1. Technical Field
The present disclosure relates generally to the field of both gaseous and liquid fluid transport and more specifically, to a connector for creating a releasable fluid seal connection between one or more sections of tubing and a female latch.
2. Description of Related Art
Tubing sections are often joined together to provide for gas and/or liquid fluid flow from one component to another. Thus, it is often desirable to connect and disconnect tubing sections from one another. For example, when a patient's blood pressure is taken with an automatic blood pressure monitor, tubing from the blood pressure cuff (which is generally wrapped around the patient's arm) is connected to the tubing that is connected to the blood pressure monitor. To disconnect the cuff from the blood pressure monitor, it is desirable to merely detach the tubing section connected to the cuff from the tubing connected to the blood pressure monitor. Similarly, when providing intravenous fluids, it is often required to replace an empty fluid bag with a full fluid bag without removing the intravenous needle or stent from the patient. In order to switch between the first fluid bag and the second fluid bag, it is desirable to merely detach a tubing section connected with the fluid bag to the tubing section connected with the needle or stent placed intravenously in the patient, which can then be easily connected with a tubing section connected with the new fluid bag.
Existing tubing connectors are prone to leakage and unwanted disconnection when the patient is still receiving treatment via the connected tubes due to side loads caused by the weight of the connected tubes and components, as well as accidental pulling of the tubes by the patient or medical personnel.
Furthermore, certain medical devices require the use of multiple tubes for supplying fluid between the patient and the device. For example, certain models of blood pressure monitors, such as the Dinamap Procare series, manufactured by General Electric, employ dual tubes for connecting the blood pressure cuff to the monitor. As such, a connector including multiple air passages for directing airflow between the tube segments is desirable, so as to avoid having to individually connect and disconnect multiple connectors when hooking or unhooking a patient to the monitor.
From the foregoing, it can be appreciated that a need exists for an improved bayonet connector that may connect one or more sections of tubing to create a gas and/or liquid fluid seal that cooperates with a female receiving connector to provide a more resilient connection and maintain a fluid-tight seal when the male bayonet connector is placed under axial tension or side load forces.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.
Improved female tube connectors are disclosed herein that reduce insertion force requirements for coupling with male connectors. Additionally, the female tube connectors increase the amount of force required to extract male connectors once they are secured within the female tube connectors to prevent accidental uncoupling of the male connector from the female connector.
Generally, a locking member that is coupled to a button of the female tube connectors may take various forms to help ensure relatively low insertion force and relatively high extraction force for coupling and uncoupling male connectors. Specifically, the locking member may include a profile lead-in to help reduce the amount of force to insert a male connector into the female connector while increasing the amount of force to extract the male connector once coupled to the female connector.
In one embodiment, a female receiving connector for connecting sections of tubing is provided. The female receiving connector includes a housing having a top housing portion and a bottom housing portion coupled to the top housing portion. The female receiving connector also includes a button moveably coupled within the housing. A locking plate is integral with or coupled to the button and configured to move with the button. The locking plate has a profile lead-in having an interfacing surface located at a proximal side of the profile lead-in for interfacing with a male connector. The interfacing surface extends along at least a portion of at of a circumferential edge of an aperture formed within the locking plate and is tapered along the portion of the circumferential edge. Additionally, the profile lead-in includes a locking surface located at a distal side of the lofted lead-in for securing the male connector within the housing of the female receiving connector. A substantially flat surface is located between the interfacing surface and the locking surface.
In another embodiment, a female receiving connector for transporting fluids is provided. The female receiving connector includes a housing defining at least one lumen for fluid flow. The housing includes a top housing portion, a bottom housing portion coupled to the top housing portion and a button moveably coupled within the housing. Additionally, the female receiving connector includes a locking member coupled to the button and configured to displace with the button when force is applied to the button or to a surface of the locking member. The locking plate has a profile lead-in. The profile lead-in includes a curved surface located at a proximal side of the profile lead-in for interfacing with a male connector and a locking surface located at a distal side of the profile lead-in for securing the male connector within the housing of the female receiving connector. A substantially flat surface is located between the curved surface and the locking surface and the curved surface extends from a proximal face of the locking member to the substantially flat surface.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention is provided in the following written description of various embodiments of the invention, illustrated in the accompanying drawings, and defined in the appended claims.
Embodiments of female receiving connectors in conjunction with male bayonet connectors, may be used to releasably connect sections of tubing. In one embodiment, the female receiving connector includes a latch plate with a profile lead-in that extends upward along the lateral sides of the aperture in the latch plate. The profile lead-in provides extended latching surfaces for the latch plate to secure a male bayonet connector. When the male bayonet connector is inserted into the female receiving connector, a distal end of the male bayonet connector interfaces the profile lead-in, biases the latch plate downward, and lowers a receiving aperture through which the male bayonet connector may pass. The male bayonet connector includes an annular channel that is engaged by the profile lead-in upon sufficient insertion of the male bayonet connector into the female receiving connector.
The orientations “proximal” and “distal” as used herein have been arbitrarily chosen, and are not meant to limit the present disclosure, but will follow the convention just described with reference to the ends of the female receiving connector 206 and male dual bayonet connector 102.
In an alternative embodiment, a female receiving connector may include a locking plate having a profile lead-in as a curved bottom surface of the aperture in the locking plate. When the male bayonet connector is inserted into the female connector, the male bayonet connector interfaces the profile lead-in, biasing the locking plate downward and lowering a receiving aperture through which the male bayonet connector may pass. The male bayonet connector's annular channels are engaged by a distal surface of the profile lead-in upon sufficient insertion of the male bayonet connector into the female receiving connector.
In some embodiments, the profile lead-in lead-in may be implemented in multiple parallel lumen configurations. For example, in some embodiments, the profile lead-in may be implemented in a dual lumen configuration (e.g., the female connector having two parallel lumens through which fluid may pass and into which male connectors may be inserted). Additionally, in some embodiments, the profile lead-in may have one or more chamfered surfaces that engage the annular channels of the male bayonet connectors. In some embodiments, a distal edge of the locking plate may be flat to interface with the flat surface of the annular channel.
An exemplary female receiving connector 100 is illustrated in
The housing 102 includes receiving aperture 110 through which a male bayonet connector may be inserted. The aperture 110 is located at a proximal end of the female receiving connector 100 and may be defined by the upper and/or lower portions 102, 106 of the housing 102. The aperture 110 constitutes a proximal end of lumen 112 extending through the female receiving connector 100. The lumen 112 continues through a barbed tube connector 114 located at the distal end of the female receiving connector 100. The barbed tube connector 114 is configured for attachment of plastic tubing.
The locking plate 120 includes a profile lead-in 128.
As illustrated, the button 108 includes the locking member 120 as an integrated part. Additionally, the button 108 includes curved legs 130 which may interface with the bottom portion 106 of the housing 102 and function as springs to hold the button 108 up within the housing 102. That is, the legs 130 have a normally extended position to hold up the button 108. When the button is pressed, the legs 130 may bend and when pressure is released, the legs may return to full extension, thus providing a spring function. In other embodiments, other kinds of mechanical action than springs may be employed raise the button back up to its resting place when the force is removed.
