includes a filter that is situated on the outer surface of the housing, perhaps on the control panel. Thus, the operator has ample opportunity to monitor the integrity of the filter and make quick repairs when necessary.


Referring now to FIG. 19A-B, a vacuum fan 92 which is connected to the front housing 88 of one embodiment of the present invention is shown. More specifically, a vacuum fan 92 provides suction to remove debris filled fluids from the floor. The fan 92 is preferably situated under the control panel 76 of the vehicle, such that the intake cooling air that is drawn in by the vacuum fan 92 is channeled adjacent to the control panel 76 to cool componentry associated therewith.


In addition, the tank 50 may be made out of a formable material such that exhaust channels 94 may be machined or molded into the tank 50. The channels 94 direct the exhaust air from the vacuum 92 to an exit muffler of the apparatus. The channels 94 also act as a baffle to remove noise energy from the exhaust gases, thus making the entire system quieter.


Referring now to FIG. 20, a waste fluid return hose 96 is shown. More specifically, one embodiment of the present invention decreases its profile by inserting the waste water hose 96 into a hose channel 98 that is integrated into the outside surface of the apparatus 2. The hose 96 being situated on the outside also has the added advantage of making it very accessible, such that it can be removed and inspected for clogs or breaches.


Further, some embodiments of the present invention are provided with tip over stops adjacent to the front corners of the apparatus. The stops may be replaceable and ensure that the apparatus does not tip over during tight turns. The tip over stops are generally constructed out of a material that is harmless to flooring, such as Teflon, silicone, rubber, plastic, etc. In addition, one skilled in the art will appreciate that rollers may be employed that are situated a predetermined distance from the floor to perform the same function.


Referring now to FIGS. 1-20, a manner of making the present invention is shown and described herein. As has been explained, the present invention is generally similar to the floor treatment devices used in the art. However, unlike many prior art devices, the present invention provides a location for which the operator can stand or sit, thus enabling him or her to more efficiently perform their tasks. In addition, instead of using brute strength to perform the task of steering the cleaning device, a steering mechanism and associated hardware are provided to aid in the smooth transition from one direction to another. Also, the present invention device has a compact profile and mechanism which allows for 360E cleaning of tight spaces. Further, to construct the remote control version of the system, software that is known in the art may be installed in the chassis 8 to allow for the system to be either remotely controlled or learn the cleaning surface as it operates. In addition, a series of cameras may be interconnected to the chassis 8 to provide remote viewing to an operator offsite.


While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims.

Claims
  • 1. A floor treatment apparatus that is operable to receive inputs from direct contact with an operator and without direct contact with an operator to perform tasks, the floor treatment apparatus comprising: a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface;a platform located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator and a throttle;wherein the throttle comprises a pedal that protrudes above the top surface of the platform;a steering mechanism associated with the chassis and having a portion accessible to an operator;a floor treating device connected adjacent to the lower surface of the chassis, the floor treating device configured to at least one of scrub floors, clean carpets, vacuum floors, wax floors, burnish floors, remove wax from a floor, and remove varnish from a floor;a squeegee that is operable to follow a path of travel of the floor treatment apparatus; anda sensor having a defined relationship with respect to the chassis capable of generating information or receiving information from a remote location; andthe sensor in electrical communication with at least one of the steering mechanism and the throttle for at least one of controlling cleaning operations, redirecting the floor treatment apparatus, and varying a speed of the apparatus based on input from the sensor.
  • 2. The floor treatment apparatus of claim 1, further comprising an electric monowheel at least partially positioned below a portion of the top surface of the platform.
  • 3. The floor treatment apparatus of claim 1, further including a clean fluid storage compartment in operable communication with a fluid dispenser.
  • 4. The floor treatment apparatus of claim 1, further including a spent fluid storage compartment in operable communication with a fluid collection system.
  • 5. The floor treatment apparatus of claim 4, further including a hose in fluid communication with the spent fluid storage compartment, at least a portion of which is positioned outside of the chassis.
  • 6. The floor treatment apparatus of claim 1, further including a vacuum motor in vacuum communication with a portion of the squeegee.
  • 7. The floor treatment apparatus of claim 1, wherein the squeegee comprises a first position of use spaced a predetermined distance from a surface and a second position of use wherein the squeegee is capable of contacting the surface.
  • 8. The floor treatment apparatus of claim 1, wherein the sensor is operable to detect a surface upon which the chassis provided.
  • 9. The floor treatment apparatus of claim 1, wherein the sensor is aimed at the surface and operable to detect obstacles on the surface, and wherein the apparatus further comprises a second sensor aimed in a different direction that is operable to detect wall surfaces.
  • 10. The floor treatment apparatus of claim 1, wherein the apparatus is capable of transmitting information using at least one of WiFi, Bluetooth, radio waves, light waves and sound waves.
  • 11. A floor treatment apparatus that does not require direct contact with an operator to perform tasks, comprising: a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface;a platform located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator;a throttle;a steering mechanism associated with the chassis;a floor treating device connected adjacent to the lower surface of the chassis, the floor treating device configured to scrub floors, clean carpets, vacuum floors, wax floors, burnish floors, remove wax from a floor, or remove varnish from a floor;a squeegee provided proximate to the floor treating device;at least one sensor having a defined relationship with respect to the chassis and operable to detect a distance between a portion of the chassis and a surface; andwherein the at least one sensor is capable of generating information or receiving information from a remote location; anda circuit in communication with the at least one sensor for at least one of redirecting the floor treatment apparatus and altering a speed of the apparatus based on input from the at least one sensor.
  • 12. The floor treatment apparatus of claim 11, wherein the surface comprises a wall surface that is substantially perpendicular to a surface upon which the apparatus is provided.
  • 13. The floor treatment apparatus of claim 11, further comprising at least one drive wheel powered by a battery.
  • 14. The floor treatment apparatus of claim 11, further comprising a spent fluid storage compartment in operable communication with a fluid collection system.
  • 15. The floor treatment apparatus of claim 11, further including a vacuum motor in vacuum communication with a portion of the squeegee.
  • 16. The floor treatment apparatus of claim 11, wherein the squeegee comprises a first position of use spaced a predetermined distance from a surface and a second position of use wherein the squeegee is capable of contacting the surface.
  • 17. The floor treatment apparatus of claim 11, wherein software is installed in the cleaning apparatus such that human contact or monitoring is not required for the apparatus to perform tasks.
  • 18. The floor treatment apparatus of claim 11, wherein the at least one sensor is aimed at the surface for detecting obstacles on the surface, and further comprising a second sensor aimed in a different direction and operable to detect wall surfaces.
  • 19. A floor treatment apparatus, comprising: a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface;a platform located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator, a throttle and an operator presence device;wherein the throttle comprises a pedal that protrudes above the top surface of the platform;a steering mechanism associated with the chassis and having a portion accessible to an operator;a floor treating device connected adjacent to the lower surface of the chassis, the floor treating device configured to scrub floors, clean carpets, vacuum floors, wax floors, burnish floors, remove wax from a floor, or remove varnish from a floor;a sensor having a defined relationship with respect to the chassis capable of generating information or receiving information from a remote location; andthe sensor in electrical communication with at least one of the steering mechanism and the throttle for at least one of redirecting the floor treatment apparatus or varying a speed of the apparatus based on input from the sensor.
  • 20. The floor treatment apparatus of claim 19, further comprising a motorized system in communication with the steering mechanism.
  • 21. The floor treatment apparatus of claim 19, wherein the squeegee comprises a first position of use spaced a predetermined distance from a surface and a second position of use wherein the squeegee is capable of contacting the surface.
  • 22. A floor treatment apparatus, comprising: a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface;a platform located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator, a throttle and an operator presence device;wherein the throttle comprises a pedal that protrudes above the top surface of the platform;a steering mechanism associated with the chassis and having a portion accessible to an operator;a floor treating device connected adjacent to the lower surface of the chassis, the floor treating device configured to scrub floors, clean carpets, vacuum floors, wax floors, burnish floors, remove wax from a floor, or remove varnish from a floor; anda squeegee that is operable to follow a path of travel of the floor treatment apparatus.
