Flow-formed chamber component having a textured surface

Information

  • Patent Grant
  • 7762114
  • Patent Number
    7,762,114
  • Date Filed
    Friday, September 9, 2005
    18 years ago
  • Date Issued
    Tuesday, July 27, 2010
    13 years ago
Abstract
A method of fabricating a component for a substrate processing chamber involves providing a preform having internal and external surfaces, and providing a mandrel having a textured surface with a pattern of textured features comprising protrusions and depressions. The internal surface of the preform component is contacted with the textured surface of mandrel, and a pressure is applied to the external surface of the preform. The pressure is sufficiently high to plastically deform the preform over the textured surface of the mandrel to form a component having a textured internal surface comprising the pattern of textured feature that are shaped and sized to adhere process residues generated in the processing of substrates.
Description
BACKGROUND

In the processing of substrates such as semiconductor wafers and displays, a substrate is placed in a process chamber and exposed to an energized gas to deposit or etch material on the substrate. During such processing, process residues are generated and can deposit on internal surfaces in the chamber. For example, in sputter deposition processes, material sputtered from a target for deposition on a substrate also deposits on other component surfaces in the chamber, such as on deposition rings, shadow rings, wall liners, and focus rings. In subsequent process cycles, the deposited process residues can “flake off” of the chamber surfaces to fall upon and contaminate the substrate. To reduce the contamination of the substrates by process residues, the surfaces of components in the chamber can be textured. Process residues adhere to the textured surface and inhibit the process residues from falling off and contaminating the substrates in the chamber.


Typically, textured surface components are fabricated in a multiple step process. In the first fabrication step, the shape or overall structure of the component is fabricated, for example, by CNC machining of a block of metal into the desired structure. Thereafter, a second fabrication process is used to form the textured surface of the machined component. For example, the surface texturing process can include grinding, bead blasting or polishing, or combinations thereof. In one version, the textured surface is formed by directing an electromagnetic energy beam onto a surface of a component to form depressions and protrusions to which process deposits adhere well. An example of such a surface is a Lavacoat™ surface, as described for example in commonly assigned U.S. Patent Publication No. 2003-0173526 to Popiolkowski et al, published on Sep. 18, 2003, and filed on Mar. 13, 2002; and U.S. Pat. No. 6,812,471 to Popiolkowski et al, issued on Nov. 2, 2004; both of which are incorporated herein by reference in their entireties. The Lavacoat™ surface comprises depressions and protrusions to which process residues can adhere to reduce the contamination of substrates during their processing.


However, conventional processes to fabricate textured components are often expensive because of the multiple fabrication steps needed to form the component and its textured surface. The fabrication costs inhibit widespread implementation of the textured components despite the processing benefits provided by the components. The expense of conventional fabrication processes is at least in part due to the complicated multi-step fabrication procedures used in these processes, as well as the expensive fabrication equipment. For example, component fabrication machinery, such as for example, electromagnetic energy beam generating equipment, is expensive and can substantially increase the fabrication costs of the textured components.


The component fabrication time and costs are a further problem when the cleaning processes used to refurbish textured components erodes the component after several cleaning cycles. A cleaning process is typically performed once residues have accumulated on the textured component to remove the residues and refurbish the component for re-use. For example, repeated cleaning of the textured component with solutions comprising HNO3 or HF eventually erodes the textured surface of components, typically requiring the replacement of the eroded components with newly-fabricated components. Thus, the expense of fabricating the new textured surface components undesirably increases the costs associated with operating a chamber.


Accordingly, it is desirable to have a method of fabricating textured chamber components that is relatively inexpensive and efficient compared to conventional fabrication processes. It is further desirable to have a component with a textured surface to which process residues can adhere well.


SUMMARY

In one version, a method of fabricating a component for a substrate-processing chamber involves providing a preform having internal and external surfaces, and a mandrel having a textured surface with a pattern of textured features comprising periodic and alternating protrusions and depressions. The internal surface of the preform is contacted with the textured surface of mandrel. A pressure is applied to the perform that is sufficiently high to plastically deform the preform and cause the internal surface of the perform to flow over the textured surface of the mandrel to form a component having a textured internal surface comprising a pattern of textured features.


In another version, the textured surface of the mandrel has protuberances having a height of from about 0.005 to about 0.050 inches and a width at half height of from about 0.007 to about 0.070 inches, and depressions having a depth of from about 0.005 to about 0.050 inches, and a width at half depth of from about 0.002 to about 0.130 inches. The internal surface of the preform is contacted with the textured surface of the mandrel. Rotating rollers are pressed against the external surface of the perform to plastically deform the preform causing the internal surface of the preform to flow over the textured surface of the mandrel, thereby forming a component having a textured internal surface comprising a reverse pattern of alternating protuberances and depressions that is a mirror image of the pattern on the mandrel.


A component for a substrate processing chamber comprises an external surface formed by rotating rollers that are pressed against a perform and an internal surface formed by plastic deformation over a textured surface of a mandrel having a pattern of textured features comprising periodic and alternating protrusions and depressions so that the internal surface has a pattern of textured features that are correspondingly shaped and sized, whereby process residues generated in the processing of substrates adhere to the textured internal surface to reduce contamination of the substrates in substrate fabrication.





DRAWINGS

These features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, which illustrate examples of the invention. However, it is to be understood that each of the features can be used in the invention in general, not merely in the context of the particular drawings, and the invention includes any combination of these features, where:



FIG. 1 is a partial sectional side view of an embodiment of an apparatus for performing a flow-forming process;



FIG. 2 is a partial sectional side view of a component having a textured internal surface formed by a flow-forming process;



FIG. 3 is a partial sectional front view of an embodiment of a mandrel for a flow-forming process having a textured surface;



FIG. 4 is a partial side view of an embodiment of a shield formed by a flow-forming process; and



FIG. 5 is a partial sectional side view of an embodiment of a process chamber having one or more flow-formed components.