The second circumference 158 and the first circumference 152 overlap. The second circumference 158 is larger than the first circumference 152 and, therefore, the second area 156 is larger than the first area 150. The second area 158 is large enough to allow for the passage of a male bayonet therethrough, while the first area 152 functions as a locking aperture to engage and hold the male bayonet connector.
The male connector also has an annular channel 168 located between the proximal and distal ends 162, 164. The annular channel 168 may have flat or beveled edges that may be used to engage the locking plate 120. For example, in some embodiments, edges may be beveled to form a 45-degree angle with respect to the axes of the lumens defined by the male connector. In other embodiments, the beveled edges may be perpendicular to the axes, rounded, or alternatively may define any angle between 0 and 90 degrees.
In some embodiments, a proximal surface 170 of the first area 150 may have a shape corresponding to the foremost edge 166 of the male bayonet connector 160. For example, the proximal surface 170 may be chamfered or curved. The shape of the foremost edge 166 of the male bayonet connector 160, the proximal surface 170 of the first area 150, and/or the profile lead-in 128 may aid in the movement of the locking plate 120 relative to the male bayonet connector 160.
As the male bayonet connector 160 enters into the housing 102, it contacts the proximal surfaces of the aperture 142. As pressure is applied to insert the male bayonet connector 160 through the aperture 142, as indicated by the arrow 169 (
The distal surface of the profile lead-in 128 may be shaped to hold the male bayonet connector 160 in place once installed. For example, in some embodiments, the distal surface of the profile lead-in may be flat. In other embodiments, the distal surface may be chamfered. The chamfered surface may facilitate the locking plate 120 engaging the channel 168 of the male bayonet connector. In some embodiments, the proximal surface and the distal surface may be chamfered. In another embodiment, one of the distal or proximal surfaces of the profile lead-in 128 is chamfered and the other surface is flat.
In some embodiments, the shape of the surfaces of the channel 168 may correspond with the surfaces of the profile lead-in 128. For example, in one embodiment, a distal surface of the channel 168 may be chamfered and the distal surface of the profile lead-in 128 may be chamfered. In some embodiments both the distal and proximal surfaces of the channel 168 may be chamfered. In some embodiments, both the proximal and distal surfaces of the channel 168 may be flat. In other embodiments, one of the proximal or distal surfaces may be chamfered and the other surface flat. In each instance, a shape of one or both surfaces of the channel of the male bayonet connector 160 correspond in shape with the corresponding the surface of the profile lead-in 128. That is, if the distal surface of the profile lead-in 128 is flat, the distal surface of the channel 168 is correspondingly flat. Additionally, the thickness of the profile lead-in 128 and the width of the channel of the male bayonet connector 160 are approximately the same.
When the male bayonet connector 160 is locked into place by the locking plate 120, a distal portion of the male bayonet connector 160 may be in contact with the sealing member 122 to form a seal between the sealing member 122 and the surface of distal portion 164 of the male bayonet connector 160.
The button 108 may be pressed downward to release the male bayonet connector 160 from the female receiving connector 100. Specifically, as the button 108 is pressed downward, the locking plate 120 moves downward until the male bayonet 160 may clear the profile lead-ins 128 and may pass through the second area 156.
As mentioned above, the female receiving connector 100 may be implemented in multi-lumen configurations. For example, the female receiving connector 100 may include two, three, or more lumens. For each lumen, a locking plate is provided. In some embodiments, one or more locking plates may be coupled together. Additionally, in some embodiments, one or more locking plates may be integrally formed with the button 108. In some embodiments, one or more locking plates may be independently formed and subsequently coupled to the button 108. Additionally, in some embodiments, a shape of one or more locking plates may include one or more different features from other locking plates. For example, in one embodiment, a first locking plate associated with a first lumen may have a chamfered proximal surface, while a second locking plate associated with a second lumen may have a curved proximal surface. In another example, the distal surface of the first locking plate may have a chamfered surface, while a distal surface of a second locking plate may have a flat surface.
The locking plate 210 includes two apertures 220, one for each lumen of the dual lumen female receiving connector 200. In some embodiments, the apertures 220 may be identical. That is, the apertures 220 may have the same or similar size and shape. In other embodiments, however, the apertures 220 may have different sizes and shapes. Additionally, in some embodiments, the lumens may be used to transport the same fluid, while in other embodiments, one lumen may transport a different fluid from the other.
The apertures 220 of the locking plate 210 are configured to facilitate the insertion of the male bayonet connectors 230 into the female receiving connector 200 while preventing their removal there from. As such, the apertures 220 are, in part, defined by curved profile lead-ins 240. The profile lead-ins 240 constitute a lower edge 242 of the apertures 220. The profile lead-ins 240 are shown in
The curved interfacing surface portion 252 also extends into the left and right regions 260, 262 as shown in
Referring to
The profile lead-ins 240 provide the initial contact surfaces for the male bayonet connector 230 during insertion.
As illustrated in
It should be appreciated that, in other embodiments, the profile lead-ins 240 may take other forms.
The profile lead-in is designed to maintain a relatively low insertion force of the male connector while also maintaining a robust distal edge of the locking plate so that it locks/holds the male connector to the female receiving connector when fully inserted. Prototypes have been built of the various embodiments described above and experiments performed to confirm the male connector insertion force that actuates the locking plate downward to allow for insertion of the male connector is relatively low. Additionally, experiments were performed to confirm the axial pull force that results in the male connector decoupling from the female receiving connector when fully inserted and locked is relatively high.
It will be apparent to those of ordinary skill in the art that variations and alternative embodiments may be made given the foregoing description. Such variations and alternative embodiments are accordingly considered within the scope of the present invention. For example, a profile lead-in may be implemented with a curved portion to form a profile, profile lead in.
