Described below is a flow chamber of a flow cytometer, in which labeled cells may be detected with a high level of probability with the assistance of an appropriate sensor.
In a magnetic flow cytometer, labeled cells which are to be detected with the assistance of appropriate sensors must be conveyed close above the surface of a sensor in a flow chamber. For example, GMR (giant magnetoresistance) sensors or optical fluorescence or scattered light sensors are used for this purpose. The cell must be close to the sensor, since for example in the case of a GMR sensor the magnetic scatter field of the magnetic labels, which is ultimately utilized by the GMR sensor for detection, declines with the cube of distance from the sensor. The same applies to optical measurement methods.
In order to ensure that a labeled cell passes by in the immediate vicinity of the sensor, it is in principle conceivable to make the diameter of the channel through which the medium carrying labeled cells flows as small as possible, i.e. in an extreme case the diameter of the channel is just big enough for individual cells to be able to pass through. The drawback of this approach is of course that the presence of impurities or disruptive particles very rapidly results in the channel being blocked. On the other hand, if the channel is made larger, there is also a greater probability that individual labeled cells will pass by outside the range of the sensor and will thus not be detected. This drawback may be countered by providing a larger number of sensors, but this entails more complex electronics.
Described below is a flow chamber in which there is an elevated probability of detecting a labeled cell with a sensor of the flow chamber. Through the flow chamber in a flow cytometer flows a medium carrying magnetically labeled cells. The flow chamber has at least one sensor for cell detection positioned on an internal surface of the flow chamber, and is equipped with a magnetic or magnetizable cell-guiding device. The latter is positioned upstream of the sensor in the direction of flow and arranged and constructed there such that it guides the flowing, magnetically labeled cells over the sensor.
The cell-guiding device is advantageously arranged on the internal surface of the flow chamber and includes a number n, with n≧1, of magnetic or magnetizable flow strips oriented substantially parallel to the direction of flow, wherein
In a first embodiment, a flow strip is of a width which remains constant throughout in the direction of flow.
In a second embodiment, a flow strip tapers in the direction of flow, in particular in the manner of a funnel or half funnel.
In a third embodiment, an individual, wide flow strip divides, in the direction of flow, into a plurality of narrower, substantially parallel flow sub-strips, wherein the number of flow sub-strips corresponds to the number of sensors.
In a fourth embodiment, the flow strips are arranged in a herringbone pattern.
In an advantageous embodiment, part of a flow strip, in particular the downstream part in the direction of flow, is subdivided into a plurality of portions lying downstream of one another and spaced apart from one another.
In an advantageous embodiment, a magnet is provided which is arranged in such a manner on the flow chamber that a force directed towards the internal surface is generated which acts on the magnetically labeled cells.
In a further advantageous embodiment, the sensor is a GMR sensor.
In a further embodiment, a further magnetic or magnetizable cell-guiding device is provided which is positioned downstream of the sensor in the direction of flow.
In the method, magnetically labeled cells in a medium flowing through a flow chamber of a flow cytometer are detected with a sensor by guiding the flowing, labeled cells over the sensor with a magnetic or magnetizable cell-guiding device, which is positioned upstream of the sensor in the direction of flow.
In an advantageous further embodiment of the method, a further cell-guiding device is used, which is arranged downstream of the sensor in the direction of flow. The medium is guided over the sensor alternately in a first direction and in a second direction, which is contrary to the first direction.
These and other aspects and advantages will become more apparent and more readily appreciated from the exemplary embodiments described below with reference to the accompanying drawings of which:
In the figures, identical or mutually corresponding zones, components, and component assemblies are designated with the same reference numerals.
When dimensioning the magnet 140, care must be taken to ensure that the strength of the magnetic field is matched to the flow velocity of the medium. If the magnetic field and thus the retention force is too strong, disruption to flow cannot be ruled out as individual cells 20 may possibly be immobilized. Conversely, if the magnetic field is too weak, it is to be assumed that some of the labeled cells 20 will pass by the sensor 60 outside the range thereof, i.e. that they will not be detected.
By way of the interplay between the strength of the magnetic field of the magnets 140 and the flow 130, generated for example by pumps (not shown), or the velocity thereof, it is possible purposefully to adjust the retention force for magnetically labeled cells 20 in order, on the one hand, to remove cells with low labeling density, i.e. “false positive” cells, and, on the other hand, only to convey cells with sufficiently strong immunomagnetic labeling to the sensor 60, with any unbound labels, for example superparamagnetic particles, not being conveyed to the sensor due to the lower retention force.
