Fluid flow sensing

Information

  • Patent Grant
  • 11452808
  • Patent Number
    11,452,808
  • Date Filed
    Friday, July 7, 2017
    6 years ago
  • Date Issued
    Tuesday, September 27, 2022
    a year ago
Abstract
Devices and methods for collecting and sensing fluid flow are provided.
Description
BACKGROUND OF THE INVENTION

Wounds may be treated by providing negative pressure to the space above the wound to promote healing in a process often referred to a negative pressure wound therapy (NPWT). In monitoring the progress of the wound, it is often beneficial to monitor the rate of exudate discharged from the wound to assist in an assessment of wound healing.


SUMMARY OF THE INVENTION

Medical procedures often involve the removal of fluid and wound exudate from a patient including, for example, during negative pressure wound therapy (NPWT). For NPWT, as a negative pressure is applied over a wound site of the patient, fluid and wound exudate is drawn from the wound and collected, for example, in a dressing positioned over the wound site and/or in a canister. For systems that employ collection canisters, the volume of fluid collected is often sensed and recorded to build a picture of the rate of fluid discharge from the wound. However, this approach can be problematic due to the uncertainty of canister orientation, especially during use in portable therapies. Measurement of readings when the canister is not oriented properly can lead to false readings and assessment of the wound. It is therefore beneficial to measure the flow rate of fluid prior to or as it is drawn into the canister. Nevertheless, due to the nature of NPWT there are challenges with measuring fluid at this point because the fluid to be measured is typically a mixture of air and liquid. For example, air may be introduced into the system through small leak paths at the wound site. Therefore, there is a need for managing the flow of fluid through a system so that parameters of the fluid can be sensed. By providing an air bypass device, or fluid collection device, small quantities of liquid accumulate in the fluid collection device while air passes through the device. Once there is a significant volume of liquid collected, the liquid is released through a detection conduit as a column of liquid, or a slug, which is then measurable using a sensor.


In one aspect of the disclosure, provided are fluid collection devices comprising: (a) a housing comprising an inlet and an outlet, the inlet located at a proximal end of the housing and the outlet located at a distal end of the housing; (b) a reservoir positioned within the housing at the proximal end of the housing; (c) a plurality of channel dividers positioned within the housing between the reservoir and the distal end of the housing, the plurality of channel dividers having a proximal end and a distal end; wherein the plurality of channel dividers define a plurality of fluid channels within the housing; and (d) a liquid collection region positioned within the housing between the distal end of the plurality of channel dividers and the distal end of the housing; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing. In some embodiments, the fluid collection device is tapered and a proximal end of the reservoir has a width greater than the width of a distal end of the liquid collection region. In some cases, the width of the proximal end of the reservoir is at least equal to, or 2 to 5 times the width of the distal end of the liquid collection region. In some embodiments, the liquid collection region is configured to receive a slug of liquid having a volume between about 10 uL and about 200 uL. In some embodiments, the interior of the housing is configured to hold between about 100 uL and about 1000 uL of fluid. In some embodiments, the width of the liquid collection region is smaller near the distal end of the housing than the width of the liquid collection region near the proximal end of the housing. In some embodiments, the width of the liquid collection region is between about 0.5 mm and about 8 mm. In some embodiments, the length of the reservoir is between about 5 mm and about 50 mm. In some embodiments, the length of one or more of the plurality of channel dividers is between about 2 mm and about 50 mm. In some embodiments, the height of the reservoir is between about 0.1 mm and about 5 mm. In some embodiments, the height of one or more of the plurality of channel dividers is between about 0.1 mm and about 5 mm. In some embodiments, the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm. In some embodiments, the width of one or more of the plurality of channels is tapered to reduce direction of flow by about 1 degree to about 20 degrees. In some embodiments, the plurality of channels is from about 2 to about 15 channels. In some embodiments, the housing comprises a planer surface from the proximal end to the distal end of the housing. In some embodiments, the housing comprises a curved surface from the proximal end to the distal end of the housing.


In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises a hydrophobic material. In some cases, the hydrophobic material is coated on the surface by plasma treatment. In some cases, the hydrophobic material has a water contact angle greater than or equal to about 155°. In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises polytetrafluoroethylene (PTFE). In some embodiments, the housing comprises a plastic material. In some embodiments, the housing comprises a transparent material.


Further provided are canisters comprising any fluid collection device described herein. Further provided are canisters operably connected to any fluid collection device described herein. In another aspect of the disclosure, provided are systems comprising any fluid collection device described herein. In some embodiments, provided are fluid collection systems comprising any fluid collection device described herein and a canister, wherein the outlet of the fluid collection device is in fluid communication with an inlet of the canister. In some embodiments, provided are fluid collection systems comprising any fluid collection device described herein and a wound dressing, wherein the inlet of the fluid collection device is in fluid communication with an outlet of the wound dressing.


In some embodiments, provided are fluid collection systems comprising any fluid collection device described herein and a sensing device comprising: (a) source of negative pressure; and (b) a plurality of sensors situated within a casing such that a column of liquid located outside of the casing is in the field of view of the plurality of infrared sensors. In some cases, one or more of the plurality of sensors is an infrared sensor. In some embodiments, the casing comprises a thin layer of plastic within the field of view of the plurality of infrared sensors. In some cases, the thin layer has a thickness up to about 5 mm. In some cases, the plastic comprises polyvinyl chloride, polycarbonate, polystyrene, polyester film, or a combination thereof. In some embodiments, the casing comprises one or more windows within the field of view of the plurality of infrared sensors. In some cases, the one or more windows are transmissive to infrared at a wavenumber between about 3000 cm−1 to about 4000 cm−1. In some cases, the one or more windows have a thickness between about 0.1 mm and about 5 mm. In some cases, the one or more windows comprise polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof. In some embodiments, the fluid collection system further comprises a light source situated within the interior of the casing such that the column of liquid located outside of the casing is in the path of the light source. In some embodiments, the plurality of infrared sensors is two or more reflective optical sensors. In some embodiments, the source of negative pressure comprises a diaphragm pump. In some embodiments, a first infrared sensor in the plurality of infrared sensors is positioned between about 0.5 cm and about 10 cm from a second infrared sensor in the plurality of infrared sensors. In some embodiments, the fluid collection system further comprises one or more pressure sensors. In some cases, one of the one or more pressure sensors is configured to detect a pressure of a wound environment by measuring a pressure at a first end of a conduit positioned within the casing, wherein the second end of the conduit is positioned at the wound environment. In some cases, one of the one or more pressure sensors is configured to detect a pressure of a canister by measuring a pressure at a first end of a conduit positioned within the casing, wherein the second end of the conduit is positioned within the canister; and wherein the conduit is configured to apply a negative pressure from the source of negative pressure to the canister. In some cases, the fluid collection system further comprises a controller configured to control an amount of negative pressure applied by the source of negative pressure. In some cases, the controller controls the amount of negative pressure applied by the source of negative pressure in response to a measurement of pressure by the one or more pressure sensors. In some embodiments, the fluid collection system further comprises a display for displaying one or more parameters of the column of liquid corresponding to measurements of the column of liquid taken by the plurality of infrared sensors. In some embodiments, the fluid collection system further comprises a power source. In some embodiments, the sensing device does not comprise a power source and power is supplied to the sensing device by an external unit connected to the sensing device. Further provided are fluid sensing systems comprising any fluid collection system described herein and a canister.