As used herein, lumen refers not only to its definition, but also refers to an opening, aperture, or other passageway. The fluid referred to herein can be gaseous, liquid, or other state of material that is flowable through a tube (i.e., granular). In addition, while generally described above as sealed when connected together, the connector structures may be sealed or unsealed. The connection between the male dual bayonet connector and female receiving connectors and their respective tube sections can be by means other than a barbed fitting, for example, but not limited to, threaded, press-fit without a barb, John Guest fitting, ferrule, and panel mount.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, inner, outer, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the example of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation, but those skilled in the art will recognize that steps and operations may be rearranged, replaced, or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
This application claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. provisional application No. 61/361,306 filed 2 Jul. 2010 entitled “Fluid connector latches with profile lead-ins” and U.S. provisional application No. 61/289,990 filed 23 Dec. 2009 entitled “Fluid connector latches with profile lead-ins” each of which is hereby incorporated herein by reference in its entirety. The present application is related to U.S. patent application Ser. No. 12/976,943 filed 22 Dec. 2010 entitled “Button latch with integrally molded cantilever springs”; U.S. patent application Ser. No. 12/976,921 filed 22 Dec. 2010 entitled “Male bayonet connector”; U.S. design patent application Ser. No. 29/352,637 filed 23 Dec. 2009 entitled “Female dual lumen connector”; and U.S. design patent application Ser. No. 29/351,665 filed 9 Dec. 2009 entitled “Male dual lumen bayonet connector,” each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
163261 | Ruppenthal | May 1875 | A |
185896 | Curtis | Jan 1877 | A |
187982 | Pirsson et al. | Mar 1877 | A |
200944 | Smith | Mar 1878 | A |
235580 | Smith et al. | Dec 1880 | A |
327509 | Aldridge | Oct 1885 | A |
584008 | Munson | Jun 1887 | A |
465868 | List | Dec 1891 | A |
725421 | Dinkins | Apr 1903 | A |
727982 | Ludwig | May 1903 | A |
874957 | Godley | Dec 1907 | A |
884461 | Browne | Apr 1908 | A |
909131 | Antic | Jan 1909 | A |
951889 | Teuer | Mar 1910 | A |
D42368 | Mossberg | Mar 1912 | S |
1029819 | Nylander | Jun 1912 | A |
1033187 | Metzger | Jul 1912 | A |
1039354 | Bonadio | Sep 1912 | A |
1077417 | McCracken | Nov 1913 | A |
1078112 | Storm | Nov 1913 | A |
1115945 | Kunz | Nov 1914 | A |
1193446 | Wells | Aug 1916 | A |
1239345 | Brown | Sep 1917 | A |
1255847 | Arkin | Feb 1918 | A |
1259684 | Vinten | Mar 1918 | A |
1489310 | Critchlow | Apr 1924 | A |
1526218 | Johnson | Feb 1925 | A |
1578504 | Bronson et al. | Mar 1926 | A |
1587079 | Machino | Jun 1926 | A |
1767073 | Ingold | Jun 1930 | A |
1863360 | Weatherhead | Jun 1932 | A |
1950947 | Mulroyan | Mar 1934 | A |
2023428 | Liebhardt | Dec 1935 | A |
2056524 | Johnson | Oct 1936 | A |
2066473 | Jorgensen | Jan 1937 | A |
2097628 | Liebhardt | Nov 1937 | A |
2099335 | Hansen | Nov 1937 | A |
2108714 | Hirsch et al. | Feb 1938 | A |
2116705 | Marx et al. | May 1938 | A |
2139745 | Goodall | Dec 1938 | A |
2147355 | Scholtes | Feb 1939 | A |
2159116 | Zacharias | May 1939 | A |
2211147 | Miller | Aug 1940 | A |
2257321 | Arnold | Sep 1941 | A |
2263293 | Ewald | Nov 1941 | A |
2264815 | Thomsen | Dec 1941 | A |
2340119 | Graham | Jan 1944 | A |
2346445 | Merker et al. | Apr 1944 | A |
2352728 | Merker et al. | Jul 1944 | A |
2429782 | Versoy | Oct 1947 | A |
2432946 | Theunissen | Dec 1947 | A |
2470800 | Ashton | May 1949 | A |
2479499 | Le Clair | Aug 1949 | A |
2500720 | Van der Heem | Mar 1950 | A |
2507536 | Goodson | May 1950 | A |
2516583 | Moore | Jul 1950 | A |
2535740 | Knopp | Dec 1950 | A |
2577009 | Frantz | Dec 1951 | A |
2626974 | Howard et al. | Jan 1953 | A |
2630131 | Snyder | Mar 1953 | A |
2661018 | Snyder | Dec 1953 | A |
2701147 | Summerville | Feb 1955 | A |
2722399 | Oetiker | Nov 1955 | A |
2753195 | Palmer | Jul 1956 | A |
2774616 | Dodd et al. | Dec 1956 | A |
2790571 | Flaith et al. | Apr 1957 | A |
2864628 | Edleson | Dec 1958 | A |
2915325 | Foster | Dec 1959 | A |
2926934 | Gill | Mar 1960 | A |
2931668 | Baley | Apr 1960 | A |
2937892 | Prescott, Jr. | May 1960 | A |
2948553 | Gill et al. | Aug 1960 | A |
2967067 | Singer | Jan 1961 | A |
2991090 | De Cenzo | Jul 1961 | A |
3017203 | Macleod | Jan 1962 | A |
3037497 | Roberson | Jun 1962 | A |
3046028 | Nathan | Jul 1962 | A |
3048415 | Shook | Aug 1962 | A |
3073342 | Magorien | Jan 1963 | A |
3078068 | Romney | Feb 1963 | A |
D196473 | Hill | Oct 1963 | S |
3124157 | Krzewina | Mar 1964 | A |
3129020 | Bujnowski | Apr 1964 | A |
3171196 | Helitas | Mar 1965 | A |
3191628 | Kirkwood et al. | Jun 1965 | A |
3217400 | Illesy et al. | Nov 1965 | A |
3217771 | Beall et al. | Nov 1965 | A |
3227380 | Pinkston | Jan 1966 | A |
3237974 | Press | Mar 1966 | A |
