None.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to a fluid ejection device for inkjet printers, and more particularly, to a fluid ejection device that provides a narrow print zone in the media transport direction for better print quality when multiple devices are formed end-to-end in an array.
2. Description of the Related Art
Typically, a printer, such as an inkjet printer, includes a page wide fluid ejection device (printhead) that has an array of narrow ejection chip units (e.g. heater chips). In general, the width of such narrow ejection chip units is less than about two millimeters (mm). Further, each ejection chip unit of the page wide fluid ejection device includes about four to five fluid (ink) channels for fluids (inks) of colors, such as Cyan, Magenta, Yellow, and blacK (CMYK).
The ejection chip unit 100 further includes a substrate layer 106 having a plurality of fluid (ink) channels 108, across the length of the ejection chip unit 100. For the purpose of this description, the ejection chip unit 100 includes four fluid channels 108 that are adapted to carry the fluids (inks) of cyan color, magenta color, yellow color and black color, respectively. The fluid channels 108 are configured beneath the vias 104 on the substrate layer 106. Each fluid channel of the fluid channels 108 is fluidly coupled with at least one corresponding via of the vias 104. The term, “at least one corresponding via” as to used herein refers to one or more vias of the vias 104 that are aligned with a respective fluid channel of the fluid channels 108 and may carry a fluid ink of the same color as carried by the respective fluid channel.
Furthermore, the ejection chip unit 100 includes a second ultra thin layer 110 having a plurality of ports 112 configured beneath the fluid channels 108. The plurality of ports 112 is hereinafter referred to as ‘ports 112’. At least one port of the ports 112 may be fluidly coupled with a corresponding fluid channel of the fluid channels 108. The term, “a corresponding fluid channel” as used herein refers to a fluid channel of the fluid channels 108 that may be aligned with respective at least one port of the ports 112 and may carry a fluid of the same color as carried by the respective at least one port. As depicted in
It is to be observed that the spacing (seal width) between the two adjacent fluid channels of the fluid channels 108 is as narrow as 0.1 mm, as depicted by distance ‘D1’ in
Further, to minimize fluidic resistance within the fluidic ejection device 10, the thickness of the first ultra thin layer 102 and the second ultra thin layer 110 is required to be kept minimum, typically around 30 microns (0.03 mm). Therefore, to achieve such minimum thickness, wafer grinding is required from both sides of the wafer stack formed by bonding the different wafers used to form the first ultra thin layer 102, the substrate layer 106, and the second ultra thin layer 110 of
Accordingly, there persists a need for an effective and efficient fluid ejection device and a method for fabricating the fluid ejection device, for providing a narrow print zone for better print quality.
In view of the foregoing disadvantages inherent in the prior art, the general purpose of the present disclosure is to provide a fluid ejection device, an ejection unit and a method for fabricating the fluid ejection device, by including all the advantages of the prior art, and overcoming the drawbacks inherent therein.
In one aspect, the present disclosure provides a fluid ejection device that includes a nozzle plate. The nozzle plate includes a plurality of nozzles configured therewithin for fluid ejection. Further, the fluid ejection device includes a flow feature layer configured below the nozzle plate. The flow feature layer includes a plurality of flow features. Each flow feature of the plurality of flow features is configured in fluid communication with at least one nozzle of the plurality of nozzles. The fluid ejection device further includes an ejection unit configured below the flow feature layer. The ejection unit includes a first layer configured below the flow feature layer. The first layer includes a plurality of fluid vias configured therewithin. Each fluid via of the plurality of fluid vias is configured in fluid communication with at least one flow feature of the plurality of flow features. Further, the ejection unit includes a second layer configured below the first layer. The second layer includes a plurality of fluid channels. Each fluid channel of the plurality of fluid channels is configured in fluid communication with at least one fluid via of the plurality of fluid vias. Further, the second layer is attached to the first layer through a first intermediate silicon oxide layer. The ejection unit also includes a third layer configured below the second layer. The third layer includes a plurality of ports. At least one port of the to plurality of ports is configured in fluid communication with a corresponding fluid channel of the plurality of fluid channels. The third layer is also attached to the second layer through a second intermediate silicon oxide layer.
According to another aspect, the present disclosure provides an ejection unit for a fluid ejection device. The ejection unit includes a first layer. The first layer includes a plurality of fluid vias configured therewithin. The ejection unit further includes a second layer configured below the first layer. The second layer includes a plurality of fluid channels. Each fluid channel of the plurality of fluid channels is configured in fluid communication with at least one fluid via of the plurality of fluid vias. Further, the second layer is attached to the first layer through a first intermediate silicon oxide layer. The ejection unit also includes a third layer configured below the second layer. The third layer includes a plurality of ports configured therewithin. At least one port of the plurality of ports is configured in fluid communication with a corresponding fluid channel of the plurality of fluid channels. Further, the third layer is attached to the second layer through a second intermediate silicon oxide layer.
