The present invention relates generally to an air induction system for a vehicle engine and more particularly to flow turning vanes and hydrocarbon adsorbents included in the air induction system.
Motor vehicle manufacturers are continually trying to obtain greater power output from given size engines, even while meeting new environmental emissions and fuel economy requirements. One area of the overall engine system that is being closely scrutinized is the air induction system. This area is being scrutinized because one factor relating to the maximum engine power output is the air flow capacity through the air induction system—the lower the air flow capacity the lower the maximum engine power output. Consequently, the pressure loss of the air induction system must be minimized to provide a desired amount of air flow for maximizing engine power output. However, the emissions and fuel economy requirements are creating the undesired effect of causing more flow restrictions.
An emissions requirement that may have an adverse effect on airflow capacity is a requirement to reduce evaporative hydrocarbon emissions from vehicles. In response to this requirement, hydrocarbon adsorbents have been added in air cleaner housings. The adsorbents reduce hydrocarbon emissions caused by vapors escaping from the air induction system after engine shutdown. That is, when the engine is shut down, residual unburned fuel inside the cylinder head and intake runner evaporates to form hydrocarbon vapor, which flows through the engine throttle body and into the air induction system. Then, hydrocarbons, if not trapped, can leak out into the atmosphere through the air induction system. The hydrocarbon adsorbent traps the hydrocarbon vapor.
There are generally two types of hydrocarbon trapping devices in use—flow-through adsorbents and non-flow-through adsorbents. The non-flow-through adsorbent may include a carbon liner or carbon bag mounted on an internal wall of the air cleaner housing, so the air does not flow through it. A concern with this type of trapping device is that it may have a relatively low adsorbing efficiency, with only a small amount of hydrocarbon molecules being trapped relative to the size of the trap. The flow-through adsorbent, on the other hand, may include a honeycomb carbon adsorbent that is mounted across the duct air passage, or a panel carbon adsorbent that is mounted in the air cleaner housing parallel with the air filter. While this type of hydrocarbon adsorbent generally has higher adsorbing efficiency, it creates a restriction in the air flow path, thereby causing pressure loss. To reduce the pressure losses, the flow-through types may be designed with a large percentage of open area across their faces. But this, then, results in the low adsorbing efficiency that was inherent in the non-flow-through types.
The other type of vehicle requirement—fuel economy—may also lead to air flow restrictions, although indirectly so. To improve fuel economy, vehicles, and especially engine compartments, have been reduced in size. This reduction in size often leads to packaging compromises that require the shape of the air induction system components to be less than ideal for maximum air flow. For example, the inlet air is typically drawn in from a front corner behind a headlamp of the vehicle, where the air is cool and at a relatively high pressure. After passing through the air cleaner, where it is filtered, it is drawn into a clean air duct. The clean air duct typically must turn about 90 degrees—with a sharp radius and short length—to direct flow to a throttle body. The 90-degree bend of the clean air duct causes significant flow recirculation and stagnant flow near the inside of the bend, with a resulting air flow pressure loss in this duct. The air flow pressure loss can lead to a reduction in the maximum engine power output.
In order to overcome this pressure loss, some have located turning vanes at the bend in the clean air duct. Turning vanes, in effect, divide the duct into multiple ducts that have closer to ideal bend radii to duct diameter ratios, and they provide a surface that forces air in the flow stream around the bend. Consequently, a duct having turning vanes in its bend almost fully uses the duct cross section, greatly reducing the pressure drop across the bend. The turning vanes may also help to reduce entrance losses into the throttle body and distribute air equally to all cylinders, with a resulting improved flow performance. Thus, a greater air flow through the air induction system may allow for greater maximum engine power output.
But turning vanes are not commonly used in air induction system because they are typically not cost effective if used only for reducing the pressure loss. In many cases, engineers cannot justify the benefits of turning vanes compared to the cost associated with adding the vanes. So instead, engineers struggle with increasing bend ratios (bend radius/duct diameter) as much as possible. However, due to packaging constraints in the vehicle engine compartment, engineers often come up short of the desired bend ratio and live with the pressure loss caused by the sharp bend in the clean air duct.
