1. Field of the Invention
The present invention relates generally to a process and apparatus for manipulating the micro fluid flow using micro plasma. The micro plasma may be excited using microwave or RF electromagnetic waves on electrically conductive traces or waveguides structures. The manipulated micro fluid flow may be used for cooling and heating of electronic devices, for the delivery of fluid materials in the medical devices, for the fluid diagnostics in testing and measurement equipments, and for the gas mixing in the devices of micro reactors.
2. Description of the Related Art
Plasma technology is important in the growth areas of electronics, the car-, machine- and tool-making industries, energy technology, the optics industry, and the textile, the environmental, and the medical technology. This patent is focused on the manipulation of the micro fluid flow with micro plasma. The invention basically utilizes electrically conductive traces to generate micro plasma. By applying the RF or microwave energy to the electrically conductive traces or waveguides structures, the micro plasma may be strongly excited or weakly excited. With the manipulation of the parameters, such as, phases, amplitudes, waveforms, and time delays of the signals, and by imposing a magnetic field and electrical potentials to the nearby components, the micro flow field may be manipulated.
First of all, what is plasma? Plasma is the fourth state of matter. As we know, there are three states of matter; solid, liquid and gas, but there are actually four. The fourth one is plasma and it is the most common state of matter in the universe. Simply speaking, plasma is an ionized gas, a gas into which sufficient energy is provided to free electrons from atoms or molecules and to allow both ions and electrons to coexist. Plasma is common here on earth. Gases can become plasmas in several ways, but all include pumping the gas with energy. A spark in a gas will create the plasma. A hot gas passing through a big spark will turn the gas stream into the plasma that can be useful. Plasma torches like that are used in industry to cut metals. The biggest chunk of plasma we will see is that dear friend to all of us, the sun. The sun's enormous heat rips electrons off the hydrogen and helium molecules that make up the sun. Essentially, the sun, like most stars, is a great big ball of plasma.
Different from the big-scale plasma in the universe is the small scale of plasma, which is named micro plasma here. The micro plasma is getting more and more interest because of their potential applications in many technology fields. For example, in the field of semiconductor processing, such as U.S. Pat. No. 7,022,615, a micro plasma processing method is proposed to process a metal or a semiconductor surface. By applying activated particles, which are generated by a micro plasma, to the metal or semiconductor surfaces, the oxide film of the surfaces can be removed or etched away. The claimed operating pressure may be not lower than 10,000 Pa and not higher than three atmospheric pressures.
In U.S. Pat. No. 7,056,416, the atmospheric pressure plasma processing method and apparatus is proposed. The patent provided is a plasma processing method for generating micro plasma in a space of a micro plasma source arranged in the vicinity of an object to be processed by supplying gas to the space and supplying electric power to a member located in the vicinity of the space, making activated particles emitted from an opening of the micro plasma source joined to the space act on the object, and forming a fine linear portion on the object. The fine linear portion is formed on the object while flowing the gas to the neighborhood of the opening along the lengthwise direction of the fine linear portion parallel to the object.
In U.S. Pat. No. 6,917,165, a low power plasma generator is provided which can be fabricated in micro-miniature size and which is capable of efficient portable operation. Their plasma generator comprises a microwave stripline high Q resonant ring. The generator is well suited for low power portable and other applications and can be readily fabricated by known microcircuit techniques. The invention has been implemented on a portable device that identifies chemicals by their unique color signatures. The device claims to allow scientists to recognize potentially deadly chemicals right on the scene of crime, terrorist attacks, or industrial accidents.
However, none of the inventions is regarding the manipulation of the micro plasma flow, which is important in many technology fields as mentioned above. Therefore, the invention here is focused on the manipulation of the micro plasma flow.
The invention can be used for many applications. In one embodiment, the invention can be used for the fields of medical, veterinary, food and environmental diagnostics. In another embodiment, the invention can be used in the field of MEMS, which requires the manipulation of the micro fluid flow, such as driving the micro fluid to flow in and flow out of the micro channels for the cooling of electronics devices. In a further embodiment, the invention may be used to drive the micro fluid flowing inside a micro-, or a nano-scale medical device for the purpose of heating, drug material delivery, samples mixing or interactions, cleaning, or dehydration.