In a concentration device not shown in
The flow chamber 10 includes a cell-guiding device 120. This device 120 ensures that the magnetically labeled cells 20 which are still stochastically distributed at the inlet 40 to the flow chamber 10, (cf.
To this end, magnetic or magnetizable metal tracks are arranged in the direction of flow on or in that internal surface 12 of the flow chamber 10 on which the sensor 60 is also arranged. As is explained below with reference to the figures, these metal tracks or “flow strips” may for example be of constant width, taper in the manner of a funnel or half funnel, converge in a fan shape or also be arranged in a herringbone pattern. Others arrangements which likewise ensure that the labeled cells 20 are guided over the sensor 60 are, of course, likewise conceivable. The flow strips may furthermore be of continuous or alternatively of discontinuous design. A discontinuous design (cf.
The interaction between the magnetic cells 20 and the magnetic flow strip 121 ensures that the cells 20, as they flow past the strips 120 with the medium 70, leave their stochastic distribution and arrange themselves on the strips 121:
The boundaries of zones I to IV are here not sharply defined, but are instead variable, for example, as a function of the field of the magnet 140 and the flow velocity. In other words, the zones shown in the figures should be understood as examples.
Because the magnetic gradient is steepest at the edge of the respective flow strip 121, it is to be assumed that the cells 20 will not arrange themselves centrally on the respective flow strip 121, but instead on the edge thereof.
In the direction of flow downstream of each flow strip 121, i.e. as an extension of the strip 121, there is located a sensor 60, such that the labeled and ordered cells 20 may be purposefully guided over the sensor 60 with the assistance of the cell-guiding device 120. Apart from a few exceptions, which were not caught by the magnetic flow strip 121 and were therefore not guided to the sensors 60, it may be assumed that a large proportion of the labeled cells 20 in the medium 70 will come within the range of the sensors 60, such that a substantially higher yield may be achieved with the arrangement, which is for example manifested, with constant statistics, in a shorter measurement time or, with a constant measurement time, in improved statistics.
The flow strips may for example be made of nickel and be ≦10 μm wide and 100-500 nm thick. Thicknesses of an order of magnitude of 1 μm are, however, likewise conceivable. The microfluidic channel 11 is typically 100-400 μm wide, 100 μm high and approx. 1 mm long. The GMR sensors 60 are approx. 25-30 μm long (in a direction perpendicular to the direction of flow 130).
In this exemplary embodiment too, the flow strip 122 may be made of a magnetic or a magnetizable material, such that here too the initially stochastically distributed, magnetically labeled cells 20 may be ordered and finally guided over the sensor 60.
The advantage of the arrangement of
In a third exemplary embodiment of the cell-guiding device 120 which is shown in
In principle, the embodiment of
FIGS. 8A to 8C′ show various embodiments of individual flow strips. The figures provide a side view and a plan view of the flow strip of each embodiment with magnetically labeled cells 20 arranged thereon.
The flow strip 126 of
The flow strip 128 of
Concentration is performed using a magnet 90 which generates a first magnetic field (not shown) of an order of magnitude of approx. 100-1000 mT. This attracts the magnetically labeled cells 20 onto the side of the channel 100 on which the magnet 90 is arranged. Accordingly, the concentration of labeled cells 20 is distinctly increased on this side of the channel 100. It is specifically on this side that a further channel 110 is furthermore provided, via which the now concentrated medium reaches the flow chamber 10, which is shown only symbolically in
The method which may be performed with the flow chamber described above is intended for use for example for mammalian cells, microorganisms or magnetic beads. Magnetic flow cytometry may be used in combination with optical (for example fluorescence, scattered light) or other non-magnetic detection methods (for example radiochemical, electrical) in order to perform in situ observations or carry out further analyses.
A description has been provided with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Number | Date | Country | Kind |
---|---|---|---|
10 2009 047 801.9 | Sep 2009 | DE | national |
This application is the U.S. national stage of International Application No. PCT/EP2010/061931, filed Aug. 17, 2010 and claims the benefit thereof. The International Application claims the benefit of German Application No. 10 2009 047 801.9 filed on Sep. 30, 2009; both applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/061931 | 8/17/2010 | WO | 00 | 3/30/2012 |