An embodiment contemplates a flow turning vane assembly for use in a duct bend portion of a clean air duct of an air induction system for a vehicle engine. The flow turning vane assembly includes a vane support housing; and a hydrocarbon adsorbent vane mounted to the vane support housing, having a curved shape complimentary to the duct bend portion, adapted to be located in the duct bend portion, and including a hydrocarbon adsorbent layer.
An embodiment contemplates a clean air duct for use in an air induction system for a vehicle engine. The clean air duct including an inlet, an outlet, a passage extending from the inlet to the outlet, a duct bend portion in the passage, and a vane assembly opening extending around at least a portion of the duct bend portion. The clean air duct also includes a flow turning vane assembly including a hydrocarbon adsorbent vane extending through the vane assembly opening and into the duct bend portion of the passage, the hydrocarbon adsorbent vane having a curved shape complimentary to the duct bend portion.
An embodiment contemplates an air induction system for use with a vehicle engine comprising an air cleaner having an inlet and an outlet; and a clean air duct having an inlet connected to the air cleaner outlet, a duct bend portion, and a flow turning vane assembly having a hydrocarbon adsorbent vane located in the duct bend portion, the hydrocarbon adsorbent vane having a curved shape complimentary to the duct bend portion.
An advantage of an embodiment is that the flow turning vane assembly can provide high hydrocarbon trapping capacity during engine shutdown, with low flow restriction (pressure loss) around a bend in a clean air duct during engine operation. Thus, the device functions to simultaneously enhance flow performance and reduce hydrocarbon emission from the air induction system.
An advantage of an embodiment is that the flow turning vane assembly is compact and cost effective since it provides an integrated unit which serves both purposes of providing flow turning and hydrocarbon adsorbing capability. The assembly may also save cost by providing both functions with less manufacturing assembly steps. The assembly is compact, helping with vehicle component packaging, since it is in the duct and does not take up extra engine compartment space.
An advantage of an embodiment is that the flow turning vane assembly can be located at the duct bend section, where the assembly may have the most benefit—higher adsorbing efficiency and lower pressure loss.
The mass air flow sensor 44 is adjacent to an inlet 46 to the clean air duct 30. A passage 48 extends through the clean air duct 30 from the inlet 46 to an outlet 50. Between the inlet 46 and outlet 50 is a duct bend portion 52, in which the duct 30 curves to change the direction of air flow. The clean air duct 30 may include an accordion-type portion 54 near the inlet 46, which allows the duct 30 to flex when the air cleaner 26 is partially disassembled to replace an air filter (not shown). Along the bottom 58 of the clean air duct 30, generally in the duct bend portion 52, may be a pair of vane support grooves 56. The grooves 56 may be employed to positively position and support a flow turning vane assembly 68, discussed below. In the top 60 of the duct 30, generally in the duct bend portion 52, may be a vane assembly opening 62. A vane assembly mounting flange 64 may surround and extend upward from the vane assembly opening 62, for receiving and sealing against the flow turning vane assembly 68. Of course, the grooves 56 and opening 62 may be in the reverse positions, top and bottom, if so desired.
The flow turning vane assembly 68 includes a vane support housing 70. The vane support housing 70 includes a cap 72, which is sized and shaped to mate in sealing engagement with the vane assembly mounting flange 64, and a pair of frames 74, which each extend downward from the cap 72 and have a bottom portion 76 that is shaped to be received in a respective one of the vane support grooves 56. The vane support housing 70 may be injection molded, with the frames 74 and the cap 72 integral. It may be made from polypropylene, or another suitable material. Alternatively, the vane support housing 70 may include reinforcing ribs (not shown), to provide reinforcement to hydrocarbon adsorbent vanes 80 (discussed below) and reduce the risk of buckling when subjected to a high air flow rate. As another alternative, the vane support housing 70 may be an assembly, containing a wire mesh (not shown), made of metal, plastic, or other suitable material, which is permanently bonded to the frames 74. The wire mesh may provide support to reduce the risk that the hydrocarbon adsorbent vanes 80 will buckle when subjected to a high air flow rate.