  • 23. The floor treatment apparatus of claim 22, further including a switch to set a speed range wherein no degree of throttle engagement will cause the floor treatment apparatus to exceed the speed range.
  • 24. The floor treatment apparatus of claim 22, further comprising an electric monowheel at least partially positioned below a portion of the top surface of the platform.
  • 25. The floor treatment apparatus of claim 22, further including a clean fluid storage compartment in operable communication with a fluid dispenser.
  • 26. The floor treatment apparatus of claim 22, further including a spent fluid storage compartment in operable communication with a fluid collection system.
  • 27. The floor treatment apparatus of claim 22, further including a hose in fluid communication with the spent fluid storage compartment, at least a portion of which is positioned outside of the chassis.
  • 28. The floor treatment apparatus of claim 22, wherein the throttle is positioned adjacent the right surface of the chassis.
  • 29. The floor treatment apparatus of claim 22, further including a rotatable member forming a portion of the rear surface and that in a first position of use provides access to an interior portion of the chassis.
  • 30. The floor treatment apparatus of claim 24, further including a second and a third wheel.
  • 31. The floor treatment apparatus of claim 22, wherein a control panel is positioned on the chassis and located below a portion of the steering mechanism.
  • 32. The floor treatment apparatus of claim 22, further including a vacuum motor in vacuum communication with a portion of the squeegee assembly.
  • 33. The floor treatment apparatus of claim 22, wherein the squeegee comprises a first position of use spaced a predetermined distance from a surface and a second position of use wherein the squeegee is capable of contacting the surface.
  • 34. The floor treatment apparatus of claim 22, wherein the squeegee is located between the front of the chassis and the platform.
  • 35. A floor treatment apparatus, comprising: a chassis having a front, a back, a lower surface, a front surface adjacent the front, a rear surface located substantially behind a center point of the chassis, a left surface, and a right surface;a first wheel operably interconnected to the lower surface adjacent to the left surface;a second wheel operably interconnected to the lower surface adjacent the right surface;a platform adapted to support an operator's weight located at least partially between the right and left surface and at least partially behind the rear surface, the platform comprising a throttle;a third wheel provided proximal to the platform;at least one of the first wheel, the second wheel and the third wheel comprising an electric drive wheel in operative communication with one or more batteries;a steering mechanism, at least partially housed within the chassis, operably interconnected to at least one of the first, second or third wheel;a floor treating mechanism selectively interconnected to the lower surface; anda squeegee provided rearward of the floor treating mechanism.
  • 36. The floor treatment apparatus of claim 35, wherein the platform includes an operator presence switch.
  • 37. The floor treatment apparatus of claim 35, wherein the top surface of the platform includes one or more protrusions.
  • 38. The floor treatment apparatus of claim 35, further comprising a hose in fluid communication with a spent fluid storage tank, wherein at least a portion of the hose is positioned outside of the chassis.
  • 39. The floor treatment apparatus of claim 35, further including a rotatable door forming a portion of the rear surface, which in an open position provides access to an interior portion of the chassis.
  • 40. The floor treatment apparatus of claim 35, wherein the squeegee may partially rotate relative to a home position and a first position of use positioned a predetermined distance from a surface and a second position of use substantially on the surface and wherein the squeegee is located between the rear of the chassis and the electric monowheel drive.
  • 41. A floor treatment apparatus, comprising: a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface adjacent the back, a left surface, and a right surface;a platform located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator;an operator presence device;an electric drive motor;one or more batteries electrically connected to the electric drive motor;a steering mechanism associated with the chassis and having a portion accessible to an operator;a floor treating device connected adjacent to the lower surface of the chassis, the floor treating device configured to scrub floors, clean carpets, vacuum floors, wax floors, burnish floors, remove wax from a floor, or remove varnish from a floor;a squeegee operably interconnected to the lower surface of the chassis proximal to the floor treating device;a clean fluid storage compartment in operable communication with a portion of a fluid dispenser;a spent fluid storage compartment in operable communication with a portion of a fluid collection system;a panel forming a portion of the rear surface to provide access to an interior portion of the chassis.
  • 42. The floor treatment apparatus of claim 41, wherein the squeegee is positioned adjacent to the rear surface of the chassis.
  • 43. The floor treatment apparatus of claim 41, wherein the squeegee is adjacent to the floor treating device.
  • 44. The floor treatment apparatus of claim 41, wherein the steering mechanism comprises a joystick.
Parent Case Info

This application is a Continuation of U.S. patent application Ser. No. 15/676,745, filed Aug. 14, 2017, abandoned which is a Continuation of U.S. patent application Ser. No. 15/248,560 which is a Continuation of U.S. patent application Ser. No. 15/245,488, filed Aug. 24, 2016, which is a Continuation of U.S. patent application Ser. No. 14/643,768, filed Mar. 10, 2015, which is a Continuation of U.S. patent application Ser. No. 13/964,046, filed Aug. 10, 2013, now U.S. Pat. No. 9,015,887, which is a Continuation of U.S. patent application Ser. No. 13/888,140, now U.S. Pat. No. 8,528,142, filed May 6, 2013, which is a Continuation of U.S. patent application Ser. No. 13/554,593, now U.S. Pat. No. 8,438,685, filed Jul. 20, 2012, which is a Divisional of U.S. patent application Ser. No. 11/868,353, now U.S. Pat. No. 8,245,345, filed Oct. 5, 2007, which is a Continuation of U.S. patent No. 11/059,663, now U.S. Pat. No. 7,533,435, filed Feb. 15, 2005, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/545,153 and 60/627,606, filed Feb. 16, 2004 and Nov. 12, 2004, respectively, and which is a Continuation-In-Part of abandoned U.S. patent application Ser. No. 10/737,027, filed Dec. 15, 2003, which is a Continuation-In-Part of abandoned U.S. patent application Ser. No. 10/438,485, filed May 14, 2003, the entire disclosures of which are incorporated by reference in their entirety herein. This application is related to abandoned U.S. patent application Ser. No. 11/253,100, filed Oct. 17, 2005, which is incorporated by reference in its entirety herein. This application is also related to U.S. patent application Ser. No. 13/589,321, now U.S. Pat. No. 8,397,333, filed Aug. 20, 2012, which is a Continuation of U.S. patent application Ser. No. 12/511,704, now U.S. Pat. No. 8,302,240, filed Jul. 29, 2009, the entirety of which are incorporated by reference herein.