DESCRIPTION

A substrate-processing chamber comprises components for processing a substrate in an energized gas. One or more of the components comprises a surface that is textured, such that process deposits generated during the processing of substrates can adhere to the component surfaces to reduce the contamination of processed substrates from the process deposits. Process deposits that adhere to the textured surfaces of chamber components can include metal-containing deposits, such as deposits comprising at least one of tantalum, tantalum nitride, titanium, titanium nitride, aluminum, copper, tungsten, and tungsten nitride.


The textured surfaces 20 of selected chamber components 22 and the shape of the component itself is formed by a flow-forming apparatus and process adapted for the textured surface component as, for example, shown in FIG. 1. The flow-forming apparatus applies a pressure to a preform 24 to plastically deform and flow the material of the preform over a mandrel 26 to provide the desired bulk shape of the components 22. The mandrel 26 is desirably adapted to form a predetermined textured pattern on the surface 20 of the preform 24 that contacts the mandrel 26. For example, the mandrel 26 may comprise a textured surface 28. The plastic deformation of the component material under the applied pressure molds the surface 20 of the preform 24 to conform to the texture of the mandrel surface 28, thus transferring at least a portion of the mandrel surface pattern to the final chamber component 22. By providing a mandrel 26 that has been specially adapted to create the desired surface texture pattern 34, components 22 having not only the desired bulk shape but also the desired surface texture pattern 34 may be efficiently and repeatedly formed by the flow-forming process.


The preform 24 has a pre-selected size and shape that forms the desired final component 22. A suitable preform shape for a flow-forming process may be for example a conical, cylindrical, tube-like and other shape, which can be molded and contoured on the mandrel 26. Typically, the perform has an axis of circular symmetry that is aligned to the axis of symmetry of the mandrel 26. The walls 36 of the preform 24 are made sufficiently thick that a desired final thickness of the walls of the component 22 is obtained after the plastic deformation caused by the flow-forming process. For example, the thickness of the preform walls 36 is greater than the component wall thickness by a calculated amount, for example, at least 5%, to achieve the desired final thickness of the walls of the final component 22. The preform 24 is made from a metal with relatively high ductility that may be plastically deformed under pressure substantially without breaking or cracking of the metal. Suitable metals may comprise, for example, at least one of aluminum, copper, stainless steel, titanium, and associated alloys. The preform 24 may be formed by methods including deep drawings, stamping, CNC machining, and press-forming, as well as by other metal shape fabrication methods known to those of ordinary skill in the art.


In the flow-forming process, the preform 24 comprises an internal surface 20 that is fitted over at least a portion of the textured surface 28 of the mandrel 26, and may rest against the surface 28 of the mandrel 26. The mandrel 26 is a component of a flow-forming apparatus 52 comprising other parts adapted for the flow-forming of components 22. A first end 40 of the of the preform 24, which may be a closed or semi-closed end, can be held by a headstock 56 and/or tailstock 42 capable of exerting a hydraulic pressure to hold the preform 24 in place. The mandrel 26 is typically rotated about its longitudinal axis 44, for example by a motor (not shown) which in turn rotates the preform 24 in synchronization with the mandrel 26. A pressure applying device 46, such as for example pressure rollers 48, are applied against an external surface 50 of the preform 24 to plastically deform and flow the preform material in an axial direction along the surface 28 of the mandrel 26.


In the embodiment shown, the pressure rollers 48 move towards the first end 40 of the preform 24 to press and flow the preform material over the mandrel 26 in a direction away from the first end 40 of the perform 24. The preform material is desirably compressed and plasticized above its yield strength by the applied pressure to flow the material in an axial direction along the surface 28 of the mandrel 26. The pressure rollers 48 thus reduce the thickness of and lengthen the walls 36 of the preform 24 by flowing the preform material along the mandrel 26. The pressure applied to the external surface 50 is desirably sufficiently high to plastically deform and flow the preform material, substantially without breaking or cracking the material. The pressure applied varies as a function of the properties of the material being formed. The mandrel and the rollers are located at defined distances, which may be a constant or variable distance, to establish the relationship of the inner and outer surfaces of the finished part. In one version, the pressure rollers 48 may comprise circularly shaped rollers that are adapted to be rotated by a motor (not shown) in a direction parallel or anti-parallel to the direction of rotation of the mandrel 26, and thus exert a radial force on the external surface 50 of the preform 24. The pressure rollers 48 may also comprise an angled forward edge 54 that exerts an axial force on the external surface 50 of the preform 24 to drive the preform material in an axial direction across the surface 28 of the mandrel 26. In one version, a plurality of pressure rollers 48 are spaced apart about the circumference of the preform 24, and the pressure rollers 48 may also be axially and radially spaced apart, to exert pressures against a plurality of different regions of the preform external surface 50.


The mandrel 26 provided for the flow-forming process is desirably adapted to provide the desired bulk shape and surface texture pattern 34 of the final flow-formed component 22. For example, the mandrel 26 may comprise an axial length that is suited for a desired length of the component walls 36. The mandrel 26 also desirably comprises the textured surface 28 that is adapted to form the desired surface texture pattern 34 of the internal surface 20 of a component 22. For example, the mandrel 26 may comprise a textured surface 28 having a mandrel surface pattern 58 that is a reverse or mirror image of the surface texture pattern 34 that is desired for the chamber component 22. The surface texture pattern 34 formed on the surface 20 of component 22 is a result of the applied pressure during the flow-forming process which presses the preform material against the mandrel surface 28 such that the internal surface of component 22 substantially assumes the contour of the mandrel surface 28. For example, for a mandrel surface 28 comprising raised protrusions 60a and depressions 60b, the preform material may be pressed and flowed into the depressions 60b in the mandrel surface 28 to form corresponding reverse image features 30 comprising protrusions 30b on the surface of component 22, as shown for example in FIG. 2. The preform material is also flowed about the protrusions 60a on the mandrel surface 28 to form corresponding reverse image features 30 comprising depressions 30a in the component surface 20. The features 60 provided on the mandrel surface 28 can be selected according to the desired surface texture pattern 34, and may comprise for example protrusions 60a and depressions 60b comprising at least one of bumps, holes, ridges, grooves, and other features that may be desirable for the component surface 20. In one version, the mandrel 26 even comprises protrusions 60a and depressions 60b having sizes and spacings in one region of the mandrel surface 28 that differ from the sizes and spacings of the protrusions 60a and depressions 60b in a separate region of the mandrel 28. Flow-forming the component 22 on the mandrel 26 allows for the formation of a surface 20 of component 22 having predetermined dimensions and bulk shape, and simultaneously forming a desired surface texture pattern 34 on the surface of component 22, thus providing an efficient and improved means of fabricating the chamber components 22.