3245703 | Manly | Apr 1966 | A |
3276799 | Moore et al. | Oct 1966 | A |
3279497 | Norton et al. | Oct 1966 | A |
3314696 | Ferguson et al. | Apr 1967 | A |
3317214 | Durgom | May 1967 | A |
D209166 | Hunt | Nov 1967 | S |
D209168 | Hunt | Nov 1967 | S |
3352576 | Thomas | Nov 1967 | A |
3382892 | Cerbin | May 1968 | A |
3394954 | Sarns | Jul 1968 | A |
3403930 | Bernier | Oct 1968 | A |
3432176 | Valenziano | Mar 1969 | A |
3448760 | Cranage | Jun 1969 | A |
3450424 | Calisher | Jun 1969 | A |
3512808 | Graham | May 1970 | A |
3523701 | Graham | Aug 1970 | A |
3538940 | Graham | Nov 1970 | A |
3542338 | Scaramucci | Nov 1970 | A |
3545490 | Burrus | Dec 1970 | A |
3550626 | Daniels et al. | Dec 1970 | A |
3560027 | Graham | Feb 1971 | A |
3563265 | Graham | Feb 1971 | A |
3574314 | Quercia | Apr 1971 | A |
3588149 | Demler | Jun 1971 | A |
3596933 | Luckenbill | Aug 1971 | A |
3599843 | Johnston | Aug 1971 | A |
3600917 | Krock | Aug 1971 | A |
3649050 | Woodling | Mar 1972 | A |
3666297 | Marks | May 1972 | A |
3690336 | Drum | Sep 1972 | A |
3712583 | Martindale et al. | Jan 1973 | A |
3747964 | Nilsen | Jul 1973 | A |
3750238 | Tanner | Aug 1973 | A |
3815887 | Curtis et al. | Jun 1974 | A |
3817561 | Kay | Jun 1974 | A |
3829135 | Forni | Aug 1974 | A |
3876234 | Harms | Apr 1975 | A |
3889710 | Brost | Jun 1975 | A |
3899200 | Gamble | Aug 1975 | A |
3921656 | Meisenheimer, Jr. et al. | Nov 1975 | A |
3948547 | Gache | Apr 1976 | A |
3979934 | Isenmann | Sep 1976 | A |
3990674 | Schattenberg | Nov 1976 | A |
4025049 | Schmidt | May 1977 | A |
4039213 | Walters | Aug 1977 | A |
4072330 | Brysch | Feb 1978 | A |
4099748 | Kavick | Jul 1978 | A |
4113627 | Leason | Sep 1978 | A |
4116476 | Porter et al. | Sep 1978 | A |
4129145 | Wynn | Dec 1978 | A |
4142546 | Sandau | Mar 1979 | A |
D252470 | Pawlak | Jul 1979 | S |
4181149 | Cox | Jan 1980 | A |
4182519 | Wilson | Jan 1980 | A |
D254505 | Parsons et al. | Mar 1980 | S |
4200605 | Imamura | Apr 1980 | A |
D255145 | Nederman | May 1980 | S |
4220360 | Jacek et al. | Sep 1980 | A |
D258526 | Nederman | Mar 1981 | S |
4253687 | Maples | Mar 1981 | A |
D259278 | McCaw | May 1981 | S |
4271865 | Galloway et al. | Jun 1981 | A |
4282175 | Volgstadt et al. | Aug 1981 | A |
4287644 | Durand | Sep 1981 | A |
4294285 | Joslyn | Oct 1981 | A |
4296949 | Muetterties et al. | Oct 1981 | A |
4319774 | Kavick | Mar 1982 | A |
4330010 | Drescher et al. | May 1982 | A |
4330142 | Paini | May 1982 | A |
4331175 | Brake et al. | May 1982 | A |
4331177 | Makishima | May 1982 | A |
4340200 | Stegmeier | Jul 1982 | A |
4345786 | Egert | Aug 1982 | A |
4346703 | Dennehey | Aug 1982 | A |
4351351 | Flory et al. | Sep 1982 | A |
4366816 | Bayard et al. | Jan 1983 | A |
4393548 | Herb | Jul 1983 | A |
4397442 | Larkin | Aug 1983 | A |
4407526 | Cicenas | Oct 1983 | A |
4431031 | Ettlinger | Feb 1984 | A |
4431218 | Paul | Feb 1984 | A |
4434121 | Schaper | Feb 1984 | A |
4436125 | Blenkush | Mar 1984 | A |
4437689 | Goebel et al. | Mar 1984 | A |
4439188 | Dennehey | Mar 1984 | A |
4458719 | Strybel | Jul 1984 | A |
4489914 | Stevenson et al. | Dec 1984 | A |
4489961 | Laidig | Dec 1984 | A |
4500118 | Blenkush | Feb 1985 | A |
4527745 | Butterfield et al. | Jul 1985 | A |
4541457 | Blenkush | Sep 1985 | A |
4541657 | Smyth | Sep 1985 | A |
4553587 | Traylor | Nov 1985 | A |
D282962 | Gerber | Mar 1986 | S |
4580816 | Campbell et al. | Apr 1986 | A |
4603888 | Goodall et al. | Aug 1986 | A |
4603890 | Huppee | Aug 1986 | A |
4613112 | Phlipot et al. | Sep 1986 | A |
4616859 | Brunet | Oct 1986 | A |
4626001 | Lee | Dec 1986 | A |
4630847 | Blenkush | Dec 1986 | A |
4632436 | Kimura | Dec 1986 | A |
4635972 | Lyall | Jan 1987 | A |
4645245 | Cunningham | Feb 1987 | A |
4658326 | Clark et al. | Apr 1987 | A |
4659116 | Cameron | Apr 1987 | A |
4694544 | Chapman | Sep 1987 | A |
4698027 | Vandame | Oct 1987 | A |
4699298 | Grant et al. | Oct 1987 | A |
4700926 | Hansen | Oct 1987 | A |
4703957 | Blenkush | Nov 1987 | A |
4706847 | Sankey et al. | Nov 1987 | A |
4712280 | Fildan | Dec 1987 | A |
4733890 | Vyse | Mar 1988 | A |
4738401 | Filicicchia | Apr 1988 | A |
4753268 | Palau | Jun 1988 | A |
4768558 | Weber | Sep 1988 | A |
4776067 | Sorensen | Oct 1988 | A |
4790567 | Kawano et al. | Dec 1988 | A |
4790569 | Chaffee | Dec 1988 | A |
4792115 | Jindra et al. | Dec 1988 | A |
4793637 | Laipply et al. | Dec 1988 | A |
D300361 | Tokarz | Mar 1989 | S |
4824148 | Grabowski | Apr 1989 | A |
4827921 | Rugheimer | May 1989 | A |
4832237 | Hurford, Jr. | May 1989 | A |
4834423 | DeLand | May 1989 | A |
4844512 | Gahwiler | Jul 1989 | A |
4863201 | Carstens | Sep 1989 | A |
4863202 | Oldford | Sep 1989 | A |
4896402 | Jansen et al. | Jan 1990 | A |
4900065 | Houck | Feb 1990 | A |
4903995 | Blenkush et al. | Feb 1990 | A |
4923228 | Laipply et al. | May 1990 | A |
4928859 | Krahn et al. | May 1990 | A |
4928999 | Landriault et al. | May 1990 | A |
4934655 | Blenkush et al. | Jun 1990 | A |
4935992 | Due | Jun 1990 | A |
4946200 | Blenkush et al. | Aug 1990 | A |
4946204 | Boticki | Aug 1990 | A |