In another aspect of the disclosure, provided are fluid flow sensing systems comprising: (a) a fluid collection device comprising a housing having an inlet located at a proximal end of the fluid collection device and an outlet located at a distal end of the fluid collection device, the interior of the housing comprising: a reservoir, a plurality of channel dividers defining a plurality of fluid channels, and a liquid collection region; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing; (b) a canister comprising an inlet and an outlet, the inlet of the canister configured to be in fluid communication with the outlet of the fluid collection device housing via a detection conduit; and (c) a sensing device comprising: a casing having an inlet, a source of negative pressure and a plurality of sensors; the inlet of the sensing device casing configured to be in fluid communication with the outlet of the canister via a negative pressure conduit. In some embodiments, the inlet of fluid collection device is configured to be connected to a wound site of a patient via a wound conduit. In some embodiments, the detection conduit has an inner diameter of less than or equal to about 0.5 mm to about 5 mm. In some embodiments, the fluid collection device and canister are configured to withstand a negative pressure applied by the source of negative pressure between about 80 and about 125 mmHg below atmospheric pressure. In some embodiments, the fluid collection device is integral with the canister. In some embodiments, the source of negative pressure comprises a diaphragm pump. In some embodiments, at least a portion of the negative pressure conduit is housed within a connector. In some cases, the connector comprises a power source. In some embodiments, the detection conduit comprises a material transmissive of infrared at a wavenumber between about 3000 cm−1 to about 4000 cm−1. In some embodiments, the detection conduit has a thickness between about 0.1 mm and about 5 mm. In some embodiments, the detection conduit comprises polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof. In some embodiments, the plurality of fluid channels are configured to accumulate between about 10 uL and about 200 uL of liquid. In some embodiments, the sensing device further comprises a pressure sensor configured to detect a pressure within the negative pressure conduit. In some embodiments, the fluid collection device is tapered and a proximal end of the fluid collection device has a width greater than the width of a distal end of the fluid collection device. In some cases, the width of the proximal end of the fluid collection device is at least about 2 to 5 times the width of the distal end of the fluid collection device. In some embodiments, a first width of the liquid collection region is between about 1 mm and about 8 mm. In some cases, the liquid collection region is tapered and a second width of the collection region is between about 0.5 and about 7 mm. In some embodiments, the length of one or more of the plurality of channel dividers is between about 2 mm and about 50 mm. In some embodiments, the height of the interior of the housing is between about 0.1 mm and about 5 mm. In some embodiments, the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm. In some embodiments, the plurality of channels is from about 2 to about 15 channels. In some embodiments, the housing comprises a planer surface between the proximal end and distal end of the of the fluid collection device. In some embodiments, the housing comprises a curved surface between the proximal end and distal end of the of the fluid collection device.


In some embodiments, a surface of the reservoir, plurality of channels, collection region, or a combination thereof comprises a hydrophobic material. In some cases, the hydrophobic material is coated on the surface by plasma treatment. In some cases, the hydrophobic material has a water contact angle greater than or equal to about 155°. In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises polytetrafluoroethylene (PTFE). In some embodiments, the housing comprises a plastic material. In some embodiments, the housing comprises a transparent material.


In some embodiments, the casing comprises a thin layer of plastic material within the field of view of the plurality of sensors. In some cases, the thin layer has a thickness up to about 5 mm. In some cases, the plastic material comprises polyvinyl chloride, polycarbonate, polystyrene, polyester film, or a combination thereof. In some embodiments, the casing comprises one or more windows within the field of view of the plurality of infrared sensors. In some cases, the one or more windows are transmissive to infrared at a wavenumber between about 3000 cm−1 to about 4000 cm−1. In some cases, the one or more windows have a thickness between about 0.1 mm and about 5 mm. In some embodiments, the one or more windows comprise polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof.


In some embodiments, the sensing device further comprises a light source. In some embodiments, the plurality of sensors is two sensors. In some embodiments, one or more of the plurality of sensors is an infrared sensor. In some embodiments, a sensor in the plurality of sensors is positioned between about 0.5 cm and about 10 cm from a second sensor in the plurality of sensors. In some embodiments, the sensing device further comprises a controller configured to control the amount of negative pressure applied by the source of negative pressure. In some embodiments, the sensing device further comprises a display for displaying one or more parameters of a column of liquid corresponding to measurements of the column of liquid taken by the plurality of sensors as the column of liquid passes through the detection conduit. The sensing device further comprising a power source. In some embodiments, the sensing device does not comprise a power source and power is supplied to the sensing device by an external unit connected to the sensing device.


In another aspect of the disclosure, provided are methods for sensing fluid flow, the methods comprising: (a) providing: (i) a fluid collection device comprising a housing having an inlet located at a proximal end of the fluid collection device and an outlet located at a distal end of the fluid collection device, the interior of the housing comprising: a reservoir, a plurality of channel dividers defining a plurality of fluid channels, and a liquid collection region; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing; (ii) a canister comprising an inlet and an outlet, the inlet of the canister in fluid communication with the outlet of the fluid collection device housing via a detection conduit; and (iii) a sensing device comprising: a casing having an inlet, a source of negative pressure and a plurality of sensors; the inlet of the sensing device casing in fluid communication with the outlet of the canister via a negative pressure conduit; (b) applying a negative pressure from the source of negative pressure to the fluid collection device via the canister to draw a fluid mixture of liquid and air through the inlet of the fluid collection device and along the one or more fluid passageways of the fluid collection device housing; wherein the liquid of the fluid mixture accumulates at the plurality of flow channels while the air of the fluid mixture passes through flow channels until the plurality of flow channels have accumulated liquid of the fluid mixture; (c) drawing the accumulated fluid into the liquid collection region as a slug of liquid when the plurality of flow channels become blocked with the accumulated fluid; (d) drawing the slug from the liquid collection region, through the outlet of the fluid collection housing, and through the detection conduit; and (e) detecting passage of the slug through the detection conduit with the plurality of sensors. In some embodiments, the time it takes for the beginning of the slug to reach each of the plurality of sensors is detected successively; and wherein the time it takes for the end of the slug to reach each of the plurality of sensors is detected successively. In some embodiments, the method further comprises comparing the time delay between the beginning and the end of the liquid slug passing the plurality of sensors to calculate the speed and length of the slug. In some embodiments, the method further comprises calculating the rate of the flow of the mixture from the fluid collection device.


