Some printing technologies employ a special substrate coating or a priming treatment prior to the application of ink or toner. Generally this kind of treatment is performed at a stage when a print medium or substrate is fed from a roll, e.g. before cutting operations. Applying a priming treatment in this manner helps the treatment process to be stable and continuous. However, there are cases when a priming treatment is better applied to cut sheets of print media or substrate. For example, this may be the case for thick substrates or for cases where a priming fluid is applied shortly before ink application for better ink adhesion. There are also cases where a print medium or substrate or other print target may vary in shape and/or size. For example, in a printing system with a variable cut sheet size, a substrate coating may be applied to varying sizes of sheet.
Some non-limiting examples of the present disclosure will be described in the following with reference to the appended drawings, in which:
Certain examples as described herein provide an apparatus for use in a printing system or in combination with a printing system. In particular, certain examples enable the application of a fluid to substrates of varying sizes. In one case, an apparatus is provided that enables a fluid to be applied to substrates of varying widths. In this case, an apparatus for applying a fluid may comprise a first chamber arranged to receive the fluid and having a first housing and a first elongate aperture through which fluid may be discharged. The apparatus may further have a second chamber arranged to receive the fluid and having a housing and a second elongate aperture through which the fluid may be discharged. The first and second apertures may be arranged substantially parallel to each other, and the second chamber may be arranged to be movable with respect to the first chamber. By changing the position of the second chamber with respect to the first chamber, the position of the second aperture is changed with respect to the first aperture. By suitably positioning the two apertures, the width over which fluid is supplied may be adapted. The fluid may be applied to a transfer member, which further supplies the fluid to a print medium or print target. Alternatively, the fluid may be applied to a substrate or print target directly.
Priming fluids and other fluids can have an aggressive nature, e.g. they can have a low pH or a high pH. Additionally, fluids in apparatus such as printing apparatus can be damaging in other ways, for example when they dry up or when they are supplied in too large amounts. Appropriate control of the application of such fluids and sealing can thus improve the functionality or performance of such apparatus.
In
As can be seen in
In one example, fluid is supplied to the supply nozzles 140A and 140B during use. The fixed and movable chambers may thus be pressurized. In this case the majority of the pressure drop in the apparatus is across the aperture region. This allows laminar fluid flow from the aperture.
Also shown in
In the shown example, the movable chambers are attached to a slide 170. The slide is arranged to be movable along guide 130. Guide 130 in this example comprises two parallel bars 135A and 135B. The slide 170 has recesses along its top surface and the shape of the recesses is complementary to the shape of bars 135A and 135B. Reference may be had particularly to
Some more details of the movable chamber 120 and fixed chamber 110 may be illustrated with reference to
Similar, the movable chamber may have a housing comprising a rear bracket 124, and a front bracket 128. The rear bracket herein has a rear wall 124a and a forward projection 124b. An aperture is formed between the forward projections 124b and 128b. The volume 125 in between the rear bracket 124 and front bracket 128 may be filled with the fluid to be supplied.
The fluid chambers may thus be relatively easily manufactured. The brackets may be made of e.g. a stainless steel or another material suitable for withstanding e.g. low or high pH fluids in the case of primer fluids.
In
Such a change in width of fluid supply is notably achieved in this example without moving any seals. Without such movable seals, the reliability of the fluid supply system may be improved and leakages reduced. Avoiding leakages of a fluid such as e.g. a primer fluid may improve life time and performance of a printing system in which such a primer fluid is used.
Fluid may be supplied through a fluid inlet 410 to a manifold 400. From manifold 400 the fluid may be redistributed to the fixed chamber and movable chamber(s).
Fluid can thus be received in the fixed chamber and movable chambers in a similar manner as described before. From the pressurized chambers, the fluid is supplied through the corresponding apertures to the anilox roller 200. Anilox roller 200 in this example is mounted at an end of an anilox engage arm 290. With the engage arm 290, the position of the anilox roller 200 with respect to the applicator drum and the pressurized chambers can be controlled. From the applicator drum the fluid may be supplied to a print medium.
As illustrated before, any excess fluid on the anilox roller is removed by a doctor blade 250. And the fluid may thus be recirculated from collection tray 300 to inlet 410 of manifold 400.
In the specific examples, the fluid in the manifold is divided into flows with equal flow rates. The amount of fluid supplied to the first fixed fluid chambers is thus double the fluid supplied to the movable chambers. The width of the fixed chamber is also double the width of the movable chambers. The fluid flow per unit length may thus be the same. When the movable chambers are in the maximum width position to adapt for a wide format print medium, the fluid supply to the anilox roller may thus be substantially the same over the whole width. In order to ensure fluid supply over the whole width there may however be a minimum overlap between the fixed and movable chambers as described before with reference to
In other examples, other numbers of fluid supply nozzles 140 may be used, both in the fixed fluid chamber and in the movable chambers. The fluid supply nozzles may be spaced to allow uniform filling of the chambers with the fluid. An additional air evacuation aperture may also be provided for clogged air evaluation. In certain cases a low pressure or vacuum may be applied to the air evacuation aperture to aid air outflow from the chamber and uniform fluid filing. Application of a low pressure or vacuum can also enable full filling of the chamber volume without fluid dripping from an aperture of the chamber.