In one version, an improved surface texture pattern 34 is provided by flow-forming a component 22 on a mandrel 26 comprising alternating protuberances 62a and depressions 62b, as shown for example in FIG. 3. The alternating protuberances 62a and depressions 62b form a reverse image surface texture pattern 34 in the surface 20 of component 22 comprising corresponding protuberances 64a and depressions 64b, that allows process residues generated in the processing of substrates 104 to adhere to the textured surface 20 of component 22 to reduce the contamination of substrates 104 by the residues. The protuberances 62a in the mandrel surface 28 can comprise, for example, mounds or bumps having a height as measured from an average surface height h of the mandrel surface 28 of at least about 0.005 to about 0.050 inches. The protuberances 62a may have a width wp at half their height of from about 0.007 to about 0.070 inches. The depressions 62b in the mandrel surface 28 may comprise a depth below the average surface height h of at least about 0.005 to about 0.050 inches, and may comprise a width wd at half their depth of from about 0.002 to about 0.130 inches. The protuberances 64b and depressions 64a formed in the flow-formed surface 20 of component 22 may have dimensions that substantially correspond to those of the mandrel protuberances 62a and depressions 62b, as shown for example in FIG. 2.


In one version, the textured surface 28 comprises a surface cross-section that is substantially sinusoidal, as shown for example in FIG. 3, which is substantially absent sharp corners and edges. The sinusoidal cross-section comprises a cross-section profile that is substantially similar to that of a sine wave, with the wavelengths and amplitudes of the sinusoidal cross-section being selected according to the desired component characteristics. The sinusoidal cross section provides a smoothly varying surface with alternating protuberances 62a and depressions 62b that provide improved adhesion of process residues, and reduces the cracking or fracturing of deposited residues that can otherwise occur with sharp or abrupt surface transitions. A suitable sinusoidal surface cross section may have a peak-to-peak distance between adjacent protuberances 62a of from about 0.015 to about 0.180 inches and an amplitude of from about 0.005 to about 0.050 inches. In one version, the mandrel surface 28 comprises a first sinusoidal cross-section that circumferentially wraps at least partially around an axis 44 of the mandrel 26, as shown in FIG. 3, and a second sinusoidal cross-section that extends longitudinally along the axis 44 of the mandrel 26, as shown in FIG. 1. The textured surface 28 is desirably substantially absent corners 66 that are sharp and sharp edges, and instead comprises substantially rounded corners 66 and edges.


The mandrel 26 may also be specifically devised for the formation of complex and substantially non-linear surface texture patterns 34 that provide improved results in the processing of substrates 104. Such complex surface patterns can render it difficult to remove of the flow-formed component 22 from the mandrel 26 after the flow-forming process. For example, for surface patterns 34 that do not allow for sliding or twisting of the component 22 from the mandrel 26, the release of the component 22 from the mandrel 26 can be challenging. Such a surface pattern 34 that does not lend itself readily to twisting or sliding of the component 22 from the mandrel 26 is a surface pattern 34 comprising alternating protuberances 64b and depressions 64a, as the mandrel and component protuberances 62a,64b become locked into the mandrel and component depressions 62b,64a. In general, surface patterns 34 that do not comprise linear or spiraling depressions 30a that extend to at least one end 40 of the component 22 can be challenging to remove from the mandrel 26. In one version, the mandrel 26 is adapted for the fabrication of such complex surface patterns by being at least partially collapsible, such that the component 22 can be readily removed from the mandrel 26 after the flow-forming process. For example, the mandrel 26 may comprise a hollow interior section 70 into which sections of the mandrel 26 can collapse following the flow forming process, to provide a smaller circumference of the mandrel and improve the ease of removal of the component 22 from the mandrel 26. For example, the mandrel 26 may be hinged or otherwise constructed in such a way that the mandrel may fold in on itself. In yet another version, the protrusions 60a on the surface 28 of the mandrel 26, such as sinusoidal cross-section protuberances 62a, may be adapted to be withdrawn into the interior section 70 of the mandrel after flow-forming to “unlock” the component 22 from the mandrel surface 28. Thus, the improved mandrel 26 allows for the formation of complex surface patterns 34 on the component 22 that may be substantially absent linear or spiraling depressions that extend along a length of the internal surface 20 of component 22, and is not limited to substantially linear or spiraling surface patterns.


In another version, the flow-formed component 22 is removed from the mandrel 26 by heating the component with an appropriate heat source. The component 22 expands enough so that its internal surface 20 clears the height of the protuberances 64b and depressions 64a on the mandrel 26 to become disengaged thus allowing the component 22 to be removed from the mandrel 26. The amount of heat needed depends on the depth of the protuberances 64b and depressions 64a on the mandrel 26 and the thermal expansion coefficient of the component material.