The flow turning vane assembly 68 also includes the pair of hydrocarbon adsorbent vanes 80. Each of the hydrocarbon adsorbent vanes 80 may be permanently mounted to a respective one of the frames 74 by over molding, injection molding, heat staking, press-fit, snap-fit, gluing, or other suitable process. Each of the hydrocarbon adsorbent vanes 80 has the shape complimentary to the curvature of the duct bend portion 52, with the frames 74 providing rigidity to help hold the hydrocarbon adsorbent vanes 80 in the desired curved shape. The curvature of each of the hydrocarbon adsorbent vanes 80 may be concentric with the duct bend portion 52. The lengths and angles of the hydrocarbon adsorbent vanes 80 are parameters that may be varied during the development of a particular air induction system 20 in order to achieve the desired performance levels of hydrocarbon-capturing efficiency and air flow pressure loss.
The layer or layers of material in each of the hydrocarbon adsorbent vanes 80 may vary depending upon the desired method of construction, cost, performance, or other factors. For example, in this first embodiment, each of the hydrocarbon adsorbent vanes 80 is made up of a laminate activated carbon liner, which adsorbs hydrocarbon molecules. The laminated carbon liner is pliable so that it can be shaped to match the curvature of the duct bend portion 52. It may be made of polypropylene fiber, or other suitable material, and activated carbon granules, with the polypropylene fiber heated to bond with the carbon granules. Such a laminated carbon liner provides adequate stiffness and strength to maintain the curvature of the hydrocarbon adsorbent vane 80 under a high rate of air flow. The hydrocarbon adsorbent vanes 80 may be made by injection molding, compression molding, sintering, hot forging, cold forging, extruding, or other suitable process. After forming, the hydrocarbon adsorbent vanes 80 may be installed and sealed to the vane support housing 70 by over molding, heat staking, press-fit, snap-fit, gluing, or other suitable process. The frames 74 provide rigidity to help maintain the desired curvature for the hydrocarbon adsorbent vanes 80.
The flow turning vane assembly 68 is assembled to the clean air duct 30 by sliding the frames 74 and hydrocarbon adsorbent vanes 80 into the vane assembly opening 62 until each of the frames 74 is received in respective vane support grooves 56. As the frames 74 slide into the grooves 56, the cap 72 comes into contact with the vane assembly mounting flange 64. The grooves 56 and mounting flange 64 assure that the flow turning vane assembly 68 is correctly positioned and oriented in the clean air duct 30. The cap 72 is secured and sealed to the vane assembly mounting flange 64. It may be secured by vibration welding, infra red welding, hot plate welding, or other suitable means. Alternatively, the cap 72 may be attached to the clean air duct 30 using fasteners (not shown) and a gasket (not shown). While fasteners and a gasket may be more expensive than welding, it allows for easier access for servicing.
The operation of the air induction system 20 as it relates to operation of the engine 22 will be discussed relative to
When the engine 22 is restarted, the flow turning vane assembly 68 performs two functions. First, the incoming atmospheric air flowing through the air induction system 20 passes over the surfaces of the vanes 80, liberating the hydrocarbon molecules from the adsorbing medium and carrying them into the engine 22, where they are consumed in the combustion process. Second, the hydrocarbon adsorbent vanes 80, in effect, divide the passage 48 in the duct bend portion 52 into multiple passages that have more ideal bend radii to duct diameter ratios and provide surfaces that force air in the flow stream around the bend. Consequently, this air flow stream more fully uses the duct cross section, greatly reducing the pressure drop through the duct bend portion 52.
While certain embodiments of the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3006346 | Golding | Oct 1961 | A |
| 4217386 | Arons et al. | Aug 1980 | A |
| 5236478 | Lewis et al. | Aug 1993 | A |
| 5240610 | Tani et al. | Aug 1993 | A |
| 5323661 | Cheng | Jun 1994 | A |
| 5620545 | Braun et al. | Apr 1997 | A |
| 5662079 | Snider | Sep 1997 | A |
| 6623350 | Goupil et al. | Sep 2003 | B2 |
| 6736871 | Green et al. | May 2004 | B1 |
| 6752859 | LaBarge et al. | Jun 2004 | B2 |
| Number | Date | Country | |
|---|---|---|---|
| 20080028938 A1 | Feb 2008 | US |