US Referenced Citations (413)
Number Name Date Kind
1268963 Gray Jun 1918 A
1596041 Young Aug 1926 A
1632665 Mitchell Jun 1927 A
1639959 Owen Aug 1927 A
1888339 White Nov 1932 A
1900889 Becker Mar 1933 A
1995084 Wichle Mar 1935 A
1999696 Kitto Apr 1935 A
2014085 Kroll et al. Sep 1935 A
2192397 Carlson Mar 1940 A
2263762 Dow et al. Nov 1941 A
2668979 MacFarland Feb 1954 A
2709070 Bielstein May 1955 A
2864462 Brace Dec 1958 A
2937881 Norrie May 1960 A
3005224 Taski Oct 1961 A
3020576 Gerber Feb 1962 A
3040363 Krammes et al. Jun 1962 A
3065490 Arones Nov 1962 A
3093853 Tamny Jun 1963 A
3186021 Krier et al. Jun 1965 A
3189931 Krier et al. Jun 1965 A
3193862 Lyon Jul 1965 A
D202170 Little et al. Sep 1965 S
3204280 Campbell Sep 1965 A
3206787 Daniels et al. Sep 1965 A
3224524 Laher Dec 1965 A
3233274 Kroll Feb 1966 A
3284830 Kroll Nov 1966 A
3322350 Heinicke May 1967 A
D213586 Howard et al. Mar 1969 S
3436788 Tamny Apr 1969 A
3461479 Tierney Aug 1969 A
3504858 Liddiard Apr 1970 A
3506080 Hott Apr 1970 A
RE26950 Hays Sep 1970 E
3584439 Gronholz Jun 1971 A
3604051 Wendall et al. Sep 1971 A
3631558 Kovacevoc Jan 1972 A
3639936 Ashton Feb 1972 A
3670359 Gutbrod Jun 1972 A
3701177 Meyer et al. Oct 1972 A
3702488 Kasper Nov 1972 A
3705437 Rukauina, Jr. et al. Dec 1972 A
3705746 McLeod Dec 1972 A
3755993 Cote Sep 1973 A
3760649 Decouzon et al. Sep 1973 A
3797744 Smith Mar 1974 A
3833961 Fortman et al. Sep 1974 A
3837029 Kasper Sep 1974 A
3846865 Holman Nov 1974 A
3871826 Bakay Mar 1975 A
3879789 Kasper Apr 1975 A
3883301 Emrick et al. May 1975 A
3886623 Landesman et al. Jun 1975 A
3892003 Peabody Jul 1975 A
3896520 Williams Jul 1975 A
3927899 Bough Dec 1975 A
3933451 Johansson Jan 1976 A
3955236 Mekelburg May 1976 A
4010507 Johnson Mar 1977 A
4019218 Cyphert Apr 1977 A
4037289 Dojan Jul 1977 A
4041567 Burgoon Aug 1977 A
4046321 Hewett Sep 1977 A
4108268 Block Aug 1978 A
4109342 Vermillion Aug 1978 A
4135669 Bridges et al. Jan 1979 A
4173052 Burgoon et al. Nov 1979 A
4196492 Johnson et al. Apr 1980 A
4200952 Smies et al. May 1980 A
4200953 Overton May 1980 A
4210978 Johnson et al. Jul 1980 A
4214338 Kyle et al. Jul 1980 A
4219901 Burgoon et al. Sep 1980 A
4293971 Block Oct 1981 A
4310944 Kroll et al. Jan 1982 A
4314385 Wimsatt et al. Feb 1982 A
4328014 Burgoon et al. May 1982 A
4339841 Walhauser et al. Jul 1982 A
4348783 Swanson et al. Sep 1982 A
4354569 Eichholz Oct 1982 A
D267084 Bittinger Nov 1982 S
4363152 Karpantry Dec 1982 A
4383551 Lynch et al. May 1983 A
4429433 Burgoon Feb 1984 A
D273621 Haub et al. Apr 1984 S
4457036 Carlson et al. Jul 1984 A
4457043 Oeberg et al. Jul 1984 A
4467494 Jones Aug 1984 A
4492002 Waldhauser et al. Jan 1985 A
4499624 Bloom et al. Feb 1985 A
4532667 Komesker et al. Aug 1985 A
4538695 Bradt Sep 1985 A
4553626 Kazmierczak et al. Nov 1985 A
4554701 Van Raaij Nov 1985 A
4572023 Euler Feb 1986 A
4580313 Blehert Apr 1986 A
4586208 Trevarthen May 1986 A
4596061 Henning Jun 1986 A
4611363 Samuelsson Sep 1986 A
4633541 Block Jan 1987 A
4654918 Cooper Apr 1987 A
D290053 Block May 1987 S
D290054 Block May 1987 S
4674048 Okumura Jun 1987 A
4675935 Kasper et al. Jun 1987 A
4696593 Bayless Sep 1987 A
4700427 Knepper Oct 1987 A
4701893 Muller et al. Oct 1987 A
4710020 Maddox et al. Dec 1987 A
4715087 Todd et al. Dec 1987 A
4716980 Butler Jan 1988 A
4731956 Wood Mar 1988 A
4736116 Pavlak, Jr. et al. Apr 1988 A
4741069 Helm et al. May 1988 A
4742652 Cannan et al. May 1988 A
4751658 Kadonoff et al. Jun 1988 A
4759094 Palmer et al. Jul 1988 A
4772875 Maddox et al. Sep 1988 A
4773113 Russell Sep 1988 A
4777416 George, II et al. Oct 1988 A
4787646 Kamlukin et al. Nov 1988 A
4790402 Field et al. Dec 1988 A
4799286 Rubin Jan 1989 A
4803753 Palmer Feb 1989 A
4805258 Sitarski et al. Feb 1989 A
4809397 Jacobs et al. Mar 1989 A
4815008 Kadonoff et al. Mar 1989 A
4815840 Benayad-Cherif et al. Mar 1989 A
4819676 Blehert et al. Apr 1989 A
4821192 Taivalkoski et al. Apr 1989 A
4821958 Shaffer Apr 1989 A
4829442 Kadonoff et al. May 1989 A
4839037 Bertelsen et al. Jun 1989 A
4846297 Field et al. Jul 1989 A
4847944 Lackner Jul 1989 A
4850077 Venturini Jul 1989 A
4874055 Beer Oct 1989 A
4879784 Shero Nov 1989 A
4884313 Zoni Dec 1989 A
4920997 Vetter et al. May 1990 A
4922575 Riemann May 1990 A
4939808 Roden et al. Jul 1990 A
4991254 Roden et al. Feb 1991 A
4996468 Field et al. Feb 1991 A
5005128 Robins et al. Apr 1991 A
5005597 Popelier et al. Apr 1991 A
5020620 Field Jun 1991 A
5026488 Mesheau Jun 1991 A
5027464 Knowlton Jul 1991 A
5032775 Mizuno et al. Jul 1991 A
5044043 Field et al. Sep 1991 A
5045118 Mason et al. Sep 1991 A
5048202 Shero Sep 1991 A
5051906 Evans, Jr. et al. Sep 1991 A
5054150 Best et al. Oct 1991 A
5054158 Williams et al. Oct 1991 A
5058235 Charky Oct 1991 A
5075921 Gleadall Dec 1991 A
D323797 Oslapas et al. Feb 1992 S
5090083 Wulff Feb 1992 A
5093955 Blehert et al. Mar 1992 A
5109566 Kobayashi et al. May 1992 A
5117944 Hurtevent Jun 1992 A
5127124 Palmer et al. Jul 1992 A
5135080 Haston Aug 1992 A
5138742 Charky Aug 1992 A
5168947 Rodenborn Dec 1992 A
5174730 Nieuwkamp et al. Dec 1992 A
5177828 Von Vett Jan 1993 A
5184372 Mache Feb 1993 A
5212848 Geyer May 1993 A
5217166 Schulze et al. Jun 1993 A
5221026 Williams Jun 1993 A
5226941 Uibel et al. Jul 1993 A
5239720 Wood et al. Aug 1993 A
5245144 Stammen Sep 1993 A
5265300 O'Hara et al. Nov 1993 A
5279672 Betker et al. Jan 1994 A
5279683 Okada et al. Jan 1994 A
5279688 Isokawa et al. Jan 1994 A
5279696 Zangenfeind et al. Jan 1994 A
5279699 Taguchi et al. Jan 1994 A
5279701 Shigeta et al. Jan 1994 A
5298080 Von Vett Mar 1994 A
5303448 Hennessey et al. Apr 1994 A
5307538 Rench et al. May 1994 A
5311892 Adelt et al. May 1994 A
5349718 Gibbon Sep 1994 A