The embodiment of the present invention provides an apparatus and method, which uses the micro plasma to manipulate the micro fluid flow field.
In one embodiment, the electrically conductive traces on the microstrip structures may be used to apply the RF or microwave powers and therefore the micro plasma is excited.
In one embodiment, the micro cavity from waveguide structures may be used to apply the RF or microwave powers and therefore the micro plasma is excited.
In one embodiment, a pair of parallel conductive traces may be applied with microwave or RF electromagnetic energies to minimize the electromagnetic radiation.
In one embodiment, the phase, amplitude, and time delay of the RF and microwave sources may be adjustable, and the applied sources may be time dependent, therefore the micro plasma field may be perturbed and used to manipulate the micro fluid flow.
In one embodiment, the RF and microwave sources, phase shifters, power amplifiers, amplitude adjusters, sources switchers, and the electrically conductive traces may be manufactured on an integrated circuit device.
In one embodiment, the components near the micro plasma actuators may be applied with time-dependent electrical potentials, and an external magnetic field may be applied to the micro plasma actuator, therefore a perturbation of the micro plasma field may be used to manipulate the micro fluid flow.
In one embodiment, the magnetic field may be provided by a permanent magnetic, or by electromagnetic coils.
In one embodiment, the ferromagnetic material may couple to the coils to provide magnetic field.
In one embodiment, the electrically conductive traces may be manufactured on a printed circuit board and the printed circuit board may be made of rigid or flexible material.
In one embodiment, the waveguide structure may be made on the printed circuit board structure.
In one embodiment, the electrically conductive traces may be microstrip, embedded microstrip, or striplines structure.
In one embodiment, the conductive traces may be made with different scale, such as, a bulk scale, a micron-meter scale, or a nano-meter scale.
In one embodiment, the micro fluid flow may be guided with guided structure, the guided structure may be electrically conductive or nonconductive, and the guided structure may have many segments, and each segment may be applied with different electrical potentials to perturb the micro fluid flow.
In one embodiment, a valve and a solid component may be coupled with the micro plasma actuators to change the gas flow direction.
In one embodiment, the guided structure may have different configurations and the micro plasma may be in an array.
In one embodiment, the device may be used to drive different gases to mix together.
In one embodiment, the micro plasma actuators may be embedded inside the heat sink base, and to induce gas flow to cool down the heat sink fins.
A better understanding of the present invention may be obtained when the following detailed description is considered in conjunction with the following drawings, in which:
a illustrates a micro device, which has the micro fluid to flow in and flow out;
b illustrates a LIGA micro mixer device;
a illustrates that the micro plasma is generated with a pair of parallel electrically conductive traces on top of a dielectric layer;
b illustrates that the micro plasma is coupled with guided structure;
c illustrates that the micro plasma is coupled with guided structure and a component, the guided structure and component may be applied with electrical potentials;
a illustrates that the micro plasma is generated in between two parallel electrically conductive traces;
b illustrates that the micro plasma is generated in between two parallel electrically conductive traces and the micro plasma flow field may be manipulated by the electrical potentials applied on the nearby components;
c illustrates that the micro plasma may be manipulated by a magnetic field;
a-5d illustrate the manipulation of the micro fluid flow with micro plasma;
a-6b illustrate the manipulation of the micro fluid flow with micro plasma and magnetic field;
a illustrates that the micro plasma may be generated on the electrically conductive traces on the substrate and the micro plasma flow field may be manipulated by a magnetic field;
b to 8d illustrate that the magnetic field may be generated with the coils and the coil may be planar or non-planar, and a ferromagnetic material may be coupled with the coils;
a illustrates the micro plasma flow may be manipulated by a valve, a solid block, or a component;
b illustrates that guided structure may have various configurations and the micro plasma actuators may be in an array configuration.
c illustrates that the micro plasma actuator couple to a heat sink assembly to induce a gas flow to cool down the heat source.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Furthermore, note that the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not a mandatory sense (i.e., must). The term “include”, and derivations thereof, mean “including, but not limited to”. The term “coupled” means “directly or indirectly connected”.
