The present invention relates to equipment including an extruder and die tooling used in the molding of plastic pipe.
A traditional plastic pipe molding apparatus includes an extruder which feeds molten plastic directly to one or more interior passages of die tooling which leads to a molding region of the extruder. The one or more die passages can be used to make single or even ribbed pipe.
The above apparatus suffers from the drawback that the extruder and the die tooling are fixed in position relative to one another. This necessitates relative large die tool which is expensive and which takes a substantial amount of time to heat. Space saving and heating benefits can be achieved by locating the extruder at a location remote from the die tooling and then using a plastic feed from the extruder to the die tooling. However, according to known practice, these benefits are more than offset by the fact that with the current design i.e., the design of the extruder being fixed relative to the die tooling the extruder is able to feed directly into the die passage of the tooling. Accordingly, distribution of the plastic from the extruder around the mouth of the die passage is achieved in a relatively simple manner. The same is not true when working with a remotely located extruder which will not necessarily align directly with the mouth of the die passage. Accordingly, using existing technology it is very difficult to take advantage of the benefits provided when separating an extruder from die tooling equipment of a pipe molding apparatus because such separation makes it very difficult to produce an even distribution of molten plastic from the extruder into the die passage. Without such even distribution the resulting pipe is produced with inconsistencies in the wall or walls of the pipe.
The present invention relates to equipment used in the molding of plastic pipe which takes advantage of the benefits achieved by separating an extruder from die tooling without suffering from the drawbacks of such a separation.
More particularly, the present invention relates to equipment used in the molding of a plastic pipe in which the equipment comprises a plastic supply providing molten plastic for making the pipe and die tooling which is located remotely of the plastic supply.
The die tooling has an internal die passage to carry the molten plastic to a molding region where the pipe is shaped. It further has an upstream end fitted with a flow distributor. The die passage has a ring shaped mouth covered by the flow distributor at the upstream end of the die tooling.
The equipment further includes a plastic feed from the plastic supply to the flow distributor. The flow distributor is then adjustable to produce an even distribution of the molten plastic which it receives from the plastic supply around the ring shaped mouth of the die passage.
According to an aspect of the invention the die tooling has multiple passages and the flow distributor has multiple outlets which are adjustable for each of the die passages.
According to another aspect of the invention the equipment uses a single extruder which feeds to the multiple flow outlets of the flow distributor. According to yet another aspect of the invention the equipment uses multiple extruders each of which feeds to an individual one of the flow outlets from the flow distributor.
According to still another aspect of the invention the equipment uses multiple extruders which can for example, be used to extrude different types of plastic materials. Each of the extruders feeds to each of the flow outlets from the flow distributor. In this aspect of the invention the equipment further includes valve means to selectively open and close each of the extruders to the flow distributor so that one can choose which one of the extruders is to be used in making the pipe.
The above as well as other advantages and features of the present invention will be described in greater detail according to the preferred embodiments of the present invention in which;
In the embodiment shown, die tooling 3 includes first and second die passages 4 and 9 respectively. Die passage 4 has a passage outlet 5 and die passage 9 has a passage outlet 11. These two passages which extend longitudinally of the die equipment have a ring like configuration with passage 9 being located outwardly around passage 4. Each of the passages has a ring shaped mouth at the upstream end of the die tooling 3 which is covered by a plastic flow distributor generally indicated at 25. This plastic flow distributor is in the form of a plate also to be described later in detail.
As can be seen in
In addition, the remote location of the extruder 2 relative to die tooling 3 does not require at a single location the large space necessitated by die tooling having an onboard extruder. In contrast, the die tooling itself can be placed in one location with relatively small space requirements and the extruder can be placed in another location.
According to the present invention a plastic feed generally indicated at 15 extends from extruder 2 to flow distributor 25. In order to do so the product feed comprises an individual conduit 17 feeding directly off of extruder 2. Conduit 17 eventually leads to branch feed lines 21 and 23 with a connecting branch between branches 21 and 23. A metering device generally indicated at 19 is provided at the mouth of branch 20 where this connecting extends from branch line 21 to branch line 23.