5360307 Schemm et al. Nov 1994 A
5364114 Petersen Nov 1994 A
5371918 Shero Dec 1994 A
5372376 Pharaoh Dec 1994 A
5377376 Wood et al. Jan 1995 A
5377382 Bores et al. Jan 1995 A
5383605 Teague Jan 1995 A
5390690 Blaga Feb 1995 A
5403152 Trautloff et al. Apr 1995 A
5403473 Moorehead et al. Apr 1995 A
5416949 Jute May 1995 A
5419006 Duthie May 1995 A
5426805 Fisher Jun 1995 A
5435038 Sauers Jul 1995 A
D361414 Trautloff et al. Aug 1995 S
RE35033 Waldhauser Sep 1995 E
5455979 Bores et al. Oct 1995 A
5455985 Hamline et al. Oct 1995 A
D364012 Bothun et al. Nov 1995 S
5463791 Roden Nov 1995 A
5465451 Stegens Nov 1995 A
5465456 Fellhauer et al. Nov 1995 A
5467500 O'Hara et al. Nov 1995 A
D365423 Bores et al. Dec 1995 S
5485653 Knowlton et al. Jan 1996 A
5500979 Worwag Mar 1996 A
D369446 Smith Apr 1996 S
5502868 Braeendle Apr 1996 A
5509162 Burgoon Apr 1996 A
D370320 Hachtmann May 1996 S
5513409 Biegel May 1996 A
5524320 Zachhuber Jun 1996 A
5537712 Weber et al. Jul 1996 A
5555595 Ligman Sep 1996 A
5555596 Knowlton et al. Sep 1996 A
D376227 Knowlton et al. Dec 1996 S
5607178 Legatt et al. Mar 1997 A
5608947 Knowlton et al. Mar 1997 A
5611108 Knowlton et al. Mar 1997 A
5620309 Todden et al. Apr 1997 A
5625920 Bores et al. May 1997 A
5628086 Knowlton et al. May 1997 A
5630246 Knowlton et al. May 1997 A
D380070 Shero Jun 1997 S
D381480 Linville et al. Jul 1997 S
D382383 Knowlton et al. Aug 1997 S
5653261 Dalhart et al. Aug 1997 A
5655254 Bores et al. Aug 1997 A
D391697 Knowlton et al. Mar 1998 S
5742975 Knowlton et al. Apr 1998 A
5768742 Kohl et al. Jun 1998 A
5784754 Roden et al. Jul 1998 A
5785453 Marty et al. Jul 1998 A
5802665 Knowlton et al. Sep 1998 A
5813086 Ueno et al. Sep 1998 A
5881417 Knowlton Mar 1999 A
5890258 Lee Apr 1999 A
5898970 Straiton May 1999 A
5901409 Schick et al. May 1999 A
5911938 El et al. Jun 1999 A
5920953 Shero Jul 1999 A
5943733 Tagliaferri Aug 1999 A
5984031 Velke et al. Nov 1999 A
5993563 Strickland et al. Nov 1999 A
D420473 Shero Feb 2000 S
6023813 Thatcher et al. Feb 2000 A
6030465 Marcussen et al. Feb 2000 A
6032326 Roden et al. Mar 2000 A
6041471 Charky et al. Mar 2000 A
6059055 Velke et al. May 2000 A
6073304 Knowlton et al. Jun 2000 A
6088873 Pacchini et al. Jul 2000 A
6131240 Shark et al. Oct 2000 A
6145855 Bellis, Jr. et al. Nov 2000 A
6158084 Weber et al. Dec 2000 A
6158673 Toetschinger Dec 2000 A
6182328 Roden Feb 2001 B1
6206980 Robinson Mar 2001 B1
6212731 Eckerlein Apr 2001 B1
RE37162 Roden May 2001 E
6226983 Roden May 2001 B1
6227957 Legatt et al. May 2001 B1
6230363 Kawai et al. May 2001 B1
6266892 Haynie Jul 2001 B1
6267190 Micheletti Jul 2001 B1
6283170 Robinson Sep 2001 B1
6302230 Kamen et al. Oct 2001 B1
6338013 Ruffner Jan 2002 B1
6347681 Patmont et al. Feb 2002 B1
6357070 Venard et al. Mar 2002 B1
6367120 Beauchamp Apr 2002 B2
6371228 Husted et al. Apr 2002 B1
6397429 Legatt et al. Jun 2002 B1
6421868 Tran Jul 2002 B1
6425958 Giddings et al. Jul 2002 B1
6427285 Legatt et al. Aug 2002 B1
6428590 Lehman et al. Aug 2002 B1
6431217 Robinson Aug 2002 B2
6431302 Patmont et al. Aug 2002 B2
6442789 Legatt et al. Sep 2002 B1
6450867 Legatt Sep 2002 B1
6453506 Sumner Sep 2002 B1
6464025 Koeper et al. Oct 2002 B1
6484353 Rau Nov 2002 B2
6490849 Scag et al. Dec 2002 B1
6497422 Bellis, Jr. et al. Dec 2002 B1
6502017 Ruffner Dec 2002 B2
6519808 Legatt et al. Feb 2003 B2
6530821 Legatt et al. Mar 2003 B2
6533871 Zahuranec et al. Mar 2003 B2
6535793 Allard Mar 2003 B2
6553609 Tremmel et al. Apr 2003 B2
6554207 Ebberts Apr 2003 B2
6571805 Hoenisch et al. Jun 2003 B2
6585827 Field et al. Jul 2003 B2
6594844 Jones Jul 2003 B2
6600981 Ruffner Jul 2003 B2
6625843 Kim et al. Sep 2003 B2
6629333 Bolden et al. Oct 2003 B2
6647585 Robinson Nov 2003 B1
6650975 Ruffner Nov 2003 B2
6671925 Field et al. Jan 2004 B2
6681433 Ruuska et al. Jan 2004 B1
6684452 Lehman et al. Feb 2004 B2
6705332 Field et al. Mar 2004 B2
6721990 Zahuranec et al. Apr 2004 B2
6725512 Carter et al. Apr 2004 B2
6735811 Field et al. May 2004 B2
6735812 Hekman et al. May 2004 B2
6760947 Stuchlik Jul 2004 B2
6772475 Weber et al. Aug 2004 B2
6789290 Kent et al. Sep 2004 B2
6842940 Christopher et al. Jan 2005 B2
6845829 Hafendorfer Jan 2005 B2
6871371 Guest Mar 2005 B2
6880199 Huffman et al. Apr 2005 B1
6918156 Joo et al. Jul 2005 B2
6918603 Boyd Jul 2005 B2
6941614 Montgomery Sep 2005 B2
6945261 Wadsworth et al. Sep 2005 B2
6948527 Ragner et al. Sep 2005 B2
6981338 Jensen et al. Jan 2006 B2
7025835 Pedlar et al. Apr 2006 B2
7028925 Guest et al. Apr 2006 B2
7041029 Fulghum et al. May 2006 B2
7048805 Kent et al. May 2006 B2
7055201 Buchegger et al. Jun 2006 B2
7059004 Mitchell et al. Jun 2006 B2
7113847 Chmura et al. Sep 2006 B2
D533320 Pedlar Dec 2006 S
D536146 Pedlar Jan 2007 S
D536842 Pedlar Feb 2007 S
D536843 Pedlar Feb 2007 S
D536844 Pedlar Feb 2007 S
D536845 Pedlar Feb 2007 S
D536846 Pedlar Feb 2007 S
D538492 Pedlar Mar 2007 S
D542988 Dammkoehler et al. May 2007 S
D543323 Pedlar May 2007 S
D544659 Auerswald et al. Jun 2007 S
D549405 Dammkoehler Aug 2007 S
7287299 Joynt Oct 2007 B2
7302734 Nowak et al. Dec 2007 B2
7328758 Ruffo Feb 2008 B2
7350264 Bedard et al. Apr 2008 B2
D569057 Goff May 2008 S
7370386 Lehman et al. May 2008 B2
D571512 Dammkoehler et al. Jun 2008 S
7406739 Guest et al. Aug 2008 B2
7430782 Ruffo Oct 2008 B2
7533435 Pedlar et al. May 2009 B2
7555801 Peters et al. Jul 2009 B2
7611555 Wattenberg et al. Nov 2009 B2
7712181 Riach May 2010 B2
7841042 Roden et al. Nov 2010 B2
8002862 Schultink Aug 2011 B2
D654234 Hein Feb 2012 S
D659308 Dammkoehler May 2012 S
D661853 Dammkoehler Jun 2012 S
8245345 Pedlar et al. Aug 2012 B2
8261759 Kelle et al. Sep 2012 B2
8302240 Tucker et al. Nov 2012 B2
8397333 Tucker et al. Mar 2013 B2