4949745 | McKeon | Aug 1990 | A |
4966398 | Peterson | Oct 1990 | A |
4969879 | Lichte | Nov 1990 | A |
D313067 | Kotake et al. | Dec 1990 | S |
D313277 | Haining | Dec 1990 | S |
D314050 | Sone | Jan 1991 | S |
D314233 | Medvick | Jan 1991 | S |
4982736 | Schneider | Jan 1991 | A |
4991880 | Bernart | Feb 1991 | A |
5009252 | Faughn | Apr 1991 | A |
5015014 | Sweeney | May 1991 | A |
5029908 | Belisaire | Jul 1991 | A |
5033777 | Blenkush | Jul 1991 | A |
D319312 | Schneider | Aug 1991 | S |
5052725 | Meyer et al. | Oct 1991 | A |
5074601 | Spors et al. | Dec 1991 | A |
5076615 | Sampson | Dec 1991 | A |
5078429 | Braut et al. | Jan 1992 | A |
5085472 | Guest | Feb 1992 | A |
5090448 | Truchet | Feb 1992 | A |
5090747 | Kotake | Feb 1992 | A |
5094482 | Petty et al. | Mar 1992 | A |
5104158 | Meyer et al. | Apr 1992 | A |
5106127 | Briet | Apr 1992 | A |
D326155 | Boehringer et al. | May 1992 | S |
5110163 | Benson et al. | May 1992 | A |
5112084 | Washizu | May 1992 | A |
5114250 | Usui | May 1992 | A |
D326715 | Schmidt | Jun 1992 | S |
5123677 | Kreczko et al. | Jun 1992 | A |
5143381 | Temple | Sep 1992 | A |
5160177 | Washizu | Nov 1992 | A |
5160474 | Huff | Nov 1992 | A |
5165733 | Sampson | Nov 1992 | A |
5169161 | Jones | Dec 1992 | A |
D332482 | Petty et al. | Jan 1993 | S |
5176406 | Straghan | Jan 1993 | A |
5178303 | Blenkush et al. | Jan 1993 | A |
5181752 | Benson et al. | Jan 1993 | A |
D333178 | Novy | Feb 1993 | S |
5190224 | Hamilton | Mar 1993 | A |
5222279 | Frano et al. | Jun 1993 | A |
5228724 | Godeau | Jul 1993 | A |
5232020 | Mason et al. | Aug 1993 | A |
D339417 | Sampson et al. | Sep 1993 | S |
5251025 | Cooper et al. | Oct 1993 | A |
5273053 | Pohndorf | Dec 1993 | A |
5297826 | Percebois et al. | Mar 1994 | A |
5316041 | Ramacier, Jr. et al. | May 1994 | A |
5318332 | Hohmann et al. | Jun 1994 | A |
5330235 | Wagner et al. | Jul 1994 | A |
5348051 | Kallenbach | Sep 1994 | A |
5348354 | Badoureaux | Sep 1994 | A |
5353836 | deCler et al. | Oct 1994 | A |
5356183 | Cole | Oct 1994 | A |
5374088 | Moretti et al. | Dec 1994 | A |
5385311 | Morikawa et al. | Jan 1995 | A |
5385331 | Allread et al. | Jan 1995 | A |
D357307 | Ramacier, Jr. et al. | Apr 1995 | S |
5405333 | Richmond | Apr 1995 | A |
5405339 | Kohnen et al. | Apr 1995 | A |
5405340 | Fageol et al. | Apr 1995 | A |
5411300 | Mitsui | May 1995 | A |
5417442 | Jornhagen | May 1995 | A |
5421622 | Godeau | Jun 1995 | A |
5437650 | Larkin et al. | Aug 1995 | A |
5440792 | Ida | Aug 1995 | A |
5462313 | Rea et al. | Oct 1995 | A |
5494074 | Ramacier, Jr. et al. | Feb 1996 | A |
D369409 | Salter | Apr 1996 | S |
5507733 | Larkin et al. | Apr 1996 | A |
5511527 | Lorraine et al. | Apr 1996 | A |
D372093 | Sampson et al. | Jul 1996 | S |
5536258 | Folden | Jul 1996 | A |
5542712 | Klinger et al. | Aug 1996 | A |
5547166 | Engdahl | Aug 1996 | A |
5547230 | Bank et al. | Aug 1996 | A |
5553895 | Karl et al. | Sep 1996 | A |
D375160 | Sampson et al. | Oct 1996 | S |
5568946 | Jackowski | Oct 1996 | A |
5595217 | Gillen et al. | Jan 1997 | A |
5601317 | Crouse et al. | Feb 1997 | A |
5607190 | Exandier et al. | Mar 1997 | A |
5617609 | Bently | Apr 1997 | A |
5620025 | Lewin | Apr 1997 | A |
5628726 | Cotter | May 1997 | A |
D380262 | Van Funderburk et al. | Jun 1997 | S |
5639064 | deCler et al. | Jun 1997 | A |
D382639 | Musgrave et al. | Aug 1997 | S |
D384731 | Ramacier, Jr. et al. | Oct 1997 | S |
5681062 | Fukao et al. | Oct 1997 | A |
5682662 | Coules et al. | Nov 1997 | A |
5683117 | Corbett et al. | Nov 1997 | A |
D387147 | Vandermast et al. | Dec 1997 | S |
5692783 | Watanabe et al. | Dec 1997 | A |
5695223 | Boticki | Dec 1997 | A |
D388876 | Sampson | Jan 1998 | S |
5709244 | Patriquin et al. | Jan 1998 | A |
5725258 | Kujawski | Mar 1998 | A |
5737810 | Krauss | Apr 1998 | A |
5745957 | Khokhar et al. | May 1998 | A |
5746414 | Weldon et al. | May 1998 | A |
5762646 | Cotter | Jun 1998 | A |
5784750 | Sankovic et al. | Jul 1998 | A |
5799987 | Sampson | Sep 1998 | A |
5820614 | Erskine et al. | Oct 1998 | A |
5837180 | Linder et al. | Nov 1998 | A |
5845943 | Ramacier, Jr. et al. | Dec 1998 | A |
5855568 | Battiato et al. | Jan 1999 | A |
5879033 | Hansel et al. | Mar 1999 | A |
5882047 | Ostrander et al. | Mar 1999 | A |
5884531 | Koenig | Mar 1999 | A |
D407803 | Redman | Apr 1999 | S |
5897142 | Kulevsky | Apr 1999 | A |
5911367 | McInerney | Jun 1999 | A |
5911403 | deCler et al. | Jun 1999 | A |
5911404 | Cheng | Jun 1999 | A |
5930424 | Heimberger et al. | Jul 1999 | A |
5937501 | Imgram | Aug 1999 | A |
5938244 | Meyer | Aug 1999 | A |
5941577 | Musellec | Aug 1999 | A |
5942730 | Schwarz et al. | Aug 1999 | A |
D413967 | Yuen | Sep 1999 | S |
5957898 | Jepson et al. | Sep 1999 | A |
5961157 | Baron et al. | Oct 1999 | A |
5964485 | Hame et al. | Oct 1999 | A |
5965077 | Rowley et al. | Oct 1999 | A |
5975489 | deCler et al. | Nov 1999 | A |
5984378 | Ostrander et al. | Nov 1999 | A |
5988704 | Ryhman | Nov 1999 | A |
6012743 | Godeau et al. | Jan 2000 | A |
6015171 | Schorn | Jan 2000 | A |
D419861 | Khokhar | Feb 2000 | S |