In some embodiments, the inlet of fluid collection device is connected to a wound site of a patient via a wound conduit, and the fluid mixture drawn through the inlet of the fluid collection device is fluid drawn from the wound site of the patient. In some cases, the fluid collection device is connected to the wound site of the patient in an orientation-independent manner. In some embodiments, the detection conduit has an inner diameter of about 0.5 mm to about 5 mm. In some embodiments, the negative pressure applied is between about 80 and about 125 mmHg below atmospheric pressure. In some embodiments, the volume of the slug is between about 10 and about 200 uL. In some embodiments, the length of the slug is between about 3 mm and about 100 mm. In some embodiments, the fluid mixture comprises less than about 5% of air by volume. In some embodiments, the fluid mixture comprises greater than about 5% of air by volume. In some embodiments, the fluid mixture provided to the fluid collection device comprises less than about 1% of liquid by volume. In some embodiments, the fluid mixture provided to the fluid collection device comprises greater than about 1% of liquid by volume. In some cases, the fluid mixture is exudate from a wound site of a patient sealed with a dressing, and the liquid and air composition of the fluid mixture is dependent on: the rate of exudate flow from the patient, the rate of air leak into the dressing, or a combination thereof. In some embodiments, the fluid collection device is integral with the canister. In some embodiments, the source of negative pressure comprises a diaphragm pump. In some embodiments, at least a portion of the negative pressure conduit is housed within a connector. In some cases, the connector comprises a power source.


In some embodiments, the detection conduit comprises a material transmissive to infrared at a wavenumber between about 3000 cm−1 to about 4000 cm−1. In some embodiments, the detection conduit comprises a material having a thickness between about 0.1 mm and about 5 mm. In some embodiments, the detection conduit comprises polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof. In some embodiments, the plurality of fluid channels are configured to accumulate between about 10 uL and about 200 uL of liquid. In some embodiments, the method further comprises sensing a pressure within the negative pressure conduit with a pressure sensor positioned within the casing of the sensing device. In some cases, the application of negative pressure from the source of negative pressure is modulated to maintain a predetermined pressure within the negative pressure conduit. In some embodiments, the fluid collection device is tapered and a proximal end of the fluid collection device has a width greater than the width of the distal end of the fluid collection device. In some cases, the width of the proximal end of the fluid collection device is at least about 5× the width of the distal end of the fluid collection device. In some embodiments, a first width of the liquid collection region is between about 1 mm and about 8 mm. In some cases, a second width of the liquid collection region is between about 0.5 and about 7 mm. In some embodiments, the length of one or more of the plurality of channel dividers is between about 2 mm and about 50 mm. In some embodiments, the height of the interior of the housing is between about 0.1 mm and about 5 mm. In some embodiments, the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm. In some embodiments, the plurality of channels is from about 2 to about 15 channels.


In some embodiments, the housing comprises a planer surface between the proximal end and distal end of the of the fluid collection device. In some embodiments, the housing comprises a curved surface between the proximal end and distal end of the of the fluid collection device. In some embodiments, a surface of the reservoir, plurality of channels, collection region, or a combination thereof comprises a hydrophobic material. In some cases, the hydrophobic material is coated on the surface by plasma treatment. In some cases, the hydrophobic material has a water contact angle greater than or equal to about 155°. In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises polytetrafluoroethylene (PTFE). In some embodiments, the housing comprises a plastic material. In some embodiments, the housing comprises a transparent material. In some embodiments, the casing comprises a thin layer of plastic material within the field of view of the plurality of sensors. In some cases, the thin layer has a thickness up to about 5 mm. In some cases, the plastic material comprises polyvinyl chloride, polycarbonate, polystyrene, polyester film, or a combination thereof. In some embodiments, the casing comprises one or more windows within the field of view of the plurality of sensors. In some cases, the one or more windows are transmissive to infrared at a wavenumber between about 3000 cm−1 to about 4000 cm−1. In some cases, the one or more windows have a thickness between about 0.1 mm and about 5 mm. In some cases, the one or more windows comprise polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof.


In some embodiments, the sensing device further comprises a light source situated within the interior of the casing such that the slug is in the path of the light source. In some embodiments, the plurality of sensors is two sensors. In some embodiments, one or more of the plurality of sensors is an infrared sensor. In some embodiments, a sensor in the plurality of sensors is positioned between about 0.5 cm and about 10 cm from a second sensor in the plurality of sensors. In some embodiments, the method further comprises measuring a pressure of a wound environment by measuring a pressure at a first end of a pressure sensor conduit, wherein a first end of the pressure sensor conduit is positioned within the casing and a second end of the pressure sensor conduit is positioned at the wound environment. In some embodiments, the sensing device further comprises a controller configured to control the amount of negative pressure applied by the source of negative pressure. In some cases, the controller controls the amount of negative pressure applied by the source of negative pressure in response to a measurement of pressure. In some embodiments, the sensing device further comprises a display for displaying one or more parameters of the slug corresponding to measurements of the slug taken by the plurality of sensors. In some embodiments, the sensing device further comprising a power source. In some embodiments, the sensing device does not comprise a power source and power is supplied to the sensing device by an external unit connected to the sensing device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an embodiment of a fluid flow sensing system for negative pressure wound therapy.



FIG. 2 shows a top view of a path for fluid flow through a first embodiment of a fluid collection device.



FIG. 3 shows an isometric representation of a second embodiment of a fluid collection device.



FIG. 4 shows graphs of response signals from two sensors in a sensing device detecting the passage of slugs through a detection conduit for 1 min.



FIG. 5 shows graphs of response signals from two sensors in a sensing device detecting the passage of slugs through a detection conduit for 15 min.



FIG. 6 shows graphs of processed response signals from the graphs of FIG. 5.



FIG. 7 shows a section of the processed response signal from the graphs of FIG. 6, indicating when flow is detected.



FIG. 8 shows graphs plotting the mass of liquid detected flowing through the detection conduit as a function of time in minutes, and the nominal mass of liquid actually flowing through the detection conduit as a function of time in minutes.





DETAILED DESCRIPTION OF THE INVENTION

In one aspect of the disclosure, provided herein are devices and systems for collecting and sensing parameters of a fluid. In some embodiments, provided are fluid collection devices configured to collect liquid from a fluid comprising liquid and air, and then release the collected liquid as a column of liquid, which may be interchangeably referred to herein as a slug. The slug is then passed through a detection conduit where a sensor is positioned to detect a property of the slug, and thus the fluid input into the collection device. Systems for collecting and sensing parameters of a fluid may comprise a fluid collection device and the sensor for detecting the property of the slug formed during passage of fluid through the fluid collection device. For NPWT systems, the fluid collection device may be a disposable part of the system, while the sensor may be part of a durable or reusable portion of the system. As a non-limiting example, the sensor is part of a durable unit comprising a source of negative pressure drawing the fluid through the fluid collection device.