8438685 Pedlar et al. May 2013 B2
8528142 Pedlar et al. Sep 2013 B1
D693529 Garner Nov 2013 S
8887340 Pedlar et al. Nov 2014 B2
9015887 Pedlar et al. Apr 2015 B1
9192276 Pedlar et al. Nov 2015 B2
9451861 Pedlar et al. Sep 2016 B2
9510721 Pedlar et al. Dec 2016 B2
9730566 Pedlar et al. Aug 2017 B2
9757005 Pedlar et al. Sep 2017 B2
1001023 Knutson et al. Jul 2018 A1
20010002500 Kasen et al. Jun 2001 A1
20030159225 Kuo Aug 2003 A1
20030192963 Ebberts Oct 2003 A1
20040040102 Field et al. Mar 2004 A1
20040172769 Giddings et al. Sep 2004 A1
20040187895 Field et al. Sep 2004 A1
20040221407 Field et al. Nov 2004 A1
20040226578 Guest et al. Nov 2004 A1
20040226584 Guest et al. Nov 2004 A1
20040262871 Schreuder et al. Dec 2004 A1
20050081319 Legatt Apr 2005 A1
20050251937 Ruffo Nov 2005 A1
20060064844 Venard et al. Mar 2006 A1
20060124770 Vernard et al. Jun 2006 A1
20060156498 Vernard et al. Jul 2006 A1
20060184293 Konandreas et al. Aug 2006 A1
20060236494 Nelson et al. Oct 2006 A1
20070209143 Choi et al. Sep 2007 A1
20070240276 Pedlar et al. Oct 2007 A1
20110004339 Ozick et al. Jan 2011 A1
20110023918 Kelle et al. Feb 2011 A1
20120096671 Venard et al. Apr 2012 A1
20130005224 Leifheit et al. Jan 2013 A1
20130261867 Burnett et al. Oct 2013 A1
20140188326 Johnson et al. Jul 2014 A1
20170164804 Dickrell et al. Jun 2017 A1
20170164805 Ickes et al. Jun 2017 A1
20170340183 Pedlar et al. Nov 2017 A1
20170360270 Dickrell et al. Dec 2017 A1
Foreign Referenced Citations (85)
Number Date Country
0231900 Feb 1964 AT
226251 Jun 1959 AU
PI 0511488 Jan 2008 BR
2242793 Jul 1998 CA
2268234 Oct 1999 CA
1023867 Feb 1958 DE
1270066 Jun 1968 DE
1658384 Apr 1971 DE
7703475 Jun 1977 DE
69011648 Dec 1994 DE
4440202 May 1995 DE
9421472 Jan 1996 DE
4429996 Feb 1996 DE
9421625 Mar 1996 DE
19539350 Apr 1997 DE
19745887 Aug 1998 DE
19851681 May 2000 DE
19851666 Sep 2000 DE
69608989 Nov 2000 DE
19927593 Apr 2001 DE
10029691 Jan 2002 DE
10030725 Jan 2002 DE
10062329 Jul 2002 DE
20204485 Oct 2002 DE
10142192 Mar 2003 DE
10204118 Oct 2003 DE
10218244 Nov 2003 DE
10221349 Nov 2003 DE
10221351 Nov 2003 DE
10221352 Nov 2003 DE
10307150 Sep 2004 DE
10324825 Dec 2004 DE
10324826 Dec 2004 DE
0017913 Oct 1980 EP
0176696 Apr 1986 EP
0176697 Apr 1986 EP
0189617 Aug 1986 EP
0281976 Sep 1988 EP
0282850 Sep 1988 EP
0283022 Sep 1988 EP
0421194 Apr 1991 EP
0569430 Nov 1993 EP
0621004 Oct 1994 EP
0792615 Sep 1997 EP
0867331 Sep 1998 EP
0948928 Oct 1999 EP
0951857 Oct 1999 EP
1023867 Aug 2000 EP
1108091 Jun 2001 EP
1108092 Jun 2001 EP
1164074 Dec 2001 EP
1260129 Nov 2002 EP
1335869 Aug 2003 EP
1265713 Feb 2004 EP
1604605 Dec 2005 EP
2224340 Oct 1974 FR
1112147 May 1968 GB
2338686 Dec 1999 GB
H04-264903 Sep 1992 JP
H07-47039 Feb 1995 JP
H08-182638 Jul 1996 JP
H08-196496 Aug 1996 JP
H09-94201 Apr 1997 JP
2000-217759 Aug 2000 JP
2001-258807 Sep 2001 JP
2002-078650 Mar 2002 JP
2003-246237 Sep 2003 JP
2003-504095 Sep 2003 JP
2005-324020 Nov 2005 JP
WO 8601240 Feb 1986 WO
WO 8602394 Apr 1986 WO
WO 8906624 Jul 1989 WO
WO 9010416 Sep 1990 WO
WO 92013480 Aug 1992 WO
WO 9715730 May 1997 WO
WO 9715731 May 1997 WO
WO 0028149 May 2000 WO
WO 0074549 Dec 2000 WO
WO 0079058 Dec 2000 WO
WO 0105216 Jan 2001 WO
WO 0141935 Jun 2001 WO
WO 0242184 May 2002 WO
WO 2005079468 Sep 2005 WO
WO 2006121783 Nov 2006 WO
WO 2017031365 Feb 2017 WO
Non-Patent Literature Citations (205)
Entry
U.S. Appl. No. 90/013,028, filed Nov. 12, 2014.
U.S. Appl. No. 90/013,026, filed Dec. 19, 2014.
“Adgressor™ Scrubber Models BR 850S, 850CS, 950S, 950CS, BR 105OS, 1050CS,” Instructions for Use, Nilfisk Advance, 2004, 29 pages in multiple parts.
“Adgressor™ Scrubber Models BR 850S, 850CS, 950S, 950CS, BR 105OS, 1050CS,” Parts List, Nilfisk Advance, 2004, 69 pages in multiple parts.
“Adgressor™ Scrubber Models BR 850S, 850CS, 9505, 950CS, BR 105OS, 1050CS,” Service Manual Nilfisk Advance, 2006, 82 pages in multiple parts.
“Minny 16,” FIMAP, Italian Customized Cleaning, 2007, 8 pages.
Operating Instructions Manual for the Galopio Sweeping Machine identified as ‘Galopio.1, Listen-Nr. 1014691-4’, dated Oct. 7, 2002, (Galopio 2002), with certified translation dated Sep. 27, 2013, 179 pages.
“Schmidt Produkte: Kleinkehrfahrzeug Galopio”, Photo of Galopio device, available at http://database.schmidtgroup.net/loader.php//en/schmidt/swk/products/00011/picture1.html, as early as Apr. 29, 2003, printed on Jan. 29, 2007, p. 1.
“Schmidt Produkte: Kleinkehrfahrzeug Galopio”, Photo of Galopio device, available at http://database.schmidtgroup.net/loader.php/de/schmidt/swk/00011/, as early as May 29, 2003, printed on Jan. 29, 2007, p. 1.
“Taski Swingo XP Scrubber,” Brochure, Johnson Diversey, 2007, 7 pages in multiple parts.
“The Science of Floor Care: Profi™ Rubber Floor Cleaner/Degreaser,” Taski, http://www.johnsondiversey.com/Cultures/en-US-OpCo/Products+and+Systems/Categori . . . , accessed Nov. 12, 2008, 2 pages.
Allied Sweepers 400 Series Specs., May 1998, 1 page.
Amended Answer and Counterclaims of Defendant Nilfisk-Advance, Inc., Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Jul. 12, 2013, 13 pages.
Amended Declaration of Tyler L. Nasiedlak in Opposition to Kärcher North America, Inc.'s First Motion for Preliminary Injunction, (dated Nov. 21, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 637 pages. (Uploaded in 3 parts).
American-Lincoln Encore Scrubber, Operator's Manual & Parts List, American-Lincoln, 1998, 43 pages in multiple parts.
Answer and Counterclaims of Defendant Nilfisk-Advance, Inc., Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed May 31, 2013, 12 pages.
Complaint With Jury Demand, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284, filed May 16, 2013, 147 pages.