According to yet another aspect, the present disclosure provides a method of fabricating a fluid ejection device. The method includes bonding a first silicon wafer to a second silicon wafer with a first intermediate silicon oxide layer such that the first intermediate oxide layer is sandwiched between the first silicon wafer and the second silicon wafer. The method further includes forming at least one first pair of trenches by etching the second silicon wafer up to the first intermediate silicon oxide layer. Furthermore, the method includes filling the at least one first pair of trenches with silicon oxide. The method further includes grinding the second silicon wafer from a bottom portion thereof up to a first predetermined thickness. The method also includes bonding a third silicon wafer to the second silicon wafer with a second intermediate silicon oxide layer such that the second intermediate silicon oxide layer is sandwiched between the third silicon wafer and the second silicon wafer. Additionally, the method includes grinding the first silicon wafer from a top portion thereof up to a second predetermined thickness, and grinding the third silicon wafer from a bottom portion thereof up to a third predetermined thickness. The method also includes forming at least one second pair of trenches by etching the third silicon wafer up to the second intermediate silicon oxide layer.
Moreover, the method includes filling the at least one second pair of trenches to with silicon oxide. In addition, the method includes etching the third silicon wafer, the second intermediate silicon oxide layer, and the second silicon wafer up to the first intermediate silicon oxide layer and along the at least one second pair of trenches and the at least one first pair of trenches. The third silicon wafer is etched to configure at least one port therewithin. Further, the method includes isotropically etching silicon material of the second silicon wafer confined between each first pair of trenches of the at least one first pair of trenches to configure at least one fluid channel within the second silicon wafer. The method also includes configuring at least one fluid via within the first silicon wafer. Additionally, the method includes depositing and patterning a flow feature layer and a nozzle plate on the first silicon wafer.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
It is to be understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure. It is to be understood that the present disclosure is not limited in its application to the details of components set forth in the following description. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present disclosure provides a fluid ejection device for an inkjet printer. The fluid ejection device includes a nozzle plate. The nozzle plate includes a plurality of nozzles configured therewithin for fluid ejection. Further, the fluid ejection device includes a flow feature layer configured below the nozzle plate. The flow feature layer includes a to plurality of flow features. Each flow feature of the plurality of flow features is configured in fluid communication with at least one nozzle of the plurality of nozzles. The fluid ejection device further includes an ejection unit (e.g. heater chip) configured below the flow feature layer. The ejection unit includes a first layer configured below the flow feature layer. The first layer includes a plurality of fluid vias configured therewithin. Each fluid via of the plurality of fluid vias is configured in fluid communication with at least one flow feature of the plurality of flow features. Further, the ejection unit includes a second layer configured below the first layer. The second layer includes a plurality of fluid channels. Each fluid channel of the plurality of fluid channels is configured in fluid communication with at least one fluid via of the plurality of fluid vias. Further, the second layer is attached to the first layer through a first intermediate oxide layer. The ejection unit also includes a third layer configured below the second layer. The third layer includes a plurality of ports. At least one port of the plurality of ports is configured in fluid communication with a corresponding fluid channel of the plurality of fluid channels. The third layer is also attached to the second layer through a second intermediate oxide layer. The fluid ejection device of the present disclosure is explained in conjunction with
The fluid ejection device 200 further includes a flow feature layer 220 configured below the nozzle plate 210 to support the nozzle plate 210. The flow feature layer 220 may be composed of a semiconductor material, such as silicon material and the like, to thereby providing sufficient strength to withstand wear and tear during the use of the printer. According to the present embodiment of the present disclosure, the flow feature layer 220 is a rectangular-shaped block. However, the flow feature layer 220 may be configured to have any other shape, without departing from the scope of the present disclosure.
The flow feature layer 220 further includes a plurality of flow features 222 (fluid chamber and fluid channel). Each flow feature of the flow features 222 is configured in fluid communication with at least one nozzle of the nozzles 212. In the present embodiment, the each flow feature of the flow features 222 is configured in fluid communication with corresponding one nozzle of the nozzles 212. The fluid communication between the each flow feature of the flow features 222 and the corresponding one nozzle of the nozzles 212 facilitates the flow of the fluid from the flow feature layer 220 to the nozzle plate 210 during a printing process.
Further, the fluid ejection device 200 includes an ejection unit 230 configured below the flow feature layer 220. The ejection unit 230 includes a first layer 240 configured below the flow feature layer 220. The first layer 240 has a thickness less than or equal to about 80 micrometers. More specifically, such thickness of the first layer 240 is achieved by grinding a first silicon wafer used for making the first layer 240, up to a particular thickness. Furthermore, the first layer 240 includes a plurality of fluid vias 242 configured therewithin. Each fluid via of the fluid vias 242 is in fluid communication with at least one flow feature of the flow features 222. In the present embodiment, the each fluid via of the fluid vias 242 is in one to one communication with a corresponding flow feature of the flow features 222. The fluid communication between the each fluid via of the fluid vias 242 and the corresponding flow feature of the flow features 222 facilitates the flow of the fluid from the first layer 240 to the flow feature layer 220 during the printing process. For example, during printing, the fluid is transferred from the fluid vias 242 towards the nozzles 212 through the flow features 222 of the flow feature layer 220. The fluid vias 242 may be configured in the form of a through slot/channel along the thickness of the first layer 240. Further, the fluid vias 242 may be configured to have any suitable shape, such as a rectangular shape, a circular shape and the like.