A system for sensing fluid flow comprising a fluid collection device and a flow sensor is shown in FIG. 1. System 100 is an NPWT system comprising a wound dressing 1 and a source of negative pressure, pump 9, for drawing fluid such as wound exudate from a space between wound dressing 1 and a wound into a canister 8. System 100 further comprises a connector 14 configured to provide communication between wound dressing 1, canister 8, and the main unit 11, which houses the pump 9.


Wound dressing 1 is connected to a wound dressing airway 53 comprising a first end in fluid communication with the underside of dressing 1, and a second end 2, the second end 2 configured to join with a first end 3 of tubing 4 and a sensing line 5. Both the tubing 4 and sensing line 5 are joined to connector 14 at attachment portion 50 of connector 14. Connector 14 comprises a sensing pathway 51 connecting sensing line 5 to a pressure sensor 12 via connection between an attachment portion 18 of connector 14 and an attachment portion 13 of a main unit 11, the main unit 11 comprising the pressure sensor 12. Connector 14 is connected to a fluid collection device 7 at an attachment portion 6 of connector 14 and an attachment portion 54 of the fluid collection device 7. The fluid collection device 7 comprises a fluid pathway 21 in fluid connection with detection conduit 16, which then opens to canister 8. Thus, the fluid pathway of system 100 is configured for fluid to be drawn from under dressing 1, through the dressing airway 53, through tube 4, through connector 14, through pathway 21, through detection conduit 16, and into canister 8.


The canister 8 comprises an outlet 83. A sensing device 80 includes a sensing device casing 81 having an inlet 82. The inlet 82 of the sensing device casing 81 is configured to be in fluid communication with the outlet 83 of the canister via a negative pressure conduit 84.


Negative pressure is communicated through system 100 to a site under dressing 1 from pump 9 housed within main unit 11. Negative pressure is applied from pump 9, through tube 19 of connector 14, through fluid collection device 7, through connector 14, through tubing 4, and through the dressing airway 53 to dressing 1.


Fluid drawn through system 100 is separated into liquid slugs during passage of the fluid through fluid collection device 7. The slugs are released into detection conduit 16, which is positioned within the pathway of sensors 15 and 17, which are housed within main unit 11. Two embodiments of a fluid collection device 7 are shown in FIGS. 2-3.


An exemplary method for sensing fluid flow in system 100 comprises drawing exudate from a wound positioned under dressing 1 to canister 8 using the pressure difference between the dressing and the canister 8 connected to pump 9. Typically the exudate flow will be mixed with air, for example, due to small air leaks in the wound dressing. The pump is controlled by a controller that uses sensors 10 and 12 to sense the pressure in the canister 8 and sensing line 5, respectively. When exudate reaches the canister at 7, it is directed along the fluid pathway 21 of the fluid collection device 7 where it is partitioned into slugs of liquid, which are then passed through detection conduit 16. As a slug passes along detection conduit 16, it successively passes fluid detection sensors 17 and 15. These sensors may be the same or a different type of sensor and are inclusive of infrared optical sensors, capacitive sensors and thermal time of flight sensors. In the case of infrared sensors or transducers, the sensors detect the presence of water based liquids due to selective absorption. These sensors are available to one of skill in the art and include those that operate in reflective mode so both the light source and detector can be held in the main unit 11. The start and end of the slug is detected successively by sensors 17 and 15. By comparing the time delay between start and end of the slug passing the two sensors, both the speed and length of slug can be calculated. For system 100, the sensors are placed in the main unit 11 of the NPWT device such that they can sense the slug in the detection conduit 16 from their position within the main unit 11. In some embodiments, the main unit is a reusable portion of the system and the sensors are positioned such that they can sense through the main unit 11, for example, through thin layers of plastic or other suitable material that form the main unit 11 and/or detection conduit 16. In some embodiments, fluid conduit 16 is an open channel covered by a thin wall of an adhesive film. In some embodiments, the fluid conduit 16 is moulded into the top of canister 8.


The system of FIG. 1 is for illustrative purposes only and it is intended that a fluid sensing system may comprise additional components and/or lack one or more components shown. For example, one or more sensors within the main unit 11 may not be necessary for the system to function as described. As a further example, the connector 14 may be configured in a different manner or not present in the fluid sensing system.


The devices and systems described herein may be used with any canister available in the art, including the fluid collection apparatus described in the corresponding provisional application, filed on Jul. 8, 2017 as U.S. provisional patent application No. 62/360,211, concurrently with the provisional application to this application, the contents of which are fully incorporated herein.


Fluid Collection Device


In one aspect of the disclosure, provided herein are fluid collecting devices configured to collect liquid from a fluid input comprising a combination of liquid and air. The collected liquid may then be discharged from the device into a conduit as a column of liquid, or a slug, which can then be detected by one or more sensors. In some embodiments, a fluid collection device comprises: (a) a housing comprising an inlet and an outlet, the inlet located at a proximal end of the housing and the outlet located at a distal end of the housing; (b) a reservoir positioned within the housing at the proximal end of the housing; (c) a plurality of channel dividers positioned within the housing between the reservoir and the distal end of the housing, the plurality of channel dividers having a proximal end and a distal end; wherein the plurality of channel dividers define a plurality of fluid channels within the housing; (d) and a liquid collection region positioned within the housing between the distal end of the plurality of channel dividers and the distal end of the housing; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing.


Fluid collection devices described herein are configured to accumulate liquid from a fluid, for example, within the plurality of flow channels, while air from the fluid bypasses the channels. Once all of the flow channels are filled with liquid, pressure from incoming air from the fluid pushes the liquid accumulated from the flow channels into the liquid collection region where the liquid is collected before being passed through a conduit as a slug. In some embodiments, the shape of a fluid collection device facilitates the accumulation and collection of liquid. In some embodiments, the width of the liquid collection region is smaller near the distal end of the housing than the width of the liquid collection region near the proximal end of the housing. In some cases, the fluid collection device is tapered and a proximal end of the reservoir has a width greater than the width of a distal end of the liquid collection region. As a non-limiting example, the width of the proximal end of the reservoir is about or at least about 2 to 5 times the width of the distal end of the liquid collection region. In some cases, the ratio of sizes can be as small as 1:1 provided there is a means of allowing air or gas to bypass liquid that is accumulating such that fluid and air are collated into discrete. The ratio of sizes can then be much larger while still providing the bypass function for air or gas. The limit of the size ratio is, at least in part, driven by the preferred size of liquid column for sensing and by the effect of the pressure difference needed to drive liquid through to the distal liquid region. If the ratio of volumes is large then the length of the liquid column becomes large and the pressure differential to drive the fluid consequently increases. The ratio of sizes relates to the ratio of lengths of liquid column entering and leaving the reservoir region. An alternative form to a planar reservoir includes a circular or conical form where the fluid channels are arranged around the circumference of the cone such that air or gas can bypass liquid that is accumulating in the fluid channels until the accumulated liquid bridges the last empty channel and the accumulated liquid is driven into the distal tubing as a column of liquid, or slug.