Declaration of Christopher R. Smith in Opposition to Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Aug. 16, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Aug. 16, 2013, 148 pages.
Declaration of Christopher R. Smith in Opposition to Kärcher North America, Inc.'s Second Motion for Preliminary Injunction, (dated Nov. 4, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 4, 2013, 374 pages.
Declaration of Christopher R. Smith in Support of Nilfisk-Advance's Motion to Stay Litigation Pending Patent Reexaminations, (dated Oct. 22, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Oct. 22, 2013, 333 pages.
Declaration of Craig W. Mueller in Support of Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Sep. 3, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Sep. 3, 2013, 193 pages.
Declaration of David B. Kellis in Support of Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Jul. 26, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Jul. 26, 2013, 107 pages.
Declaration of David B. Kellis in Support of Kärcher North America, Inc.'s Opposition to Stay Pending Patent Reexaminations and Reply in Further Support of Second Motion for Preliminary Injunction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 12 pages.
Declaration of David Wood in Opposition to Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Aug. 16, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Aug. 16, 2013, 94 pages.
Declaration of David Wood in Opposition to Kärcher North America, Inc.'s Second Motion for Preliminary Injunction, (dated Nov. 4, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 4, 2013, 70 pages.
Declaration of David Wood in Support of Nilfisk-Advance, Inc.'s Motion for a Stay, (dated Dec. 9, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Dec. 9, 2013, 45 pages.
Declaration of Elliot Younessian in Support of Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Jul. 17, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Jul. 26, 2013, 147 pages.
Declaration of Gary Ellertson, (dated Nov. 19, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 3 pages.
Declaration of Tyler L. Nasiedlak in Opposition to Kärcher North America, Inc.'s Motion for Preliminary Injunction, (dated Aug. 16, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Aug. 16, 2013, 517 pages.
Declaration of Tyler L. Nasiedlak in Opposition to Kärcher North America, Inc.'s Second Motion for Preliminary Injunction, (dated Nov. 4, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 4, 2013, 232 pages.
Declaration of Wade Reitmeier in Support of Defendant Nilfisk-Advance, Inc.'s Reponse to Motion for Preliminary Injunction, (dated Aug. 16, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Aug. 16, 2013, 23 pages.
Defendant Nilfisk-Advance, Inc.'s Motion to Stay Litigation Pending Patent Reexaminations and Memorandum in Support, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Oct. 22, 2013, 15 pages.
Defendant's Invalidity Contentions, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, dated Dec. 2, 2013, 481 pages.
Defendant's Reply Brief in Support of Its Motion to Stay Litigation Pending Patent Reexaminations, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Dec. 9, 2013, 11 pages.
Exhibit A of Notice of Defendant Nilfish-Advance, Inc.'s Compliance With D.C.COLO.LPtR 8 and 9 and Invalidity Contentions, (dated Mar. 27, 2015), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, 120 pages.
Exhibit B of Notice of Defendant Nilfish-Advance, Inc.'s Compliance With D.C.COLO.LPtR 8 and 9 and Invalidity Contentions, (dated Mar. 27, 2015), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, 73 pages.
Exhibit C of Notice of Defendant Nilfish-Advance, Inc.'s Compliance With D.C.COLO.LPtR 8 and 9 and Invalidity Contentions, (dated Mar. 27, 2015), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, 11 pages.
Fantomat Sale Sheet, BUZILI-WERK Wagner GmbH & Co., date unknown.
First Amended Complaint With Jury Demand, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Sep. 25, 2013, 151 pages.
GALOPIO Cleaning Device, www.schmidt-holding.com, accessed Feb. 23, 2005, 4 pages.
Galopio Operating Instructions, Schmidt Winterdienst-Und Kommunaltechnik, Jan. 17, 2005, Issue 5, pp. 1-84.
Hefter Cleantech, Convert 82, May 19, 2006, 3 pages, accessed Jun. 1, 2007.
Kärcher, MC600 Multicleaner Brochure, date unknown, 2 pages.
Kärcher, MC600 Multicleaner Brochure, date unknown, 4 pages.
Kärcher, Multicleaner MC 600, Mar. 1990, 7 pages.
Kärcher, Multicleaner MC600 Manual, date unknown, 44 pages.
Kärcher, NT301 Brochure, date unknown, 2 pages.
Kärcher, Worldwide Cleaning Expertise Programme 91/92, published more than one year prior to the filing date of U.S. Pat. No. 6,425,958, which was filed Feb. 2001, 50 pages.
Madvac PS300 Brochure, Feb. 2004, 4 pages.
Nilfisk-Advance Product Catalog, 2004, 6 pages in multiple parts.
Nilfisk-Advance, Inc.'s Memorandum in Opposition to Kärcher North America, Inc.'s Motion for Preliminary Injunction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Aug. 16, 2013, 16 pages.
Nilfisk-Advance, Inc.'s Memorandum in Opposition to Kärcher North America, Inc.'s Second Motion for Preliminary Injunction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 4, 2013, 17 pages.
Nobles Typhoon 161OP/1612 Wet/Dry Vacuum Operator and Parts Manual, Jan. 2000, 22 pages Kaivac, Inc.
Notice of Defendant Nilfish-Advance, Inc.'s Compliance With D.C.COLO.LPtR 8 and 9 and Invalidity Contentions, (dated Mar. 27, 2015), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, 2 pages.
No-Touch Cleaning Brochure, Kaivac, Inc., dated 2003, 8 pages.
Nov. 15, 2013 Declaration of Elliot Younessian, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 13 pages.
Nov. 21, 2013 Declaration of Craig W. Mueller, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 102 pages.
Nov. 21, 2013 Declaration of Jeffrey J. Rogers, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 117 pages.
Oct. 2, 2013 Declaration of Elliot Younessian in Support of Kärcher North America, Inc.'s Second Motion for Preliminary Injunction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Oct. 9, 2013, 61 pages.
Photo and information related to Galopio device sold on Mascus website, available at http://www.mascus.com/product_card.asp?br=Broddway&catn=Groundscare&page=1&location=EN&pr . . . , indicates that device was registered in 2000, printed on Jan. 29, 2007, p. 1.
Photo of Galopio device, available at http://www.bassewitz.de/fahrzeuge/schmidt.htm, as early as Jan. 26, 2002, printed on Jan. 29, 2007, pp. 1-2.
Photos of Galopio Sweeping Machine, identified as being manufactured in 1999, (provided by 3rd Party Requestor in U.S. Patent Reexamination Control Nos. 90/013,026 and 90/013,028), 7 pages.
Plaintiff Kärcher North America, Inc.'s Motion for Preliminary Injunction and Memorandum in Support Thereof, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Jul. 26, 2013, 16 pages.
Plaintiff Kärcher North America, Inc.'s Reply in Further Support of Motion for Preliminary Injuction [Doc. No. 18], Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Sep. 3, 2013, 11 pages.
Plaintiff Kärcher North America, Inc.'s Second Motion for Preliminary Injunction and Memorandum in Support Thereof, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Oct. 9, 2013, 14 pages.
Print out of Kaivac No-Touch Clean System, www.Kaivac.com, dated Jan. 23, 2003, 3 pages.
Print out of Nilfisk Aquatron 8 machine, www.mn.nilfisk-advance.com, dated Jan. 30, 2003, 1 page.
Reply in Further Support of Second Motion for Preliminary Injuction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Nov. 21, 2013, 11 pages.
Second Amended Answer and Counterclaims of Defendant Nilfisk-Advance, Inc., Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Oct. 9, 2013, 13 pages.
Second Declaration of Christopher R. Smith in Support of Nilfisk-Advance's Motion to Stay Litigation Pending Patent Reexaminations, (dated Dec. 9, 2013), Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Dec. 9, 2013, 41 pages.
Sep. 3, 2013 Declaration of Elliot Younessian in Further Support of Motion for Preliminary Injuction, Kärcher North America, Inc., v. Nilfisk-Advance, Inc., United States District Court for the District of Colorado, Case No. 1:13-cv-01284-CMA-MJW, filed Sep. 3, 2013, 235 pages.