The invention generally relates to a method and apparatus for providing RF or microwave power sources to the electrically conductive traces or waveguide structures, and therefore the micro plasma is generated. The generated micro plasma is manipulated with various mechanisms to drive the micro fluid flow.
Several terminologies used in the patent are explained here. As used herein “dielectric” is a substance that is a poor conductor of electricity, but an efficient supporter of electrostatic fields. In practice, most dielectric materials are solid. An important property of a dielectric is its ability to support an electrostatic field while dissipating minimal energy in the form of heat. The lower the dielectric loss (the proportion of energy lost as heat), the more effective is a dielectric material. Another consideration is the dielectric constant, the extent to which a substance concentrates the electrostatic lines of flux. Substances with a low dielectric constant include a perfect vacuum, dry air, and most pure, dry gases such as helium and nitrogen. Materials with moderate dielectric constants include ceramics, distilled water, paper, mica, polyethylene, and glass. Metal oxides, in general, have high dielectric constants.
As used herein “transmission line” or “conductor traces” are the material medium or structure that forms all or part of a path from one place to another for directing the transmission of energy, such as electromagnetic waves or acoustic waves, as well as electric power transmission. Components of transmission lines include conductor lines on printed circuit boards, wires, coaxial cables, dielectric, slabs, optical fibers, electric power lines, and waveguides.
b illustrates a micro device was made using LIGA technique, by W. Erhfeld, and it is used for micro fluid mixer. The details of the work was published on the Journal of Ind. Eng. Chem. Res., in 1999, volume 38, page 1077. As it can be seen that more and more applications of micro reactors are in use or under development, which indicates the need of better micro actuators for future devices in various fields. The patent here propose a unique and robust of driving micro gas flow which will be useful in the applications.
a illustrates an example of generating micro plasma. The configuration shows that a pair of parallel electrically conductor traces 201 are on top of a dielectric layer 202, and at the bottom is a ground layer 203. A pair of differential signals may be applied to the traces. When the two signals are applied in a way that making common signal very small, the system may have lower electromagnetic interference and may be helpful in passing the EMI/EMC standard. The differential signaling has been used more and more for high-speed data transmission. The two RF or microwave sources applied to the two electrically conductive traces may make the regions, such as the dots shown in
a illustrates the movement of the micro plasma flow. The movement of the micro plasma 310, which is symbolized as M, is dependent of several factors, such as, voltages applied to conductive traces, which is symbolized as V, geometry and dimensions of the components of the actuators, which is symbolized as d, magnetic field, which is symbolized as B, and ambient factors, which is symbolized as a. The ambient factors, for example, can be humidity, pressure, and temperature of the gas fluid. The RF and microwave signals applied to the electrically conductive traces 301 may be varied in frequency f, phase φ, amplitude σ, and the signals may be time dependent and may have various waveforms. When any one of these factors is altered, the micro plasma may experience a perturbation or turbulence. In one embodiment, the manipulation of the perturbation and turbulence of the micro plasma may be used to move the gas flow.
To perturb the micro plasma field, a circuit or setup is needed.
a to 5d illustrate examples of using excited micro plasma 510 to drive the gas flow. In
a and 6b illustrate the magnetic field 650 is provided by the electrical currents applied to the coils 660, and the magnetic field 650 is to perturb the micro plasma 610 flow. The figures show that a guided structure 640 is used.
As explained in
As mentioned earlier, the guided structure 940 is used to guide the micro gas flow.
b illustrates that the guided structure 940 may have various configurations to direct the micro gas flow. The micro plasma 910 and electrically conductive traces 901 may be arranged in arrays to drive the micro gas flow in various directions. In one embodiment, the electrically conductive traces may be applied with various voltages, currents, and powers to manipulate the micro gas flow.
c illustrates that the micro plasma actuators 910 are embedded inside the heat sink base 912. The micro plasma may be excited on the conductive traces, and the conductive traces may be built on a substrate, such as PCB or flexible PCB, and the entire PCB may be inserted inside a cavity inside the heat sink base. The excited micro plasma may induce a gas flow to flow out the holes 914, as shown in
In one embodiment, the micro fluid material can be gas or liquid. When the fluid material is in gas state, the gas particles may be ionized with RF or microwave energies. When the fluid material is liquid state, the liquid particles may be ionized as well.