In some embodiments, the interior of the housing is configured to hold between about 100 uL and about 500 uL of fluid, or about 100 uL, 200 uL, 300 uL, 400 uL or 500 uL of fluid. In some cases, the interior of the housing holds about 200 uL of fluid. In some embodiments, the liquid collection region is configured to receive a slug of liquid having a volume between about 10 uL and about 200 uL, or about 10 ul, 20 ul, 50 ul, 80 ul, 100 ul, 120 ul, 150 ul, or 200 uL. In some cases, the liquid collection region is configured to receive a slug of liquid having a volume of about 100 uL. In some embodiments, a width of the liquid collection region is between about 0.5 mm and about 8 mm, or about 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm or 8 mm. In some cases, a first width of the liquid collection region is between about 0.5 mm and about 8 mm, and a second width of the liquid collection region is between about 0.5 mm and about 7 mm. In some embodiments, the length of the reservoir is between about 0.5 cm and about 5 cm, or between about 1 cm and about 2 cm. In some cases, the length of the reservoir is between about 1.5 cm and 2 cm. In some embodiments, the height of the reservoir is between about 0.1 mm and about 5 mm, or about 1 mm to 2 mm.


The configuration and length of the plurality of channel dividers facilitates accumulation of liquid within the channels defined by the channel dividers. A plurality of channel dividers includes about 2-15, 3-12, 3-10, 3-8 or 3-5 channel dividers. In some embodiments, the length of one or more of the plurality of channel dividers is between about 0.2 cm and about 5 cm, or about 0.2 cm, 0.5 cm, 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, or 5 cm. In some embodiments, the height of one or more of the plurality of channel dividers is between about 0.1 mm and about 5 mm, or about 1 mm to about 2 mm. In many cases, the channel dividers extend from the bottom of the housing to the top of the housing such that when fluid is passed through the housing, if liquid is collected within the channels, air can only pass through an open channel. In such a configuration, once all open channels are filled with liquid, incoming air forces the collected liquid out of the channels to be released from the distal end of the housing as a column of liquid, or slug. In some embodiments, the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm, or between about 1 mm and about 3 mm. In some cases, the width is about 2 mm. In some cases, the plurality of channels have a reducing width from entrance to exit where the change in width is about 1 to 20 degrees, or typically about 5 degrees.


For fluid collection devices configured for use with a source of negative pressure, the device is configured to withstand pressures of up to about 200 mmHg without breaking. In general, for typically sized components of fluid collection devices described herein, a 0.5 mm to 1 mm thickness of plastic will provide adequate strength under pressures without breaking. For example, the forces due to the pressure differential, such as 200 mmHg applied over a square cm applies a load of about 2.6N. In some cases, the housing comprises a plastic material such as ABS (acrylonitrile-butadiene-styrene), PC (polycarbonate), PC-ABS, PP (polypropylene), HDPE (high-density polyethylene), or a combination thereof. In some cases, the housing comprises a transparent material.


The fluid collection device, or any region or surface thereof, may be substantially planar or flat, as well as have a curvature. The region or surface thereof includes any surface or portion of the housing, reservoir, channel divider, and liquid collection region. In some cases, a surface of a fluid collection device comprises one or more non-planar features, for example, a well and/or pillar. In some embodiments, housing comprises a planer surface from the proximal end to the distal end of the housing. In some embodiments, the housing comprises a curved surface from the proximal end to the distal end of the housing. An alternative form to a planar reservoir includes a circular conical form where the fluid channels are arrange around the circumference of the cone such that air or gas can bypass liquid that is accumulating in the fluid channels until the accumulated liquid bridges the last empty channel and the accumulated liquid is driven into the distal tubing. In some cases, this format is suited for use in line in fluid tubes where the overall circular cross section could be convenient.


In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises a hydrophobic surface. In some cases, the hydrophobic surface is applied using a plasma treatment available to one of skill in the art. This includes, but is not limited to, plasma treatments provided by Hennika Plasma. In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises a coating configured to enhance release of liquid from the surface. In some cases, a surface is coated with polytetrafluoroethylene. A non-limiting example of a surface coating that enhances liquid release is NANOMYTE® SuperCN, supplied by NEI Corporation.


In some embodiments, a fluid collection device comprises: (a) a housing comprising an inlet and an outlet, the inlet located at a proximal end of the housing and the outlet located at a distal end of the housing; (b) a reservoir positioned within the housing at the proximal end of the housing; (c) a plurality of channel dividers positioned within the housing between the reservoir and the distal end of the housing, the plurality of channel dividers having a proximal end and a distal end; wherein the plurality of channel dividers define a plurality of fluid channels within the housing; (d) and a liquid collection region positioned within the housing between the distal end of the plurality of channel dividers and the distal end of the housing; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing. In some embodiments, the liquid collection region is configured to receive a slug of liquid having a volume between about 10 and about 200 uL. In some embodiments, the interior of the housing is configured to hold between about 100 uL and about 1000 uL of fluid and typically 500 uL. In some embodiments, the height of the reservoir, channels, liquid collection region, or any combination thereof, is between about 0.1 mm to about 5 mm, or typically about 1 mm to about 2 mm. In some embodiments, the reservoir has a width from about 5 mm to about 50 mm, or typically from about 15 mm to about 20 mm. In some embodiments, the reservoir has a length from about 5 mm to about 50 mm, or typically from about 15 mm to about 20 mm. In some embodiments, the proximal end of the housing has a width about 2 to 5 times the width of the distal end of the housing. In some embodiments, the proximal end of the liquid collection region has a width between about 0.5 mm and 8 mm, or typically about 5 mm. In some embodiments, the distal end of the liquid collection region has a width between about 0.5 mm and 7 mm, or typically about 3 mm. In some embodiments, the length of one or more of the plurality of channel dividers is between about 2 mm to 50 mm, or typically about 15 mm. In some embodiments, the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm, or typically about 2 mm. In some embodiments, the plurality of channels are tapered in the direction of flow by about 1 degree to 20 degrees, or typically about 5 degrees. In some embodiments, the plurality of channels is from about 2 to about 15 channels, or typically about 3 to 5 channels. In some embodiments, a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises a hydrophobic material.


A top view of exemplary fluid passageways formed through an interior of a fluid collection device is shown in FIG. 2. Positioned at the proximal end of device 200 is reservoir 31, which receives fluid 30 through the inlet of the device (not shown). Positioned at the distal end of device 200 is a liquid collection region 40, which releases slugs of liquid 41 collected within region 40 to tube section 37. Positioned between reservoir 31 and liquid collection region 40 are four channel dividers 34, which define five channels 33. The plurality of channel dividers 34 has a tapered configuration, so that the proximal end of the plurality 32 is wider than the distal end of the plurality. This configuration facilitates accumulation of liquid within channels 33 near the distal end of the channels.