Service Master, Boss 2000B Manual, Oct. 1995, 42 pages.
Service Master, Boss 2000E Manual, Aug. 1997, 32 pages.
Service Master, Boss 2000LE Manual, Mar. 1998, 30 pages.
Street Cleaning device shown on www.onyx-enviromnent.com, accessed May 7, 2004, 1 page.
Tennant Model 1465 and 1480 Manual, 1988, pp. 3-18 and 6-34.
Warning: Your Competitor has a KaiVac, Sep. 1998, 10 pages.
International Search Report for International (PCT) Application No. PCT/US05/5094, dated Jul. 24, 2006.
Written Opinion of the International Searching Authority of related PCT Application PCT/US05/05094, dated Jul. 24, 2006, 7 pages.
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US05/05094 dated Aug. 31, 2006, 9 pages.
International Search Report for International (PCT) Patent Application No. PCT/US06/40095 dated May 24, 2007, 3 pages.
Written Opinion for International (PCT) Patent Application No. PCT/US06/40095 dated May 24, 2007, 7 pages.
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US06/40095 dated May 2, 2008, 6 pages.
Official Action for Australian Patent Application No. 2005214976 dated Feb. 4, 2010, 2 pages.
Notice of Acceptance for Australian Patent Application No. 2005214976 dated Mar. 17, 2010, 3 pages.
Official Action for Canadian Patent Application No. 2,559,485 dated May 19, 2011, 3 pages.
Official Action for Canadian Patent Application No. 2,559,485 dated Jan. 4, 2012, 2 pages.
Notice of Allowance for Canadian Patent Application No. 2,559,485 dated Apr. 4, 2012, 1 page.
First Office Action (including translation) for Chinese Application No. 200580011019.5, dated Nov. 21, 2008.
Second Office Action (including translation) for Chinese Application No. 200580011019.5, dated May 22, 2009.
Third Office Action (including translation) for Chinese Application No. 200580011019.5 dated Aug. 14, 2009, 7 pages.
Fourth Office Action (translation only) for Chinese Patent Application No. 200580011019.5, dated Oct. 13, 2010.
Notification of Grant Patent Right (including translation) for Chinese Patent Application No. 200580011019.5, dated Mar. 2, 2011.
Supplementary European Search Report for European Application No. 05713744, dated Aug. 4, 2008, 3 pages.
Official Action for European Application No. 05713744, dated Feb. 12, 2009.
Official Action for European Application No. 05713744, dated Nov. 3, 2010.
Official Action for European Patent Application No. 05713744.0, dated Jul. 24, 2014, 8 pages.
Extended European Search Report for European Patent Application No. 10178165.6, dated Oct. 29, 2010.
Official Action for European Patent Application No. 10178165.6, dated Jul. 24, 2014, 6 pages.
Extended European Search Report for European Patent Application No. 14003208.7, dated Dec. 5, 2014, 8 pages.
Notice of Acceptance for European Patent Application No. 14003208.7, dated Apr. 20, 2016, 7 pages.
Extended European Search Report for European Patent Application No. 14003209.5, dated Dec. 5, 2014, 8 pages.
Notice of Acceptance for European Patent Application No. 14003209.5, dated Apr. 20, 2016, 7 pages.
European Written Opinion and Search Report, Nov. 10, 2004 relating to European Application No. EP 04012451.
Official Action for Japanese Patent Application No. 2006-553367, dated Apr. 6, 2010.
Official Action for Japanese Patent Application No. 2006-553367, dated Apr. 5, 2011.
Official Action (English Summary) for Japanese Patent Application No. 2011-165315 dated Nov. 13, 2012, 2 pages.
Written Opinion by the Australian Patent Office for Singapore Application No. SG 200605344-1, dated Jan. 9, 2008.
Examination Report issued by the Australian Patent Office for Singapore Application No. SG 200605344-1, dated Jan. 25, 2010.
International Search Report for International (PCT) Patent Application No. PCT/US10/42116, dated Sep. 14, 2010.
Written Opinion for International (PCT) Patent Application No. PCT/US10/42116, dated Sep. 14, 2010.
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2010/042116, dated Feb. 9, 2012 7 pages.
Official Action (with English translation) for Chinese Patent Application No. 201080043176.5 dated Jul. 3, 2013, 8 pages.
Official Action (with English translation) for Chinese Patent Application No. 201080043176.5 dated Feb. 18, 2014, 8 pages.
Extended European Search Report for European Patent Application No. 10804885.1 dated Sep. 25, 2013, 7 pages.
Notice of Allowance (with English translation) for Russian Patent Application No. 2012107550/12(011366) dated Aug. 11, 2014, 14 pages.
Official Action (with English translation) for Korean Patent Application No. 30-2013-0011878 dated Feb. 24, 2014, 4 pages.
Notice of Allowance (with English translation) for Korean Patent Application No. 30-2013-0011878 dated Jul. 7, 2014, 3 pages.
Notice of Allowance for U.S. Appl. No. 11/059,663, dated Feb. 6, 2009.
Office Action for U.S. Appl. No. 11/059,663, dated Nov. 10, 2008.
Office Action for U.S. Appl. No. 11/059,663, dated May 14, 2008.
Office Action for U.S. Appl. No. 11/059,663, dated Apr. 19, 2007.
Office Action for U.S. Appl. No. 11/059,663, dated Dec. 15, 2006.
Office Action for U.S. Appl. No. 11/059,663, dated Jun. 26, 2006.
Office Action for U.S. Appl. No. 11/253,100, dated Sep. 8, 2008.
Office Action for U.S. Appl. No. 11/253,100, dated May 6, 2009.
Official Action for U.S. Appl. No. 11/253,100, dated Aug. 14, 2009.
Official Action for U.S. Appl. No. 11/868,353, dated Oct. 13, 2009.
Official Action for U.S. Appl. No. 11/868,353, dated Feb. 16, 2010.
Official Action for U.S. Appl. No. 11/868,353, dated Jun. 11, 2010.
Official Action for U.S. Appl. No. 11/868,353, dated Jan. 27, 2011.
Official Action for U.S. Appl. No. 11/868,353, dated May 9, 2011.
Official Action for U.S. Appl. No. 11/868,353, dated Sep. 7, 2011 17 pages.
Official Action for U.S. Appl. No. 11/868,353, dated Feb. 3, 2012 4 pages.
Notice of Allowance for U.S. Appl. No. 11/868,353, dated May 17, 2012 7 pages.
Official Action for U.S. Appl. No. 13/554,593 dated Oct. 15, 2012 5 pages.
Official Action for U.S. Appl. No. 13/554,593 dated Dec. 11, 2012, 11 pages.
Notice of Allowance for U.S. Appl. No. 13/554,593 dated Feb. 27, 2013, 8 pages.
Official Action for U.S. Appl. No. 13/888,140 dated Jul. 15, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/888,140 dated Aug. 7, 2013, 9 pages.
Official Action for U.S. Appl. No. 13/964,046 dated Dec. 2, 2013, 7 pages.
Official Action for U.S. Appl. No. 13/964,046 dated Feb. 27, 2014, 24 pages.
Official Action for U.S. Appl. No. 13/964,046 dated Aug. 4, 2014, 21 pages.
Notice of Allowance for U.S. Appl. No. 13/964,046 dated Oct. 24, 2014, 8 pages.
Official Action for U.S. Appl. No. 14/643,768 dated Jun. 1, 2015, 10 pages.
Final Action for U.S. Appl. No. 14/643,768 dated Nov. 24, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/643,768 dated Jun. 22, 2016, 8 pages.
Official Action for U.S. Appl. No. 15/245,488, dated Nov. 2, 2016, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/245,488, dated May 12, 2017, 8 pages.
Official Action for U.S. Appl. No. 15/248,560, dated Oct. 25, 2016, 14 pages.
Official Action for U.S. Appl. No. 15/248,560, dated Mar. 31, 2017, 6 pages.
Notice of Allowance for U.S. Appl. No. 15/248,560, dated Apr. 18, 2017, 8 pages.