6019348 | Powell | Feb 2000 | A |
6024124 | Braun et al. | Feb 2000 | A |
6029701 | Chaffardon et al. | Feb 2000 | A |
6032691 | Powell et al. | Mar 2000 | A |
6041805 | Gydesen et al. | Mar 2000 | A |
D422487 | Khokhar | Apr 2000 | S |
6050297 | Ostrowski et al. | Apr 2000 | A |
6076234 | Khokhar et al. | Jun 2000 | A |
6077245 | Heinrich et al. | Jun 2000 | A |
6077259 | Caizza et al. | Jun 2000 | A |
6082401 | Braun et al. | Jul 2000 | A |
6086044 | Guest | Jul 2000 | A |
6089540 | Heinrichs et al. | Jul 2000 | A |
6099045 | Pirona | Aug 2000 | A |
6112855 | Camacho et al. | Sep 2000 | A |
6123690 | Mejslov | Sep 2000 | A |
6135150 | Powell et al. | Oct 2000 | A |
6135992 | Wang | Oct 2000 | A |
6142538 | Volgstadt et al. | Nov 2000 | A |
6145896 | Vitel et al. | Nov 2000 | A |
6152914 | Van De Kerkhof et al. | Nov 2000 | A |
6155610 | Godeau et al. | Dec 2000 | A |
6161578 | Braun et al. | Dec 2000 | A |
6176523 | Winslett | Jan 2001 | B1 |
6182694 | Sievers et al. | Feb 2001 | B1 |
6189560 | Reynolds | Feb 2001 | B1 |
6199915 | Becker | Mar 2001 | B1 |
6199919 | Kawasaki et al. | Mar 2001 | B1 |
6199920 | Neustadtl | Mar 2001 | B1 |
6206028 | Holden et al. | Mar 2001 | B1 |
6221064 | Nadal | Apr 2001 | B1 |
6231089 | DeCler et al. | May 2001 | B1 |
D444054 | Bernard et al. | Jun 2001 | S |
6250688 | Kirby | Jun 2001 | B1 |
6257626 | Campau | Jul 2001 | B1 |
6260851 | Baron | Jul 2001 | B1 |
6261282 | Jepson et al. | Jul 2001 | B1 |
6293596 | Kinder | Sep 2001 | B1 |
6296508 | Kuwahara et al. | Oct 2001 | B1 |
6296796 | Gordon | Oct 2001 | B1 |
6302147 | Rose et al. | Oct 2001 | B1 |
6318764 | Trede et al. | Nov 2001 | B1 |
6344033 | Jepson et al. | Feb 2002 | B1 |
6382593 | deCler et al. | May 2002 | B1 |
D459206 | Caveney et al. | Jun 2002 | S |
6402207 | Segal et al. | Jun 2002 | B1 |
6422574 | Mooklar | Jul 2002 | B1 |
6423053 | Lee | Jul 2002 | B1 |
6439620 | Guest | Aug 2002 | B1 |
6454314 | Grosspietsch et al. | Sep 2002 | B1 |
6481758 | Andre et al. | Nov 2002 | B1 |
6481759 | Kawasaki et al. | Nov 2002 | B1 |
6485064 | Davidson | Nov 2002 | B1 |
6485483 | Fujii | Nov 2002 | B1 |
6497433 | Ketcham | Dec 2002 | B1 |
6505866 | Nakamura et al. | Jan 2003 | B1 |
6508807 | Peters | Jan 2003 | B1 |
6520546 | Szabo | Feb 2003 | B2 |
D471261 | Kozu | Mar 2003 | S |
6540263 | Sausner | Apr 2003 | B1 |
6543745 | Enerson | Apr 2003 | B1 |
6595964 | Finley et al. | Jul 2003 | B2 |
6609696 | Enerson | Aug 2003 | B2 |
6612634 | Zoppas | Sep 2003 | B1 |
6626419 | DeCler et al. | Sep 2003 | B2 |
6626465 | Lacroix et al. | Sep 2003 | B2 |
D481125 | Hayamizu | Oct 2003 | S |
6641177 | Pinciaro | Nov 2003 | B1 |
6649829 | Garber et al. | Nov 2003 | B2 |
6652007 | Hwang | Nov 2003 | B1 |
D484241 | Peters et al. | Dec 2003 | S |
6669681 | Jepson et al. | Dec 2003 | B2 |
6676172 | Alksnis | Jan 2004 | B2 |
D486909 | Cise et al. | Feb 2004 | S |
6688654 | Romero | Feb 2004 | B2 |
6692038 | Braun | Feb 2004 | B2 |
6695817 | Fangrow | Feb 2004 | B1 |
6705591 | deCler | Mar 2004 | B2 |
6722705 | Korkor | Apr 2004 | B2 |
6722708 | Morohoshi et al. | Apr 2004 | B2 |
6762365 | Inoue et al. | Jul 2004 | B2 |
6767017 | Crapart et al. | Jul 2004 | B2 |
D495050 | Guala | Aug 2004 | S |
6783520 | Candray et al. | Aug 2004 | B1 |
D497428 | Hayamizu | Oct 2004 | S |
6799747 | Lai | Oct 2004 | B1 |
D498533 | Hayamizu | Nov 2004 | S |
6814726 | Lauer | Nov 2004 | B1 |
6840277 | Nimberger | Jan 2005 | B1 |
6846021 | Rohde et al. | Jan 2005 | B2 |
6848602 | deCler et al. | Feb 2005 | B2 |
6848723 | Lamich | Feb 2005 | B2 |
6863314 | Guest | Mar 2005 | B2 |
6871669 | Meyer et al. | Mar 2005 | B2 |
6871878 | Miros | Mar 2005 | B2 |
D503778 | Wicks | Apr 2005 | S |
6886803 | Mikiya et al. | May 2005 | B2 |
6897374 | Garber et al. | May 2005 | B2 |
6899315 | Maiville et al. | May 2005 | B2 |
6902144 | deCler | Jun 2005 | B2 |
D507647 | Beck et al. | Jul 2005 | S |
6916007 | deCler et al. | Jul 2005 | B2 |
6916050 | Milhas | Jul 2005 | B2 |
6926311 | Chang et al. | Aug 2005 | B2 |
6929246 | Arzenton et al. | Aug 2005 | B2 |
6945273 | Reid | Sep 2005 | B2 |
6949084 | Marggi et al. | Sep 2005 | B2 |
6962275 | deCler et al. | Nov 2005 | B2 |
6978800 | deCler et al. | Dec 2005 | B2 |
6981547 | Maguire et al. | Jan 2006 | B2 |
6997486 | Milhas | Feb 2006 | B2 |
6997919 | Olsen et al. | Feb 2006 | B2 |
7005581 | Burnette | Feb 2006 | B2 |
7011342 | Guivarc'h et al. | Mar 2006 | B2 |
7014214 | Kaneko | Mar 2006 | B2 |
D522109 | White et al. | May 2006 | S |
7040670 | Madden | May 2006 | B2 |
7044161 | Tiberghien | May 2006 | B2 |
7044506 | Dong | May 2006 | B2 |
D523553 | Beck et al. | Jun 2006 | S |
7080665 | Whall | Jul 2006 | B2 |
7081223 | Khoury | Jul 2006 | B2 |
7108297 | Takayanagi et al. | Sep 2006 | B2 |
7118138 | Rowley et al. | Oct 2006 | B1 |
7128348 | Kawamura et al. | Oct 2006 | B2 |
7137654 | Segal et al. | Nov 2006 | B2 |
7140592 | Phillips | Nov 2006 | B2 |
7147252 | Teuscher et al. | Dec 2006 | B2 |
7150478 | Poirier et al. | Dec 2006 | B2 |
7153296 | Mitchell | Dec 2006 | B2 |
7163022 | Whall | Jan 2007 | B2 |
D540944 | Guala | Apr 2007 | S |