An example of a component 22 fabricated by a flow-forming process is shown in FIG. 4. The component 22 comprises a shield 120 suitable for example for a deposition chamber 106. The component 22 is formed from a preform 24 comprising cylindrical sidewalls 36 that are pressed in the flow-forming process into the desired shield wall length and thickness. The internal surface 20 of the component 22 comprising the shield 120 comprises the desired surface textured pattern 34 (not shown) to which process residues can adhere to reduce the contamination of processed substrates 104. Thus, the flow-forming method is capable of providing the component 22 having the desired bulk shape and surface texture in a single process step, thus providing a more efficient and reproducible means of forming the component 22.


Different versions of components 22 having the textured surface 20 formed by the flow-forming method are used in a substrate-processing chamber 106, an exemplary embodiment of which is shown in FIG. 5. The chamber 106 is part of a multi-chamber platform (not shown) having a cluster of interconnected chambers connected by a robot arm mechanism that transfers substrates 104a between the chambers 106. In the version shown, the process chamber 106 comprises a sputter deposition chamber, also called a physical vapor deposition or PVD chamber, which is capable of sputter depositing material on a substrate 104a, such as one or more of tantalum, tantalum nitride, titanium, titanium nitride, copper, tungsten, tungsten nitride and aluminum. The chamber 106 comprises enclosure walls 118 that enclose a process zone 109 and that include sidewalls 164, a bottom wall 166 and a ceiling 168. A support ring 130 can be arranged between the sidewalls 164 and ceiling 168 to support the ceiling 168. Other chamber walls can include one or more shields 120 that shield the enclosure walls 118 from the sputtering environment.


The chamber 106 comprises a substrate support 114 to support the substrate in the sputter deposition chamber 106. The substrate support 114 may be electrically floating or may comprise an electrode 170 that is biased by a power supply 172, such as an RF power supply. The substrate support 114 can also support other wafers 104 such as a moveable shutter disk 104b that can protect the upper surface 134 of the support 114 when the substrate 104a is not present. In operation, the substrate 104a is introduced into the chamber 106 through a substrate loading inlet (not shown) in a sidewall 164 of the chamber 106 and placed on the support 114. The support 114 can be lifted or lowered by support lift bellows and a lift finger assembly (not shown) can be used to lift and lower the substrate onto the support 114 during transport of the substrate 104a into and out of the chamber 106.


The support 114 may also comprise one or more rings, such as a cover ring 126 or deposition ring 128, which cover at least a portion of the upper surface 134 of the support 114 to inhibit erosion of the support 114. In one version, the deposition ring 128 at least partially surrounds the substrate 104a to protect portions of the support 114 not covered by the substrate 104a. The cover ring 126 encircles and covers at least a portion of the deposition ring 128, and reduces the deposition of particles onto both the deposition ring 128 and the underlying support 114.


A process gas, such as a sputtering gas, is introduced into the chamber 106 through a gas delivery system 112 that includes a process gas supply comprising one or more gas sources 174 that each feed a conduit 176 having a gas flow control valve 178, such as a mass flow controller, to pass a set flow rate of the gas therethrough. The conduits 176 can feed the gases to a mixing manifold (not shown) in which the gases are mixed to from a desired process gas composition. The mixing manifold feeds a gas distributor 180 having one or more gas outlets 182 in the chamber 106. The process gas may comprise a non-reactive gas, such as argon or xenon, which is capable of energetically impinging upon and sputtering material from a target. The process gas may also comprise a reactive gas, such as one or more of an oxygen-containing gas and a nitrogen-containing gas, that are capable of reacting with the sputtered material to form a layer on the substrate 104a. Spent process gas and byproducts are exhausted from the chamber 106 through an exhaust 122 which includes one or more exhaust ports 184 that receive spent process gas and pass the spent gas to an exhaust conduit 186 in which there is a throttle valve 188 to control the pressure of the gas in the chamber 106. The exhaust conduit 186 feeds one or more exhaust pumps 190. Typically, the pressure of the sputtering gas in the chamber 106 is set to sub-atmospheric levels.


The sputtering chamber 106 further comprises a sputtering target 124 facing a surface 105 of the substrate 104a, and comprising material to be sputtered onto the substrate 104a, such as for example at least one of tantalum and tantalum nitride. The target 124 can be electrically isolated from the chamber 106 by an annular insulator ring 132, and is connected to a power supply 192. The target 124 may comprise a target backing plate having a target rim 125 that is exposed in the chamber 106. The sputtering chamber 106 also has a shield 120 to protect a wall 118 of the chamber 106 from sputtered material. The shield 120 can comprise a wall-like cylindrical shape having upper and lower shield sections 120a, 120b that shield the upper and lower regions of the chamber 106. In the version shown in FIG. 4, the shield 120 has an upper section 120a mounted to the support ring 130 and a lower section 120b that is fitted to the cover ring 126. A clamp shield 141 comprising a clamping ring can also be provided to clamp the upper and lower shield sections 120a,b together. Alternative shield configurations, such as inner and outer shields, can also be provided. In one version, one or more of the power supply 192, target 124 and shield 120, operate as a gas energizer 116 that is capable of energizing the sputtering gas to sputter material from the target 124. The power supply 192 applies a bias voltage to the target 124 with respect to the shield 120. The electric field generated in the chamber 106 from the applied voltage energizes the sputtering gas to form a plasma that energetically impinges upon and bombards the target 124 to sputter material off the target 124 and onto the substrate 104a. The support 114 having the electrode 170 and support electrode power supply 172 may also operate as part of the gas energizer 116 by energizing and accelerating ionized material sputtered from the target 124 towards the substrate 104a. Furthermore, a gas energizing coil 135 can be provided that is powered by a power supply 192 and that is positioned within the chamber 106 to provide enhanced energized gas characteristics, such as improved energized gas density. The gas energizing coil 135 can be supported by a coil support 137 that is attached to a shield 120 or other wall in the chamber 106.