The plate construction of flow distributor 25 comprises a first plate portion 27 having outlets 29 which align with the mouth of die passage 9. Branch line 21 connects with the flow distributor so as to feed through the outlets 29 of plate portion 27 into die passage 9.
The plate construction of the flow distributor further includes plate portion 31 having outlets 33 which align with the mouth of die passage 4 at the upstream end of the die tooling. Branch line 23 connects with plate portion 31 so as to feed through flow distributor outlets 33 into die passage 4.
By way of example only,
Returning to
What differs between the
Another feature of the present invention which is used in both the embodiment of
In this particular embodiment the equipment includes extruders 2c and 2d. These extruders can be used to extrude different types of plastic materials to the die tooling. They may also be used for extruding the same type of material. Furthermore, they can be used simultaneously with one another or they can be used independently of one another.
It will be seen that extruder 2c feeds from a conduit 17c out of that particular extruder. Extruder 2d feeds from a conduit 17d. A valve 41 is located in conduit 17c and a valve 43 is located in conduit 17d.
Branch lines 21 and 23 feed to flow distributor 25 in the same manner as shown in
By closing valve 45 in connecting branch 22 and by having valves 41 and 43 open the equipment of
In order to make the pipe entirely from the plastic of extruder 2c valves 41 and 45 are opened. Valve 43 is closed. In this configuration the plastic will flow along conduit 17c past valve 41 and down branch line 21. The plastic will additionally flow along branch line 22 past valve 45 and down branch line 23. The plastic cannot flow past the closed valve 43.
If it is desired to make the pipe entirely from the plastic of extruder 2d valves 43 and 22 are opened and valve 41 is closed. Under these conditions the plastic from extruder 2d flows along conduit 17d past valve 43 and down branch line 21. The plastic additionally flows along branch line 22 where it is diverted by the closed valve 41 into branch line 21.
It will be seen from the description above that even though much of the setup for each of the individual embodiments is consistent from one embodiment to another the equipment itself is extremely adaptive to use a single extruder, multiple extruders and multiple extruders extruding different types of plastic materials. In each of these embodiments the die tooling is the same as is the flow distributor used at the upstream end of the die tooling.
One of the key features to the present invention lies in the fact that the flow distributor and in particular the two plate portions 27 and 31 are adjustable at different locations around each of the plate portions for the most efficient flow of plastic to the die tooling. In
For example, the flow of plastic to the flow distributor from each of the extruders will be strongest at the localized location where the plastic enters the flow distributor. However, the plastic must be evenly distributed or spread completely around the ring like mouth of each of the die passages. Therefore the adjustment means must be setup to decrease the plastic flow at or near the location where the plastic enters the flow distributor and to cause the plastic to flow more evenly to the weaker flow areas at the passage mouth farther away from the source of plastic. The provision of multiple adjustment points around the periphery of the two plate portions of the flow distributor enables the required adjustments at each of the plate portions so as to provide consistent wall thickness around the pipe produced using the equipment.
More specific details with respect to the flow distributor are shown in
Plastic flow branch 23 feeds through passages 24 directly into plate portion 31 bypassing plate portion 27. Passages 24 outlet at openings 33 which feed the plastic for the formation of the outer pipe wall. Adjustment screws 51 are provided in the flow passages 24 to adjust plastic distribution around the distributor for the outer pipe wall. Note that even though adjustment members 51 penetrate through pipe portion 27 to plate portion 31 the adjustment of these members does not affect the flow of plastic through passages 22.
Although various preferred embodiments of the present invention have been described in detail, it will be appreciated by those skilled in the art that variations may be made without departing from the spirit of the invention or the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2416083 | Jan 2003 | CA | national |
2419703 | Feb 2003 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA03/01957 | 12/19/2003 | WO | 00 | 7/7/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/062884 | 7/29/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3491406 | Davidson | Jan 1970 | A |
3809515 | Farrell | May 1974 | A |
4276250 | Satchell et al. | Jun 1981 | A |
6616437 | Neubauer | Sep 2003 | B1 |
7037098 | Kossner et al. | May 2006 | B2 |
Number | Date | Country |
---|---|---|
29517378 | Apr 1996 | DE |
WO 0007801 | Feb 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060051443 A1 | Mar 2006 | US |