7210917 | Lai et al. | May 2007 | B2 |
D547446 | Racz et al. | Jul 2007 | S |
D550355 | Racz et al. | Sep 2007 | S |
D557409 | Veliss et al. | Dec 2007 | S |
7316428 | Takayanagi et al. | Jan 2008 | B2 |
D564660 | Hayashi | Mar 2008 | S |
7343931 | Packham | Mar 2008 | B2 |
D567340 | Tiberghien | Apr 2008 | S |
7352771 | Garber | Apr 2008 | B2 |
D569507 | Blanchard | May 2008 | S |
D569955 | Chen | May 2008 | S |
7377553 | Takayanagi | May 2008 | B2 |
D570457 | Brown | Jun 2008 | S |
7390029 | Matsubara | Jun 2008 | B2 |
7394375 | Johnson | Jul 2008 | B2 |
7434842 | Schmidt | Oct 2008 | B2 |
7434846 | Baumgartner | Oct 2008 | B2 |
7448653 | Jensen et al. | Nov 2008 | B2 |
7464970 | Yamada et al. | Dec 2008 | B2 |
7467813 | Gunderson | Dec 2008 | B2 |
7469472 | DeCler et al. | Dec 2008 | B2 |
7478840 | Youssefifar | Jan 2009 | B2 |
7488446 | Meyer et al. | Feb 2009 | B2 |
7494156 | Okada | Feb 2009 | B2 |
7503595 | McKay | Mar 2009 | B2 |
7516990 | Jamison et al. | Apr 2009 | B2 |
7546857 | Chadbourne et al. | Jun 2009 | B2 |
7547047 | deCler et al. | Jun 2009 | B2 |
D595845 | Miros et al. | Jul 2009 | S |
D595846 | Racz et al. | Jul 2009 | S |
D596288 | Racz et al. | Jul 2009 | S |
D596739 | Ng et al. | Jul 2009 | S |
7562906 | Schmidt | Jul 2009 | B2 |
7566077 | Tsurumi | Jul 2009 | B2 |
7581763 | Salomon-Bahls | Sep 2009 | B2 |
D602128 | Williams et al. | Oct 2009 | S |
7614666 | Eggert et al. | Nov 2009 | B2 |
7631660 | deCler et al. | Dec 2009 | B2 |
7647954 | Garber et al. | Jan 2010 | B2 |
7666178 | McMichael | Feb 2010 | B2 |
D612019 | Williams et al. | Mar 2010 | S |
D612021 | Schmidt | Mar 2010 | S |
7677608 | Takayanagi | Mar 2010 | B2 |
D613853 | Ng et al. | Apr 2010 | S |
7695020 | Schmidt | Apr 2010 | B2 |
7708025 | Johnson | May 2010 | B2 |
7731244 | Miros et al. | Jun 2010 | B2 |
D619706 | Schon et al. | Jul 2010 | S |
7770939 | Jensen et al. | Aug 2010 | B2 |
7806139 | Packham et al. | Oct 2010 | B2 |
7841357 | Rankin | Nov 2010 | B2 |
D629894 | Lombardi, III et al. | Dec 2010 | S |
7849877 | Tan et al. | Dec 2010 | B2 |
D630320 | Lombardi, III et al. | Jan 2011 | S |
D632783 | Maesarapu | Feb 2011 | S |
7878553 | Wicks et al. | Feb 2011 | B2 |
D634840 | Lombardi, III et al. | Mar 2011 | S |
D639398 | Wilhelm | Jun 2011 | S |
7954374 | Rankin | Jun 2011 | B2 |
7954515 | Gerst | Jun 2011 | B2 |
D642244 | Wilhelm | Jul 2011 | S |
7976071 | Bibby | Jul 2011 | B2 |
D645547 | Lombardi, III et al. | Sep 2011 | S |
D649240 | Lewis et al. | Nov 2011 | S |
D650478 | Lewis | Dec 2011 | S |
D652510 | Lombardi, III et al. | Jan 2012 | S |
D652511 | Lombardi, III et al. | Jan 2012 | S |
D654573 | Lombardi, III et al. | Feb 2012 | S |
8113546 | Jensen et al. | Feb 2012 | B2 |
D655393 | Whitaker | Mar 2012 | S |
D663022 | Lombardi, III et al. | Jul 2012 | S |
8235426 | Pisula, Jr. et al. | Aug 2012 | B2 |
20010017466 | Braun | Aug 2001 | A1 |
20020022762 | Beane et al. | Feb 2002 | A1 |
20020070547 | Guertin | Jun 2002 | A1 |
20020093192 | Matkovich | Jul 2002 | A1 |
20020140172 | Platusich | Oct 2002 | A1 |
20020156344 | Pasricha et al. | Oct 2002 | A1 |
20020185861 | Inoue | Dec 2002 | A1 |
20030004397 | Kameya et al. | Jan 2003 | A1 |
20030067162 | Welsh et al. | Apr 2003 | A1 |
20030193188 | Miros | Oct 2003 | A1 |
20030230894 | Cleveland et al. | Dec 2003 | A1 |
20040021318 | Fritze et al. | Feb 2004 | A1 |
20040056484 | Kwon et al. | Mar 2004 | A1 |
20040094903 | Sutherland | May 2004 | A1 |
20040195830 | Gilmour | Oct 2004 | A1 |
20040199143 | Lauer | Oct 2004 | A1 |
20040227346 | Jamison et al. | Nov 2004 | A1 |
20040232696 | Andre | Nov 2004 | A1 |
20050033237 | Fentress et al. | Feb 2005 | A1 |
20050046184 | Chang | Mar 2005 | A1 |
20050057042 | Wicks | Mar 2005 | A1 |
20050082828 | Wicks et al. | Apr 2005 | A1 |
20050087981 | Yamada et al. | Apr 2005 | A1 |
20050209583 | Powers et al. | Sep 2005 | A1 |
20050217265 | Popp et al. | Oct 2005 | A1 |
20050242579 | Bright et al. | Nov 2005 | A1 |
20050275220 | Shu | Dec 2005 | A1 |
20060066100 | Nakashima et al. | Mar 2006 | A1 |
20060128180 | Gammons | Jun 2006 | A1 |
20060152003 | Slunick et al. | Jul 2006 | A1 |
20060202146 | Doyle | Sep 2006 | A1 |
20060264814 | Sage | Nov 2006 | A1 |
20060293629 | Cote, Sr. et al. | Dec 2006 | A1 |
20070025811 | Wilhelm | Feb 2007 | A1 |
20070029795 | Moner et al. | Feb 2007 | A1 |
20070029796 | Bibby | Feb 2007 | A1 |
20070106213 | Spera et al. | May 2007 | A1 |
20070137718 | Rushlander et al. | Jun 2007 | A1 |
20070169825 | Packham et al. | Jul 2007 | A1 |
20070209716 | Rankin | Sep 2007 | A1 |
20070284875 | Salomon-Bahls et al. | Dec 2007 | A1 |
20080007051 | Jensen et al. | Jan 2008 | A1 |
20080011703 | Schmeisser et al. | Jan 2008 | A1 |
20080012314 | Harger et al. | Jan 2008 | A1 |
20080018105 | Le Bars | Jan 2008 | A1 |
20080048442 | Kerin et al. | Feb 2008 | A1 |
20080048448 | Jamison et al. | Feb 2008 | A1 |
20080078464 | Loewe | Apr 2008 | A1 |
20080111371 | Feger et al. | May 2008 | A1 |
20080111372 | Trede et al. | May 2008 | A1 |
20080129047 | Blivet et al. | Jun 2008 | A1 |
20080164694 | Zdroik et al. | Jul 2008 | A1 |