The chamber 106 is controlled by a controller 194 that comprises program code having instruction sets to operate components of the chamber 106 to process substrates 104a in the chamber 106. For example, the controller 194 can comprise a substrate positioning instruction set to operate one or more of the substrate support 114 and substrate transport to position a substrate 104a in the chamber 106; a gas flow control instruction set to operate the flow control valves 178 to set a flow of sputtering gas to the chamber 106; a gas pressure control instruction set to operate the exhaust throttle valve 188 to maintain a pressure in the chamber 106; a gas energizer control instruction set to operate the gas energizer 116 to set a gas energizing power level; a temperature control instruction set to control temperatures in the chamber 106; and a process monitoring instruction set to monitor the process in the chamber 106.


The chamber components 22 having the textured surface 20 can comprise, for example, different arts of the gas delivery system 112, substrate support 114, process kit 139, gas energizer 116, chamber enclosure walls 118 and shields 120, or gas exhaust 122 of the chamber 106. For example, the chamber components 22 having the textured surface 20 can include a chamber enclosure wall 118, a chamber shield 120, a target 124, a target rim 125, a component of a process kit 139 such as at least one of a cover ring 126 and a deposition ring 128, a support ring 130, insulator ring 132, a coil 135, coil support 137, shutter disk 104b, clamp shield 141, and a portion of the substrate support 114. For example, components having the textured surface can include Applied Material's part numbers 0020-50007, 0020-50008, 0020-50010, 0020-50012, 0020-50013, 0020-48908, 0021-23852, 0020-48998, 0020-52149, 0020-51483, 0020-49977, 0020-52151, 0020-48999, 0020-48042 and 0190-14818, from Applied Materials, Santa Clara, Calif. This list of components is merely exemplary and the other components or components from other types of chambers can also have the textured surface; thus, the present invention should not be limited to the components listed or described herein.


The present invention has been described with reference to certain preferred versions thereof; however, other versions are possible. For example, the flow-formed components can be used in other types of applications, as would be apparent to one of ordinary skill, for example, as components of etching chambers. Other configurations of the flow forming apparatus can also be used, and mandrel surface patterns other than those specifically described can also be provided. Further, alternative steps equivalent to those described for the flow-forming method can also be used in accordance with the parameters of the described implementation, as would be apparent to one of ordinary skill. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.