Furthermore, the ejection unit 230 includes a second layer 250 configured below the first layer 240. The second layer 250 has a thickness of about 300 micrometers. More specifically, such thickness of the second layer 250 is achieved by grinding a second to silicon wafer used for making the second layer 250, up to a particular thickness. The second layer 250 includes a plurality of fluid channels 252. For simplicity, only one fluid channel of the fluid channels 252 is depicted in
As shown in
Also, the each fluid channel of the fluid channels 252 is coated with a silicon oxide material 290 at an inner surface (not numbered) thereof. Such a coating forms a cage type structure that encloses the each fluid channel. Further, the silicon oxide material 290 also at least partially encapsulates the first layer 240 and the third layer 270; and each port of the ports 272. Accordingly, the silicon oxide material 290 and the first intermediate silicon oxide layer 260 at least partially encapsulate the first layer 240 therewithin; and the silicon oxide material 290 and the second intermediate silicon oxide layer 280 at least partially encapsulate the third layer 270 therewithin.
Referring now to
Furthermore, the fluid ejection device 200 may include a supporting structure (not shown) attached to the third layer 270 of the ejection unit 230. The supporting structure is a silicon substrate that may further be connected to one or more fluid reservoirs to provide fluid to the fluid ejection device 200. Further, the second predetermined distance, as depicted by ‘D3’ in
In another aspect, the present disclosure provides an ejection unit, such as the ejection unit 230 of
In yet another aspect, the present disclosure provides a method of fabricating a fluid ejection device, such as the fluid ejection device 200, as explained in conjunction with
At 306, at least one first pair of trenches 404 is formed by etching the second silicon wafer 402 up to the first intermediate silicon oxide layer 260, as depicted in
At 312, a third silicon wafer 406 is bonded to the second layer 250 (i.e., the ground second silicon wafer 402) with a second intermediate silicon oxide layer, such as the second intermediate silicon oxide layer 280 of the fluid ejection device 200, as depicted in
Thereafter, at 314 the first silicon wafer 400 is ground from a top portion (not numbered) thereof up to a second predetermined thickness equal to or less than about 60 micrometers (as depicted in
At 320, the third layer 270, the second intermediate silicon oxide layer 280, and the second layer 250 are etched along the at least one second pair of trenches 408 and the at least one first pair of trenches 404, as depicted in
At 322, the silicon material of the second layer 250 confined between the each first pair of trenches of the at least one first pair of trenches 404 is isotropically etched to configure at least one fluid channel, such as the fluid channels 252, of the ejection unit 230 (as depicted in
Further, at 324, at least one fluid via, such as the fluid vias 242 of
The present disclosure provides a fluid ejection device, such as the fluid ejection device 200, having a narrow ejection unit, such as the ejection unit 230 with ultra thin first layer, such as the first layer 240, and the ultra thin third layer, such as the third layer 270. Thus, the present disclosure provides an effective ejection unit for fluid ejection devices.
Furthermore, the present disclosure provides an effective and efficient method, such as the method 300, for fabricating the fluid ejection device 200. Specifically, the method 300 facilitates grinding of a first silicon wafer, such as the first silicon wafer 400, a second silicon wafer, such as the second silicon wafer 402, and a third silicon wafer, such as the third silicon wafer 406, before physically configuring a plurality of fluid channels, such as the fluid channels 252, in order to facilitate the narrow ejection unit to sustain high mechanical strength during the grinding process. More specifically, the method 300 facilitates in fabricating narrow ejection units with four or more color fluid channels sandwiched by two ultra thin (0.05 millimeter or even thinner) layers of silicon (i.e., the first layer 240 and the third layer 270). Further, grinding before the formation of the fluid channels 252 assists in achieving very thin channel membrane (i.e., the second layer 250). Thus, wafer stack constituted by the first silicon wafer 400, the second silicon wafer 402 and the third silicon wafer 406, has high mechanical strength without any cavities (i.e., fluid channels) to easily survive the grinding process. Further, the fluid channels 252 are predefined with silicon oxide cages before grinding, and are then formed by isotropic etching with XeF2 after the grinding process. Therefore, efficient fluid ejection devices with narrow ejection units may easily be fabricated to provide a narrow print zone for better print quality while averting the ejection units to undergo any damage, such as cracking.
The foregoing description of several embodiments of the present disclosure has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the disclosure be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
20090189954 | Anderson et al. | Jul 2009 | A1 |
20090256891 | Anderson et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120320130 A1 | Dec 2012 | US |