20080191466 | Knipple et al. | Aug 2008 | A1 |
20080200901 | Rasmussen et al. | Aug 2008 | A1 |
20080277923 | Brandt et al. | Nov 2008 | A1 |
20080277924 | Jensen et al. | Nov 2008 | A1 |
20080284167 | Lim et al. | Nov 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20090079187 | Malone | Mar 2009 | A1 |
20090127847 | Hagen et al. | May 2009 | A1 |
20090129047 | Park et al. | May 2009 | A1 |
20090140519 | Pavnaskar et al. | Jun 2009 | A1 |
20090167018 | Lien | Jul 2009 | A1 |
20090187166 | Young | Jul 2009 | A1 |
20090188575 | Williams et al. | Jul 2009 | A1 |
20090256355 | Wicks et al. | Oct 2009 | A1 |
20100001516 | Pisula, Jr. et al. | Jan 2010 | A1 |
20100056975 | Dale et al. | Mar 2010 | A1 |
20100078934 | Matsunaga | Apr 2010 | A1 |
20100185040 | Uber et al. | Jul 2010 | A1 |
20100194100 | Koch | Aug 2010 | A1 |
20100276922 | Rehder et al. | Nov 2010 | A1 |
20100295295 | Schmidt | Nov 2010 | A1 |
20100301599 | Jensen et al. | Dec 2010 | A1 |
20100319796 | Whitaker | Dec 2010 | A1 |
20110012340 | Packham et al. | Jan 2011 | A1 |
20110127767 | Wicks et al. | Jun 2011 | A1 |
20110204621 | Whitaker et al. | Aug 2011 | A1 |
20110204622 | Lewis et al. | Aug 2011 | A1 |
20110210541 | Lewis et al. | Sep 2011 | A1 |
20120031515 | Whitaker | Feb 2012 | A1 |
20120068457 | Pisula, Jr. et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
479098 | Jan 1948 | BE |
101311603 | Nov 2005 | CN |
201170406 | Dec 2008 | CN |
1868896 | Mar 1963 | DE |
3439522 | Aug 1985 | DE |
3533000 | Mar 1987 | DE |
4122455 | Jan 1993 | DE |
19800050 | Jul 1998 | DE |
102005015343 | Oct 2006 | DE |
0360634 | Mar 1990 | EP |
0390746 | Oct 1990 | EP |
0267067 | Jul 1991 | EP |
0482277 | Apr 1992 | EP |
0592823 | Apr 1994 | EP |
0715111 | Jun 1996 | EP |
0865779 | Sep 1998 | EP |
0877891 | Nov 1998 | EP |
0890054 | Jan 1999 | EP |
0982525 | Mar 2000 | EP |
1497582 | Jan 2005 | EP |
1564469 | Aug 2005 | EP |
1843074 | Oct 2007 | EP |
2031965 | Nov 1970 | FR |
2429370 | Jan 1980 | FR |
280871 | Oct 2001 | FR |
2853043 | Oct 2004 | FR |
2870921 | Dec 2005 | FR |
2903164 | Jan 2008 | FR |
583459 | Dec 1946 | GB |
890775 | Mar 1962 | GB |
2177769 | Jan 1987 | GB |
2218166 | Nov 1989 | GB |
2271157 | Apr 1994 | GB |
2379253 | Mar 2003 | GB |
53-006918 | Jan 1978 | JP |
5-223189 | Aug 1993 | JP |
7-145889 | Jun 1995 | JP |
10-169869 | Jun 1998 | JP |
11-82849 | Mar 1999 | JP |
2003-42363 | Feb 2003 | JP |
2003-42368 | Feb 2003 | JP |
6-512540 | Apr 2006 | JP |
WO 9317270 | Sep 1993 | WO |
WO 9508732 | Mar 1995 | WO |
WO 0079172 | Dec 2000 | WO |
WO 2004027269 | Apr 2004 | WO |
WO 2004104466 | Dec 2004 | WO |
WO 2005064216 | Jul 2005 | WO |
WO 2006031958 | Mar 2006 | WO |
WO 2006073778 | Jul 2006 | WO |
WO 2006084171 | Aug 2006 | WO |
WO 2006135666 | Dec 2006 | WO |
WO 2007038222 | Apr 2007 | WO |
WO 2007116387 | Oct 2007 | WO |
WO 2007120620 | Oct 2007 | WO |
WO 2008023021 | Feb 2008 | WO |
WO 2009026441 | Feb 2009 | WO |
Entry |
---|
About Us [online], Thuro Metal Products [retrieved on Apr. 9, 2010], retrieved from the Internet: <URL: http://www.thurometal.com/about.html>, 2 pages. |
Barbed Tee Adapter, 1/2 in to 2/8 in to 1/2 in [Item # F1728], http://www.horticulturesource.com/product—info.php/products—id/4016/language/en; dated accessed Sep. 14, 2009, 3 pages. |
Capabilities [online], Jay Manufacturing Corp., retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.jaymfg.com/capabilities.htm>, 2 pages. |
Flojet “Quick Connect” Port System Adapter 90 Elbow Type Quad Port X 1/2″ Hose Barb, http://www.amazon.com/Quick-Connect-Port-System-Quad-Barb-90/dp/B0000AZ771/ref=sr—1—16?s=sporting-goods&ie=UTF8&qid=1300220596&sr=1-16, date accessed Sep. 14, 2009; 3 pages. |
High-Flow Quick Disconnect Couplings; http://www.coleparmer.com/catalog/product—view.asp?sku=3130355; date accessed Sep. 14, 2009, 3 pages. |
Mills, The Process of Vacuum-forming Plastic Parts, IPFrontline.com [online], retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.ipfrontline.com/depts/article.asp?id=453&deptid=2>, 3 pages. |
Nylon, Polypropylene Kynar (PVDF) Plastic Fittings for Flexible Tubing & Hose, http://www.omega.com/pdf/tubing/fittings—tubing—hose/nylon—poly—kynar/nylon.asp; dated accessed Sep. 14, 2009, 2 pages. |
Science of Hose Barbs, Colder Products Company, http://www.pddnet.com/article-the-science-of-hose-barbs/, date accessed Sep. 4, 2009, 6 pages. |
Stackable Hose Barb Elbow—1/2″ CTS × 1/2 ID Barb, http://www.freshwatersystems.com/p-1714-stackable-hose-barb-elbow-12-cts-x-12-id-barb.aspx?affiliatied=10052&utm—source=shopzilla&utm—medium=Feed&utm—campaign=Product&utm—term=3512-1008, date accessed Sep. 14, 2009, 1 page. |
Stainless Steel Overview: History [online], Stainless Steel Industry of North America, retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.ssina.com/overview/history.html>, 1 page. |
Singapore Examination Report mailed Jul. 3, 2014 for Singapore Patent Application No. 201204718-9, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20110204621 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61289990 | Dec 2009 | US | |
61361306 | Jul 2010 | US |