Claims
  • 1. A method of fabricating a shield for a substrate processing chamber, the method comprising: (a) providing a preform having a cylindrical sidewall with internal and external surfaces;(b) providing a mandrel with a textured surface having a pattern of textured features comprising periodic and alternating protrusions and depressions;(c) contacting the internal surface of the cylindrical sidewall of the preform with the textured surface of mandrel; and(d) applying a pressure to the preform that is sufficiently high to plastically deform the cylindrical sidewall of the preform and cause the internal surface of the cylindrical sidewall to flow over the textured surface of the mandrel to form a shield for a substrate processing chamber, the shield having a textured internal surface comprising a pattern of textured features.
  • 2. A method according to claim 1 wherein (d) comprises forming a shield having a textured internal surface that is substantially absent linear or spiraling depressions that extend along a length of the textured internal surface.
  • 3. A method according to claim 1 wherein (b) comprises providing a mandrel having protrusions and depressions that comprise at least one of bumps, holes, ridges, and grooves.
  • 4. A method according to claim 3 wherein the protrusions have a height of from about 0.005 to about 0.050 inches, and a width at half height of from about 0.007 to about 0.070 inches.
  • 5. A method according to claim 4 wherein the depressions have a depth of from about 0.005 to about 0.050 inches, and a width at half depth of from about 0.002 to about 0.130 inches.
  • 6. A method according to claim 1 wherein the pattern of textured features comprises a sinusoidal cross-section.
  • 7. A method according to claim 1 wherein (b) comprises providing a mandrel having a textured surface comprising textured features that are substantially absent sharp corners and sharp edges.
  • 8. A method according to claim 1 wherein (b) comprises providing a mandrel that is at least partially collapsible.
  • 9. A method according to claim 1 wherein in (d) the shield is removed from the mandrel by heating the shield and causing the internal surface of the shield to expand above the height of the protrusions of the mandrel thus allowing removal from the mandrel.
  • 10. A method according to claim 1 wherein (d) comprises applying a pressure on the preform by pressing rotating rollers against the external surface of the preform.
  • 11. A method according to claim 1 wherein the preform comprises at least one of aluminum, copper, stainless steel, titanium, and associated alloys.
  • 12. A method of fabricating a component for a substrate processing chamber, the method comprising: (a) providing a preform having a cylindrical sidewall with internal and external surfaces;(b) providing a mandrel having a textured surface, the textured surface having a pattern of periodic and alternating protuberances and depressions, wherein the protuberances have a height of from about 0.005 to about 0.050 inches and a width at half height of from about 0.007 to about 0.070 inches, and the depressions have a depth of from about 0.005 to about 0.050 inches, and a width at half depth of from about 0.002 to about 0.130 inches;(c) contacting the internal surface of the cylindrical sidewall of the preform with the textured surface of a mandrel; and(d) pressing rotating rollers against the external surface of the preform to plastically deform the preform causing the internal surface of the preform to flow over the textured surface of the mandrel, thereby forming a shield for a substrate processing chamber, the shield having a textured internal surface comprising a reverse pattern of alternating protuberances and depressions that is a mirror image of the pattern on the mandrel.
  • 13. A method according to claim 12 wherein the preform comprises at least one of aluminum, copper, stainless steel, titanium, and associated alloys.
  • 14. A method according to claim 12 wherein (a) comprises providing a preform having a conical, cylindrical, or tube-like shape.
  • 15. A method according to claim 12 wherein (b) comprises providing a mandrel having a pattern of textured features comprising a sinusoidal cross-section.
  • 16. A method according to claim 12 wherein the sinusoidal cross-section comprises a peak-to-peak distance between adjacent protuberances of from about 0.015 to about 0.180 inches and an amplitude of from about 0.005 to about 0.050 inches.
  • 17. A method according to claim 12 wherein (b) comprises providing a mandrel that is at least partially collapsible.
  • 18. A method according to claim 12 wherein (c) comprises aligning an axis of circular symmetry of the perform to an axis of symmetry of the mandrel.
  • 19. A method according to claim 12 wherein (d) comprises pressing rotating rollers that are spaced apart about the circumference of the preform.
  • 20. A method according to claim 12 wherein (d) comprises rotating the mandrel.
  • 21. A method according to claim 12 wherein in (d) the component is removed from the mandrel by heating the component and causing the internal surface of the component to expand above the height of the protuberances of the mandrel thus allowing removal from the mandrel.
US Referenced Citations (304)
Number Name Date Kind
417226 Browning Dec 1889 A
2705500 Deer Apr 1955 A
3117883 Pierett Jan 1964 A
3457151 Kortejarvi Jul 1969 A
3482082 Israeli Dec 1969 A
3522083 Woolman Jul 1970 A
3565771 Gulla Feb 1971 A