In an exemplary fluid collection method using device 200, fluid comprising a mixture of liquid and air enters the device at reservoir 31. The fluid is then drawn to channels 33 formed by channel dividers 34, where liquid from the fluid accumulates at the distal end of the channels due to the capillary force provided by the reducing section of the channels 33. Liquid accumulates in the channels 33 while continuing to allow air to pass through the remaining open channels. Periodically, all of the fluid channel 33 become blocked with liquid and as further air or fluid is drawn into the fluid collation device, this air or fluid drives the accumulated liquid forward to liquid collection region 40, where the liquid is then drawn along the tube section 37 as a slug of liquid 41. This cycle repeats such that air drawn into the device, for example, in NPWT from the dressing and/or any other system leaks, separated successive fluid slugs 41 and 42. By timing the start 36, 38 and end 35, 39 of the slugs, both the speed and length of the slugs can be determined. Knowledge of the cross sectional area of the tube section 37 then allows a volumetric flow to be calculated.


An isometric representation of an exemplary fluid collection device is shown in FIG. 3. Positioned at the proximal end of device 300 is reservoir 31, which receives fluid through the inlet 30 of the device housing. Positioned at the distal end of device 300 is a liquid collection region 40, which releases slugs of liquid collected within region 40 to outlet 45. Positioned between reservoir 31 and liquid collection region 40 are three channel dividers 34, which define four channels 33 having a proximal end 32 in communication with reservoir 31, and a distal end in communication with liquid collection region 40. In an exemplary method for fluid collection using device 300, fluid comprising liquid and air enters the device housing at inlet 30 and then collects in reservoir 31. As fluid is drawn from the reservoir 31 through the device, liquid from the fluid accumulates within channels 33, while air from the fluid bypasses the channels and passes through outlet 45. Liquid gradually fills channels 33 until there is no channel open for air to pass through. The accumulated liquid is forced to liquid collection region 40 as fluid continues to enter the housing. The liquid collected in region 40 is released from the device through outlet 45 and into a conduit for detection by one or more sensors as described elsewhere herein.


Flow Sensors


Liquid collected as a slug using a fluid collection device described herein may be detected by one or more flow sensors. In some embodiments, a flow sensor is housed within a durable or reusable portion of a system that can be used with more than one fluid collection device over time. As a non-limiting example, a flow sensor is housed in a main unit of a negative pressure system, the main unit comprising the source of negative pressure and optionally one or more additional elements, including pressure sensors. In some embodiments, a flow sensor is an infrared sensor known and available to one of skill in the art. As a non-limiting example a flow sensor is an infrared sensor such as a reflective optical sensor. Particular examples of reflective optical sensors include those made by Broadcom, part number HSDL-9100-024. Such sensors combine an analogue-output reflective sensor with an IR emitter and photodiode. These sensors have a typical rise time of 50 ns and typical fall time of 50 ns, which minimizes timing delays to detecting the start and end of liquid slugs. Further sensors available to those of skill in the art include tube sensors, such as those produced by Optek Technology, part number OPB350. Such tube sensors operate for tubing of a specific size, for example, ⅛th inch tubing, and operate such that clear liquid present causes the phototransistor to sink the maximum current, while dark liquid present causes it to sink the minimum current. These sensors may have a slower response time, less than 50 microseconds rise time and a fall time in the region of 50 to 250 microseconds, however, still provide a response time suitable for use in the methods described herein.


In one aspect, provided herein is a sensing device for use with a fluid collection device as described elsewhere herein. In some embodiments, the sensing device is part of a main unit of a negative pressure system, wherein the main unit comprises both a source of negative pressure and one or more flow sensors for detecting liquid collected as a slug using a fluid collection device. In some embodiments, a sensing device comprises a casing comprising a source of negative pressure and one or more flow sensors situated within the casing such that a material located outside of the casing is in the field of view of the sensors. A non-limiting example of a flow sensor is an infrared sensor. In some cases, the sensing device comprises a plurality of flow sensors, the plurality comprising about 2, 3, 4, 5, 6, 7, 8, 9 or 10 flow sensors. For some instances where the sensing device comprises two or more flow sensors, a first flow sensor is positioned between about 0.5 cm and about 4 cm, or typically about 2 cm from a second flow sensor, as measured center-to-center.


In some embodiments, the casing comprises a thin layer of plastic within the field of view of the flow sensor. Plastics include, polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, and any other plastic having suitable infrared transmittance at the frequency where liquid is absorbing. In some embodiments, a casing has a typical thicknesses from about 0.1 mm as a film to about 3 mm as a moulding. In some embodiments, a film bonded over an open channel is used. In some embodiments, a casing comprises a moulded section of about 1 mm to about 1.5 mm thickness. In some embodiments, the casing comprises one or more windows within the field of view of the flow sensor which can allow the main casework to be of an infrared absorbing material and to still provide visibility of the fluid for the sensors. The windows can be provided by plastics that are transmissive of infrared at wave-numbers between 3000 and 4000 cm−1. In some cases, a thickness of the window is between about 0.1 mm and about 5 mm, or about 1 to 1.5 mm. In some embodiments, the window is comprised of a plastic, for example, polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof. Alternatively, the window is an open window with a transmissive-reflective sensor as known to one of skill in the art. By way of example, a Broadcom sensor, part number HSDL-9100-024. The transmissive-reflective sensor is positioned either close to the window or fitted into the aperture within the casework. In some embodiments, the sensing device further comprises a light source situated within the interior of the casing such that the material located outside of the casing is in the path of the light source. In many implementations, a sensor and light source are combined as a unit as described above.


In some embodiments, the flow sensor is housed with one or more pressure sensors. Pressure sensors suitable are known to those of skill in the art. Non-limiting examples of pressure sensors include: Omron part number SMPP03, range +/−50 kPa; Honeywell, part number ABP L LN N 250 MD A A 3, range +/−250 mbar; and NXP, part number MPXV7025DP, with range −25 kPa to 25 kPa. Fluid sensors then include those as described, such as reflective optical sensors made by Broadcom, part number HSDL-9100-024 and Optek Technology, part number OPB350.


As a non-limiting example, one of the one or more pressure sensors is configured to detect a pressure of a wound environment by measuring a pressure at a first end of a conduit positioned within the casing, wherein the second end of the conduit is positioned at the wound environment. As another example, one of the one or more pressure sensors is configured to detect a pressure of a canister by measuring a pressure at a first end of a conduit positioned within the casing, wherein the second end of the conduit is positioned within the canister; and wherein the conduit is configured to apply a negative pressure from the source of negative pressure to the canister.