On the right hand side of
The output of the gearbox 190 drives a pulley 195. An endless belt 170 may be driven by a driving pulley 195 and guided along additional idle rollers 196. Driving by the motor may thus result in the endless belt moving either in a clockwise or counterclockwise direction.
Also shown in
With both movable chambers attached in this manner, the motor driving the endless belt will cause the movable chambers to move in unison. Furthermore it will cause the movable chambers to move linearly in opposite directions, since the front of the endless belt will move in opposite direction from the back of the endless belt.
In
Also shown in
The outer end of each of the movable chambers may comprise a format limiter, which serves to precisely define the width over which fluid is supplied. The format limiter 600 may be a Teflon ® seal.
Fluid supply apparatus as disclosed herein may be incorporated in printing systems. In a general case, a printing system may comprise a transfer member that acts to transfer fluid from the chambers to a print medium or substrate or other print target. There may be one or more transfer members, e.g. a plurality of transfer members may be used to complete the transfer of fluid from the chamber to the substrate. In other cases there may be no transfer member, e.g. the fluid may be applied directly to a substrate via the previously described fixed and movable chambers.
In any case, transfer of the fluid within the chambers 110 and 120 to a substrate occurs. In one example, the fluid may comprise a primer, i.e. a priming solution, or a treatment liquid to be applied to the substrate before the deposit of ink. The transfer member may comprise an anilox roller, e.g. a cylinder upon a surface of which fluid is deposited, the fluid then being transferred to a substrate by way of rotation of the cylinder. In one case this is achieved using a further application roller (not shown) that receives fluid from the anilox roller and applies it to the application roller.
The combination of static and movable chambers allows fluid to be deposited onto areas of the anilox roller surface with varying widths. In turn, this allows efficient transfer of fluid to print media and substrates of various formats and/or sizes.
As dimensions of the print medium or print target vary, the width over which fluid is supplied can be adapted. In certain implementations, the dimensions of a print target may vary during a printing process, i.e. while printing. The width over which fluid may be supplied to the print target may thus be changed during the printing process. The fluid can thus be applied along the width of the print target, while not extending beyond its edges. A surplus of a fluid beyond these edges could damage other components of the printing system because of its aggressive nature, or by drying up and clogging certain components.
In certain implementations, aperture size is matched to fluid speed and anilox linear speed, i.e. the linear speed of the tangential surface of the anilox roller. The fluid speed in turn may be dependent on the anilox linear speed. In one case, the apparatus is configured such that fluid velocity is about half of the anilox linear velocity.
In one implementation, the anilox roller 250 may transfer fluid deposited on the surface thereon to a rubber application roller. In this case, the contactless arrangement may allow the anilox roller 250 to be disconnected from the application roller by way of a tangential movement, e.g. upwards or downwards. For example, the anilox roller 610 may be mounted on a pivoted arm that is moveable via a suitable actuator.
A disengagement movement may allow fluid transfer to the application roller to stop. This can control format length, e.g. the length of a cut substrate. Hence, in this case, control of print media with varying heights and widths is achievable. This allows fluid application off-roll, e.g. to a variety of cut substrates. For example, to prevent fluid from being applied to a substrate beyond the end of a cut length the anilox roller 250 may be displaced vertically in
A number of examples and variations are described above. It should be noted that certain described features may be extracted from the described examples and used independently to achieve an effect in a printing system. Moreover, omission, replacement and addition of features is envisaged. This may occur depending on particular factors of implementation.
In certain described examples, fluid format control is achieved, enabling control of fluid application to substrates that vary in width and/or length. Certain examples similarly provide efficient design features that enable fluid format control in a minimal time period and/or with minimal operator intervention. Certain examples and/or features described herein may reduce downtime in a printing system such as a printing press, reduce fluid contamination of surrounding areas and/or simplify maintenance. For example, the lack of contact with the anilox roller can reduce maintenance by avoiding significant wear.
Certain examples described herein are useful for sheet fed delivery techniques that can use, for example, liquid or primer application inside a substrate format. Substrate format could be any paper size in a given range; for example, in one case the apparatus may support a variable format width from 410 mm to 760 mm and a variable format length from 297 mm up to 535 mm. This is particularly useful for thin substrates, wherein an over wetting of substrate edges by a fluid can cause paper deformation. It is also useful for short print runs where it is useful to change primer application area with substrate format (e.g. width and length, i.e. values in a process dimension and a lateral dimension).
Certain examples described herein relate to apparatus and methods. In a method case, certain techniques described above may be applied, either using the described apparatus or another apparatus.
The preceding description has been presented only to illustrate and describe examples of the principles described. In certain Figures similar sets of reference numerals have been used to ease comparison of similar and/or comparative features. Variations are described herein, in places as features of examples. For example, the apparatus may be extended to a duplex system, any of the seals described herein including the piston and/or aperture seals may be constructed from Teflon® or a material with analogous properties. In a duplex system an arrangement comprising apparatus 100, anilox roller 250 and an application roller may be mirrored, with a first arrangement mounted above a media transport path and a second arrangement mounted below the media transport path, each arrangement being configured to apply a fluid to a respective side of a substrate. The term print medium or substrate may refer to a discrete medium, e.g. a page of paper or material, or a continuous medium, e.g. a roll of paper or vinyl. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/058019 | 4/14/2015 | WO | 00 |