Official Action for U.S. Appl. No. 15/676,745, dated Oct. 13, 2017 7 pages.
Request for Ex Parte Reexamination of U.S. Pat. No. 7,533,435 filed Oct. 15, 2013, 170 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,028 dated Nov. 27, 2013, 11 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,028 dated Apr. 10, 2014, 17 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,028 dated Jul. 15, 2014, 11 pages.
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Patent Reexamination Control No. 90/013,028 mailed Aug. 28, 2014, 5 pages.
Request for Ex Parte Reexamination of U.S. Pat. No. 8,528,142 filed Oct. 15, 2013, 133 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,026 dated Nov. 27, 2013, 8 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,026 dated Mar. 14, 2014, 10 pages.
Official Action for U.S. Patent Reexamination Control No. 90/013,026 dated Jul. 30, 2014, 11 pages.
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Patent Reexamination Control No. 90/013,026 mailed Sep. 16, 2014, 5 pages.
Official Action for U.S. Appl. No. 12/511,704, dated Mar. 12, 2012 13 pages.
Notice of Allowance for U.S. Appl. No. 12/511,704, dated Jul. 10, 2012 10 pages.
Official Action for U.S. Appl. No. 13/589,321 dated Sep. 14, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/589,321 dated Nov. 23, 2012, 8 pages.
Official Action for U.S. Appl. No. 14/133,248 dated Feb. 27, 2014, 18 pages.
Official Action for U.S. Appl. No. 14/133,248 dated Jul. 10, 2014, 19 pages.
Notice of Allowance for U.S. Appl. No. 14/133,248 dated Oct. 8, 2014, 5 pages.
Official Action for U.S. Appl. No. 14/504,263, dated Apr. 6, 2015, 9 pages.
Final Action for U.S. Appl. No. 14/938,699, dated Jan. 22, 2016, 7 pages.
Official Action for U.S. Appl. No. 12/912,554 dated Mar. 1, 2013, 11 pages.
Official Action for U.S. Appl. No. 12/912,554 dated Jul. 19, 2013, 12 pages.
Notice of Allowance for U.S. Appl. No. 29/380,623 dated Dec, 19, 2011, 6 pages.
Official Action for U.S. Appl. No. 29/431,705 dated Mar. 19, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 29/431,705 dated Jun. 26, 2013, 7 pages.
“Mobile robots tackle the world,” Design News, Feb. 25, 1991, pp. 21-22.
“Powertech Automated Hard Floor Cleaning System,” Windsor Industries, 1991, 10 pages.
“RoboScrub Operator's Manual,” Windsor Industries, 1991, 26 pages.
“The Autonomous Vacuum Cleaning Robot,” Appliance, Mar. 1991, pp. 55-56.
“Tomorrow's Technologies: A Look Ahead at Showtime,” Modern Plastics, May 1991, pp. 55-58.
“User Interface for Scrubber/Vacuum Robots,” Windsor Industries, 1990, 23 pages.
Moravec, “Caution! Robot Vehicle!,” Carnegie Mellon University, 1991, 15 pages.
O'Rourke et al., “Future Spies Could Be Tireless, Fearless and Drink Diesel,” Howard County Sun, Jan. 20, 1991, p. 1B.
Benayad-Cherif et al., “Mobile Robot Navigation Sensors,” Submitted to the Conference Mobile Robots VII at OE/Technology, 1992, abstract only, 1 page.
Sert, “Robot Engine: Rapid Product Development Path,” Submitted to the Conference Mobile Robots VII at OE/Technology, 1992, abstract only, 1 page.
“Drawing closer to people combining robot technology and AI (expressing emotions),” Fujitsu, 2017, 3 pages [retrieved online from: www.fujitsu.com/global/about/resources/featurestories/2017101801.html].
Alves-Oliveira et al. “Meet Me Halfway: Eye Behaviour as an Expression of Robot's Language,” AAAI Fall Symposium Series, 2014, pp. 13-15.
Baraka et al. “Expressive Lights for Revealing Mobile Service Robot State,” Proc. of AAAI 2015 Fall Symposium on AI-HRI, 2015, pp. 17-23.
Baraka “Effective Non-Verbal Communication for Mobile Robots using Expressive Lights,” The Robotics Institute Carnegie Mellon University, Pittsburgh, Pennsylvania, Master's Thesis, May 2016, 82 pages.
Bethel “Robots without faces: Non-verbal social human-robot interaction,” University of South Florida, Graduate Theses and Dissertations, 2009, 183 pages [found online at: scholarcommons.usf.edu/etd/1855/].
Bright “Emergency Vehicle LED Lighting: Friend of Foe?” American Public University, Master's Capstone Thesis, Aug. 2014, 76 pages.
Cominelli et al. “SEAI: Social Emotional Artificial Intelligence Based on Damasio's Theory of Mind,” Frontiers in Robotics and AI, Feb. 2018, vol. 5, Article 6, 20 pages.
Costa et al. “Emotional Storytelling using Virtual and Robotic Agents,” International Journal of Humanoid Robotics, Mar. 2018, vol. 15, No. 3, 1850006, 14 pages.
Cuculo et al. “The color of smiling: computational synaesthesia of facial expressions,” Image Analysis and Processing, ICIAP 2015, 2015, pp. 203-214.
De Lorenzo et al. “Lights and Siren: A Review of Emergency Vehicle Warning Systems,” Annals of Emergency Medicine, Dec. 1991, vol. 20, No. 12, pp. 1331-1335.
Feldmaier et al. “Evaluation of a RGB-LED-based Emotion Display for Affective Agents,” arXiv, Dec. 2016, 6 pages.
Kupas “Lights and Siren Use by Emergency Medical Services (EMS): Above All Do No Harm,” U.S. Department of Transportation National Highway Traffic Safety Administration Office of Emergency Medical Services (EMS), May 2017, 98 pages.
National Association of Emergency Medical Services Physicians (NAEMSP) et al. “Use of Warning Lights and Siren in Emergency Medical Vehicle Response and Patient Transport,” Prehospital and Disaster Medicine, Apr.-Jun. 1994, 10 pages.
Senart et al. “Modelling an Emergency Vehicle Early-Warning System using Real-time Feedback,” International Journal of Intelligent Information and Database Systems, 2008, vol. 2, No. 2, pp. 222-239.
Song et al. “Expressing Emotions through Color, Sound, and Vibration with an Appearance-Constrained Social Robot,” The 2017 Conference on Human-Robot Interaction (HRI2017), Mar. 2017, Vienna, Austria, 10 pages.
Thomaz et al. Computational Human-Robot Interaction, Foundations and Trends in Robotics, 2013, vol. 4, No. 2-3, pp. 105-223.
Veloso et al. “CoBots: Robust Symbiotic Autonomous Mobile Service Robots,” Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), 2015, pp. 4423-4429.
Veloso et al. “Transparency in Robot Autonomy,” Future of Life Institute, Jan. 2017, 32 pages.
Related Publications (2)
Number Date Country
20180110390 A1 Apr 2018 US
20180271346 A9 Sep 2018 US
Provisional Applications (2)
Number Date Country
60627606 Nov 2004 US
60545153 Feb 2004 US
Divisions (1)
Number Date Country
Parent 11868353 Oct 2007 US
Child 13554593 US
Continuations (8)
Number Date Country
Parent 15676745 Aug 2017 US
Child 15840459 US
Parent 15248560 Aug 2016 US
Child 15676745 US
Parent 15245488 Aug 2016 US
Child 15248560 US
Parent 14643768 Mar 2015 US
Child 15245488 US
Parent 13964046 Aug 2013 US
Child 14643768 US
Parent 13888140 May 2013 US
Child 13964046 US
Parent 13554593 Jul 2012 US
Child 13888140 US
Parent 11059663 Feb 2005 US
Child 11868353 US
Continuation in Parts (2)
Number Date Country
Parent 10737027 Dec 2003 US
Child 11059663 US
Parent 10438485 May 2003 US
Child 10737027 US