3679460 Reid Jul 1972 A
3788114 Marcovitch, Jacob Jan 1974 A
4175416 Fukushima et al. Nov 1979 A
RE31198 Binns Apr 1983 E
4412133 Eckes et al. Oct 1983 A
4419201 Levinstein et al. Dec 1983 A
4480284 Tojo et al. Oct 1984 A
4491496 Laporte et al. Jan 1985 A
4606802 Kobayashi et al. Aug 1986 A
4645218 Ooshio et al. Feb 1987 A
4665463 Ward et al. May 1987 A
4673554 Niwa et al. Jun 1987 A
4713119 Earhart et al. Dec 1987 A
4717462 Homma et al. Jan 1988 A
4722209 Mankins Feb 1988 A
4732792 Fujiyama Mar 1988 A
4756322 Lami Jul 1988 A
4832781 Mears May 1989 A
4872250 De Marco Oct 1989 A
4913784 Bogenschutz et al. Apr 1990 A
4959105 Neidiffer et al. Sep 1990 A
4995958 Anderson et al. Feb 1991 A
4996859 Rose et al. Mar 1991 A
5009966 Garg et al. Apr 1991 A
5032469 Merz et al. Jul 1991 A
5055964 Logan et al. Oct 1991 A
5064511 Gobbetti et al. Nov 1991 A
5104501 Okabayashi Apr 1992 A
5104834 Watanabe et al. Apr 1992 A
5117121 Watanabe et al. May 1992 A
5151845 Watanabe et al. Sep 1992 A
5164016 Henriet et al. Nov 1992 A
5166856 Liporace et al. Nov 1992 A
5180322 Yamamoto et al. Jan 1993 A
5180563 Lai et al. Jan 1993 A
5191506 Logan et al. Mar 1993 A
5202008 Talieh Apr 1993 A
5215624 Dastolfo et al. Jun 1993 A
5215639 Boys Jun 1993 A
5248386 Dastolfo et al. Sep 1993 A
5258047 Tokisue et al. Nov 1993 A
5270266 Hirano et al. Dec 1993 A
5275683 Arami et al. Jan 1994 A
5280156 Niori et al. Jan 1994 A
5314597 Harra May 1994 A
5315473 Collins et al. May 1994 A
5324053 Kubota et al. Jun 1994 A
5325261 Horwitz Jun 1994 A
5338367 Henriet et al. Aug 1994 A
5350479 Collins et al. Sep 1994 A
5356723 Kimoto et al. Oct 1994 A
5366585 Robertson et al. Nov 1994 A
5382469 Kubota et al. Jan 1995 A
5391275 Mintz Feb 1995 A
5401319 Banholzer et al. Mar 1995 A
5407551 Sieck et al. Apr 1995 A
5409590 Hurwitt et al. Apr 1995 A
5429711 Watanabe et al. Jul 1995 A
5433835 Demaray et al. Jul 1995 A
5458759 Hosokawa et al. Oct 1995 A
5460694 Schapira et al. Oct 1995 A
5463526 Mundt Oct 1995 A
5474649 Kava et al. Dec 1995 A
5487822 Demaray et al. Jan 1996 A
5490913 Schertler et al. Feb 1996 A
5509558 Imai et al. Apr 1996 A
5512078 Griffin Apr 1996 A
5520740 Kanai et al. May 1996 A
5531835 Fodor et al. Jul 1996 A
5542559 Kawakami et al. Aug 1996 A
5549802 Guo Aug 1996 A
5587039 Salimian et al. Dec 1996 A
5614071 Mahvan et al. Mar 1997 A
5622070 Bulso, Jr. Apr 1997 A
5643422 Yamada Jul 1997 A
5660640 Laube Aug 1997 A
5671835 Tanaka et al. Sep 1997 A
5684669 Collins et al. Nov 1997 A
5685914 Hills et al. Nov 1997 A
5685959 Bourez et al. Nov 1997 A
5695825 Scruggs Dec 1997 A
5700179 Hasegawa et al. Dec 1997 A
5714010 Matsuyama et al. Feb 1998 A
5720818 Donde et al. Feb 1998 A
5736021 Ding et al. Apr 1998 A
5745331 Shamouilian et al. Apr 1998 A
5755887 Sano et al. May 1998 A
5762748 Banholzer et al. Jun 1998 A
5792562 Collins et al. Aug 1998 A
5808270 Marantz et al. Sep 1998 A
5812362 Ravi Sep 1998 A
5821166 Hajime et al. Oct 1998 A
5824197 Tanaka Oct 1998 A
5830327 Kolnekow Nov 1998 A
5840434 Kojima et al. Nov 1998 A
5858100 Maeda et al. Jan 1999 A
5876573 Moslehi et al. Mar 1999 A
5879523 Wang et al. Mar 1999 A
5879524 Hurwitt et al. Mar 1999 A
5885428 Kogan Mar 1999 A
5886863 Nagasaki et al. Mar 1999 A
5903428 Grimard et al. May 1999 A
5910338 Donde et al. Jun 1999 A
5916378 Bailey et al. Jun 1999 A
5916454 Richardson et al. Jun 1999 A
5920764 Hanson Jul 1999 A
5930661 Lu Jul 1999 A
5939146 Lavernia Aug 1999 A
5942041 Lo et al. Aug 1999 A
5942445 Kato et al. Aug 1999 A
5948288 Treves et al. Sep 1999 A
5951374 Kato et al. Sep 1999 A
5953827 Or et al. Sep 1999 A
5963778 Stellrecht Oct 1999 A
5967047 Kuhn et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
6010583 Annavarapu et al. Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6026666 Zimmermann et al. Feb 2000 A
6027604 Lim et al. Feb 2000 A
6051114 Yao et al. Apr 2000 A
6051122 Flanigan Apr 2000 A
6059945 Fu et al. May 2000 A
6071389 Zhang Jun 2000 A
6073830 Hunt et al. Jun 2000 A
6086735 Gilman et al. Jul 2000 A
6108189 Weldon et al. Aug 2000 A
6120621 Jin et al. Sep 2000 A
6120640 Shih et al. Sep 2000 A
6143432 de Rochemont et al. Nov 2000 A
6146509 Aragon Nov 2000 A
6149784 Su et al. Nov 2000 A
6150762 Kim et al. Nov 2000 A
6152071 Akiyama et al. Nov 2000 A
6159299 Koai et al. Dec 2000 A
6162297 Mintz et al. Dec 2000 A
6162336 Lee Dec 2000 A
6170429 Schoepp et al. Jan 2001 B1
6183614 Fu Feb 2001 B1
6183686 Bardus et al. Feb 2001 B1
6190516 Xiong et al. Feb 2001 B1
6198067 Ikeda et al. Mar 2001 B1
6199259 Demaray et al. Mar 2001 B1
6221217 Moslehi et al. Apr 2001 B1
6227435 Lazarz et al. May 2001 B1
6235163 Angelo et al. May 2001 B1
6238528 Xu et al. May 2001 B1
6248667 Kim et al. Jun 2001 B1
6250251 Akiyama et al. Jun 2001 B1
6269670 Koestermeier Aug 2001 B2
6274008 Gopalraja et al. Aug 2001 B1
6276997 Li Aug 2001 B1
6280584 Kumar et al. Aug 2001 B1
6284093 Ke et al. Sep 2001 B1
6287437 Pandhumsoporn et al. Sep 2001 B1
6299740 Hieronymi et al. Oct 2001 B1
6306489 Hellmann et al. Oct 2001 B1
6306498 Yuuki et al. Oct 2001 B1
6338781 Sichmann et al. Jan 2002 B1
6338906 Ritland et al. Jan 2002 B1
6340415 Raaijmakers et al. Jan 2002 B1
6344114 Sichmann et al. Feb 2002 B1
6364957 Schneider et al. Apr 2002 B1
6365010 Hollars Apr 2002 B1
6372609 Aga Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383459 Singh et al. May 2002 B1
6387809 Toyama May 2002 B2
6394023 Crocker May 2002 B1
6401652 Mohn et al. Jun 2002 B1
6416634 Mostovoy et al. Jul 2002 B1
6423175 Huang et al. Jul 2002 B1
6444083 Steger et al. Sep 2002 B1
6447853 Suzuki et al. Sep 2002 B1