In some embodiments, the sensing device comprises a controller configured to control an amount of negative pressure applied by the source of negative pressure. In some embodiments, the source of negative pressure comprises a diaphragm pump. Diaphragm pumps are available to one of skill in the art and include, by way of example, those provided by Gardener Denver, model number 2002, 3003 or 3013; KNF part numbers NMS010S or NMS020S; and Koge, part number KPV08A-3A or KPV14A. In some implementations where the sensing device comprises a pressure sensor, the controller controls the amount of negative pressure applied by the source of negative pressure in response to a measurement of pressure by one or more pressure sensors. In some embodiments, a sensing device comprises a display for displaying one or more parameters of the material corresponding to measurements of the material taken by the plurality of infrared sensors. In some embodiments, a sensing device comprises a power source for providing power to the source of negative pressure, controller, display, or a combination thereof. In some embodiments, a sensing device lacks a power source for powering the source of negative pressure, controller, display, or a combination thereof, and the power source is provided by an external unit connected to the sensing device. As a non-limiting example, a connector, such as connector 14 exemplified in FIG. 1, provides the power source. A source of power includes a battery, such as an alkaline or lithium ion battery, for example, a CR123A cell as provided by manufactures such as Panasonic or Duracell or AA lithium batteries such as those supplied by Energiser. In some other cases, a rechargeable battery is used, such as a lithium polymer cell as supplied by Panasonic or Sanyo of NIMH batteries supplied by companies such as Panasonic and FDK.


A non-limiting example of a sensing device is shown as the main unit 11 in the system 100 of FIG. 1. Main unit 11 comprises two flow sensors 15 and 17, such as infrared sensors, a pump 9, and pressure sensors 10 and 12. Flow sensors 15 and 17 are positioned adjacent a side of the unit 11 configured to allow for a material located outside of the casing to be in the field of view of, and detected by, the sensors.


Systems and Methods


In one aspect of the disclosure, provided herein are systems comprising a fluid collection device and/or flow sensing device as described herein. In some embodiments, provided is a device system comprising the fluid collection device and flow sensing device. Systems provided herein may further comprise one or more accessory elements, for example, elements useful for performing a negative pressure therapy. In some embodiments, an accessory comprises a wound dressing. In some embodiments, an accessory comprises a collection canister. In some embodiments, an accessory comprises one or more conduits or tubings configured to connect to the dressing, canister, and/or sensing device. In some embodiments, an accessory comprises a connector configured to connect the dressing to a collection canister, connect the collection canister to the sensing device, and connect the dressing to the sensing device.


In some embodiments, provided herein is a system comprising a fluid collection device and a fluid collection canister. The fluid collection device may be an integral component of the collection device, or operably connected to the collection device via one or more connectors and/or tubings. The fluid collection device can be formed as a combination of an open channel moulded into the top of the canister and sealed by a film. Alternatively the fluid collection device is built into the connector that connects the dressing to the main unit and the fluid channel can be made from two or more moulded components bonded or sealed together by adhesive, sealant or welding. Similarly, the fluid channel can be formed by a thin film bonded to cover and seal an open channel. The outward (distal) end of the fluid collection device is then connected to the canister via a sealed connection provided by means such as an O ring seal or face seal.


In some embodiments, provided herein is a fluid flow sensing system comprising a fluid collection device, a canister, and a sensing device. The fluid collection device of the fluid flow sensing system comprises a housing having an inlet located at a proximal end of the fluid collection device and an outlet located at a distal end of the fluid collection device, the interior of the housing comprising: a reservoir, a plurality of channel dividers defining a plurality of fluid channels, and a liquid collection region; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing. The canister of the fluid flow sensing system comprises an inlet and an outlet, the inlet of the canister in fluid communication with the outlet of the fluid collection device housing via a detection conduit. In some fluid flow sensing systems, the fluid collection device is integral with the canister. The sensing device of the fluid flow sensing system comprises a casing having an inlet, a source of negative pressure and a plurality of sensors; the inlet of the sensing device casing in fluid communication with the outlet of the canister via a negative pressure conduit. In some fluid flow sensing systems, the source of negative pressure comprises a diaphragm pump. In some cases, the plurality of sensors comprises from about 2 to about 5 flow sensors. An exemplary flow sensor is an infrared sensor. In some cases, the plurality of flow sensors comprises two infrared sensors.


In some embodiments, the fluid flow sensing system further comprises a connector. The connector may house at least a portion of the negative pressure conduit. In some cases, the connector comprises a power source for providing power to the source of negative pressure.


In some embodiments, the detection conduit comprises plastic material, such as polyvinyl chloride, polycarbonate, high density polyethylene, polystyrene, or a combination thereof. In some embodiments, the conduit has a thickness of about 0.1 mm to about 3 mm, or typically about 0.1 mm thick if a film of plastic is used and about 0.5 mm to 1.5 mm thick if a moulded wall is used. In some embodiments, the detection conduit has an inner diameter of less than or equal to about 5 mm, or typically about 1 to 3 mm. In some embodiments, the volume of the slug to be detected is between about 10 uL and about 3000 uL, or typically about 30 uL. In some embodiments, the length of the slug to be detected is between about 1 mm and about 100 mm, or typically between about 20 mm and 80 mm.


In some embodiments, the sensing device further comprises a pressure sensor. For some methods employing the fluid flow sensing system, application of negative pressure from the source of negative pressure is modulated to maintain a predetermined pressure within the negative pressure conduit.


The fluid collection device of the flow sensing system may be configured and sized as appropriate to enable the collection of liquid from a fluid mixture of liquid and air. As a non-limiting example, the fluid collection device comprises from about 3 to about 8 channel dividers defining from about 4 to about 9 channels for accumulating fluid prior to fluid collection and release as a slug of liquid. In some embodiments, the plurality of fluid channels is configured to accumulate between about 20 uL and about 300 uL of liquid. In some cases, the length of one or more of the plurality of channel dividers is between about 0.5 cm and about 2 cm. In some embodiments, the height of one or more of the plurality of channel dividers is between about 0.5 mm and about 2 mm. In some embodiments, the width of one or more of the plurality of channels is between about 0.5 mm and about 2 mm. In some embodiments, the fluid collection device is tapered and a proximal end of the reservoir has a width greater than the width of a distal end of the liquid collection region. In some embodiments, the width of the proximal end of the reservoir is at least about 5× the width of the distal end of the liquid collection region. As a non-limiting example, the width of the liquid collection region is between about 5 mm and about 20 mm. In some cases, the length of the reservoir is between about 0.5 cm and about 3 cm. In some embodiments, the height of the reservoir is between about 1 mm and about 2 mm. In some embodiments, the housing comprises a plastic material.


In some embodiments, the casing of the sensing device comprises a thin layer of plastic material so that a flow sensor positioned next to the thin layer of plastic material detects a slug located on the other side of the thin layer of plastic material. In general, depending on the particular sensor selected, the distance between the sensor and fluid conduit should be sized to match the sensor. Some sensors are set for detection distances of a few millimeters (1 to 5 mm) and others are set for longer ranges not limited to 50 mm. In some embodiments, the sensing device further comprises a light source situated within the interior of the casing such that the slug is in the path of the light source. In some embodiments, the sensing device further comprises a controller configured to control the amount of negative pressure applied by the source of negative pressure. As a non-limiting example, the controller controls the amount of negative pressure applied by the source of negative pressure in response to a measurement of pressure. In some embodiments, the sensing device further comprises a display for displaying one or more parameters of the slug corresponding to measurements of the slug taken by the plurality of sensors. In some embodiments, the sensing device further comprises a power source. In further embodiments, the sensing device does not comprise a power source and power is supplied to the sensing device by an external unit connected to the sensing device.