6454870 Brooks Sep 2002 B1
6475336 Hubacek Nov 2002 B1
6484794 Schulak et al. Nov 2002 B1
6500321 Ashtiani et al. Dec 2002 B1
6506312 Bottomfield Jan 2003 B1
6545267 Miura et al. Apr 2003 B1
6555471 Sandhu et al. Apr 2003 B2
6558505 Suzuki et al. May 2003 B2
6565984 Wu et al. May 2003 B1
6566161 Rosenberg et al. May 2003 B1
6576909 Donaldson et al. Jun 2003 B2
6579431 Bolcavage et al. Jun 2003 B1
6599405 Hunt et al. Jul 2003 B2
6619537 Zhang et al. Sep 2003 B1
6620736 Drewery Sep 2003 B2
6623595 Han et al. Sep 2003 B1
6623597 Han et al. Sep 2003 B1
6623610 Onishi Sep 2003 B1
6627050 Miller et al. Sep 2003 B2
H2087 Balliett et al. Nov 2003 H
6645357 Powell Nov 2003 B2
6652668 Perry et al. Nov 2003 B1
6652716 Kao et al. Nov 2003 B2
6660135 Yu et al. Dec 2003 B2
6676812 Chung Jan 2004 B2
6708870 Koenigsmann et al. Mar 2004 B2
6743340 Fu Jun 2004 B2
6749103 Ivanov et al. Jun 2004 B1
6776879 Yamamoto et al. Aug 2004 B2
6777045 Lin et al. Aug 2004 B2
6797362 Parfeniuk et al. Sep 2004 B2
6797639 Carducci et al. Sep 2004 B2
6812471 Popiolkowski et al. Nov 2004 B2
6824652 Park Nov 2004 B2
6840427 Ivanov Jan 2005 B2
6858116 Okabe et al. Feb 2005 B2
6872284 Ivanov et al. Mar 2005 B2
6902627 Brueckner et al. Jun 2005 B2
6902628 Wang et al. Jun 2005 B2
6916407 Vosser et al. Jul 2005 B2
6933025 Lin et al. Aug 2005 B2
6933508 Popiolkowski et al. Aug 2005 B2
6955748 Kim Oct 2005 B2
6955852 Ivanov Oct 2005 B2
6992261 Kachalov et al. Jan 2006 B2
7026009 Lin et al. Apr 2006 B2
7041200 Le et al. May 2006 B2
7063773 Ivanov et al. Jun 2006 B2
7121938 Suzuki Oct 2006 B2
7131883 Park et al. Nov 2006 B2
7146703 Ivanov Dec 2006 B2
7264679 Schweitzer et al. Sep 2007 B2
7504008 Doan et al. Mar 2009 B2
7579067 Lin et al. Aug 2009 B2
7618769 Brueckner et al. Nov 2009 B2
20010001367 Koestermeier May 2001 A1
20010033706 Shimomura et al. Oct 2001 A1
20010045353 Hieronymi et al. Nov 2001 A1
20020029745 Nagaiwa et al. Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020076490 Chiang et al. Jun 2002 A1
20020086118 Chang et al. Jul 2002 A1
20020090464 Jiang et al. Jul 2002 A1
20020100680 Yamamoto et al. Aug 2002 A1
20030019746 Ford et al. Jan 2003 A1
20030026917 Lin et al. Feb 2003 A1
20030047464 Sun et al. Mar 2003 A1
20030108680 Gell et al. Jun 2003 A1
20030116276 Weldon et al. Jun 2003 A1
20030118731 He et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20031364248 Krogh Jul 2003
20030168168 Liu et al. Sep 2003 A1
20030170486 Austin et al. Sep 2003 A1
20030173526 Popiolkowski et al. Sep 2003 A1
20030185935 Maeda et al. Oct 2003 A1
20030185965 Lin et al. Oct 2003 A1
20030218054 Koenigsmann et al. Nov 2003 A1
20030221702 Peebles Dec 2003 A1
20040045574 Tan Mar 2004 A1
20040048876 Busch et al. Mar 2004 A1
20040056070 Ivanov Mar 2004 A1
20040056211 Popiolkowski et al. Mar 2004 A1
20040079634 Wickersham et al. Apr 2004 A1
20040099285 Wang et al. May 2004 A1
20040113364 Ivanov Jun 2004 A1
20040180158 Lin et al. Sep 2004 A1
20040256226 Wickersham Dec 2004 A1
20040261946 Endoh et al. Dec 2004 A1
20050011749 Kachalov et al. Jan 2005 A1
20050028838 Brueckner Feb 2005 A1
20050048876 West et al. Mar 2005 A1
20050061857 Hunt et al. Mar 2005 A1
20050067469 Facey et al. Mar 2005 A1
20050089699 Lin et al. Apr 2005 A1
20050092604 Ivanov May 2005 A1
20050098427 Cho et al. May 2005 A1
20050147150 Wickersham et al. Jul 2005 A1
20050161322 Smathers Jul 2005 A1
20050178653 Fisher Aug 2005 A1
20050211548 Gung et al. Sep 2005 A1
20050238807 Lin Oct 2005 A1
20050271984 Brueckner et al. Dec 2005 A1
20050282358 Di Cioccio et al. Dec 2005 A1
20050284372 Murugesh et al. Dec 2005 A1
20060005767 Tsai et al. Jan 2006 A1
20060070876 Wu et al. Apr 2006 A1
20060090706 Miller et al. May 2006 A1
20060105182 Brueckner et al. May 2006 A1
20060108217 Krempel-Hesse et al. May 2006 A1
20060188742 West et al. Aug 2006 A1
20060204160 Arena Sep 2006 A1
20060251822 Gell et al. Nov 2006 A1
20060283703 Lee et al. Dec 2006 A1
20070059460 Abney et al. Mar 2007 A1
20070102286 Scheible et al. May 2007 A1
20070113783 Lee et al. May 2007 A1
20070125646 Young et al. Jun 2007 A1
20070170052 Ritchie et al. Jul 2007 A1
20070215463 Parkhe et al. Sep 2007 A1
20070283884 Tiller et al. Dec 2007 A1
20080178801 Pavloff et al. Jul 2008 A1
20080257263 Pavloff et al. Oct 2008 A1
Foreign Referenced Citations (53)
Number Date Country
19719133 Nov 1998 DE
0239349 Sep 1987 EP
0439000 Jul 1991 EP
0601788 Jun 1994 EP
0635869 Jan 1995 EP
0791956 Aug 1997 EP
0818803 Jan 1998 EP
0838838 Apr 1998 EP
0838838 Apr 1998 EP
0845545 Jun 1998 EP
1049133 Nov 2000 EP
1094496 Apr 2001 EP
1158072 Nov 2001 EP
1258908 Nov 2002 EP
2562097 Oct 1985 FR
1 424 365 Feb 1976 GB
1424365 Feb 1976 GB
54-162969 Dec 1979 JP
54162696 Dec 1979 JP
11-59368 Dec 1987 JP
63235435 Sep 1988 JP
02-027748 Jan 1990 JP
02-101157 Apr 1990 JP
03-138354 Jun 1991 JP
06-232243 Aug 1994 JP
07-197272 Aug 1995 JP
09-017850 Jan 1997 JP
09-272965 Oct 1997 JP
10-045461 Feb 1998 JP
63149396 Jun 1998 JP
10-251871 Sep 1998 JP
10-330971 Dec 1998 JP
11-137440 May 1999 JP
11-220164 Aug 1999 JP
11-283972 Oct 1999 JP
2000-228398 Oct 1999 JP
2250990 Oct 1999 JP
11-345780 Dec 1999 JP
2000-072529 Mar 2000 JP
2000-191370 Jul 2000 JP
2002-69695 Mar 2002 JP
546680 Aug 2003 TW
WO-9850599 Nov 1998 WO
WO-9917336 Apr 1999 WO
WO-0184624 Nov 2001 WO
WO 0184624 Nov 2001 WO
WO-0215255 Feb 2002 WO
WO 02093624 Nov 2002 WO
WO-03083160 Oct 2003 WO
WO-2004010494 Jan 2004 WO
WO 2005071137 Aug 2005 WO
WO-2007-030824 Mar 2007 WO
WO 2008079722 Jul 2008 WO
Related Publications (1)
Number Date Country
20070059460 A1 Mar 2007 US