A non-limiting method for sensing fluid using a fluid flow sensing system comprises applying a negative pressure from the source of negative pressure to the fluid collection device via the canister to draw a fluid mixture of liquid and air through the inlet of the fluid collection device and along the one or more fluid passageways of the fluid collection device housing; wherein the liquid of the fluid mixture accumulates at the plurality of flow channels while the air of the fluid mixture passes through flow channels until the plurality of flow channels have accumulated liquid of the fluid mixture; drawing the accumulated fluid into the liquid collection region as a slug of liquid when the plurality of flow channels become blocked with the accumulated fluid; drawing the slug from the liquid collection region, through the outlet of the fluid collection housing, and through the detection conduit; and detecting passage of the slug through the detection conduit with the plurality of sensors. In some embodiments, the fluid provided to the fluid collection apparatus comprises less than or greater than about 5% of air by volume. In other embodiments the fluid provided to the fluid collection apparatus comprises less than or greater than about 1% of liquid by volume. For applications of NPWT, the ratio of the percentage of air to liquid depending on the ratio of exudates flow from the patient and the rate of air leak into the dressing. Suitable negative pressures applied in such a method include pressures between about 80 and about 125 mmHg below atmospheric pressure.


In some embodiments, the time it takes for the beginning of the slug to reach each of the plurality of sensors is detected successively; and the time it takes for the end of the slug to reach each of the plurality of sensors is detected successively. Some methods comprise comparing the time delay between the beginning and the end of the liquid slug passing the plurality of sensors to calculate the speed and length of the slug. The rate of the flow of the mixture from the fluid collection device can also then be calculated.


The method for sensing fluid flow may be performed as part of a negative pressure wound therapy, where the fluid drawn to the canister is exudate from the wound of a patient and the inlet of fluid collection device is fluidically connected to the wound site of the patient via a wound conduit. In some methods, the canister is positioned relative to the patient in an orientation-independent manner.


EXAMPLES
Example 1
Fluid Collection Device

A fluid collection device as generally shown by 2 was manufactured. Positioned at the proximal end of the device is a reservoir having a 15-20 mm width and 15-30 mm length, and configured to receive through an inlet of the device. Positioned at the distal end of the device is a liquid collection region having a 1-10 mm length, 0.5-8 mm proximal width, 0.5-7 mm distal width, and configured to releases slugs of liquid collected within this region to a tube. Positioned between the reservoir and liquid collection region are four channel dividers defining five channels. Each flow divider is 0.1-5 mm in width, defining channels having 0.1-5 mm widths. The dividers are tapered to 1-20 degrees, so that the proximal end of the plurality is wider than the distal end of the plurality. This configuration facilitates accumulation of liquid within the channels near the distal end of the channels. The overall length of the device is 75 mm, with a 30 mm width.


Example 2
Flow Sensing

The fluid collection device of Example 1 was used to collect slugs of liquid from a fluid input comprising a mixture of fluid and air. The nominal flow of liquid was set to 3 cc per minute and an air flow of 10 cc per minute was mixed with the liquid so that a two phase flow was established. When the slugs were collated by the device of Example 1, they were passed through a detection conduit where they were detected by a pair of infrared sensors. The infrared sensors were of the type made by Optek Technology, part number OPB350 and the pair of sensors were placed 50 mm apart.



FIG. 4 shows graphs of response signals from the two sensors as the slugs passed through the detection conduit for 1 min. FIG. 5 shows graphs of response signals from the two sensors as the slugs passed through the detection conduit for 15 min. FIG. 6 shows graphs of processed response signals from the graphs of FIG. 5. FIG. 7 shows a section of the processed response signal from the graphs of FIG. 6, indicating when flow was detected. FIG. 8 shows graphs plotting the mass of liquid detected flowing through the detection conduit as a function of time in minutes, and the nominal mass of liquid actually flowing through the detection conduit as a function of time in minutes.


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the inventions described herein may be employed in practicing the inventions. It is intended that the following claims define a scope of the inventions and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A fluid collection device comprising: a) a housing comprising an inlet and an outlet, the inlet located at a proximal end of the housing and the outlet located at a distal end of the housing;b) a reservoir positioned within the housing at the proximal end of the housing;c) a plurality of channel dividers positioned within the housing between the reservoir and the distal end of the housing, the plurality of channel dividers having a proximal end and a distal end; wherein the plurality of channel dividers define a plurality of fluid channels within the housing; andd) a liquid collection region positioned within the housing between the distal end of the plurality of channel dividers and the distal end of the housing;wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing; andwherein the fluid collection device is configured to collect liquid from a fluid comprising liquid and air, and then release the collected liquid as a slug.
  • 2. The fluid collection device of claim 1, wherein the fluid collection device is tapered and a proximal end of the reservoir has a width greater than the width of a distal end of the liquid collection region.
  • 3. The fluid collection device of claim 1, wherein the liquid collection region is configured to receive a slug of liquid having a volume between about 10 uL and about 200 uL.
  • 4. The fluid collection device of claim 1, wherein the length of one or more of the plurality of channel dividers is between about 2 mm and about 50 mm.
  • 5. The fluid collection device of claim 1, wherein the width of one or more of the plurality of channels is between about 0.1 mm and about 5 mm.
  • 6. The fluid collection device of claim 1, wherein the width of one or more of the plurality of channels is tapered to reduce direction of flow by about 1 degree to about 20 degrees.
  • 7. The fluid collection device of claim 1, wherein a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises a hydrophobic material.
  • 8. The fluid collection device of claim 7, wherein the hydrophobic material has a water contact angle greater than or equal to about 155°.
  • 9. The fluid collection device of claim 1, wherein a surface of the reservoir, plurality of channels, liquid collection region, or a combination thereof comprises polytetrafluoroethylene (PTFE).
  • 10. The fluid collection device of claim 1, wherein the housing comprises a transparent material.
  • 11. A canister comprising or operably connected to the fluid collection device of claim 1.
  • 12. A fluid collection system comprising the fluid collection device of claim 1 and a canister, wherein the outlet of the fluid collection device is in fluid communication with an inlet of the canister.
  • 13. A fluid collection system comprising the fluid collection device of claim 1 and a wound dressing, wherein the inlet of the fluid collection device is in fluid communication with an outlet of the wound dressing.
  • 14. A fluid collection system comprising the fluid collection device of claim 1 and a sensing device comprising: a plurality of infrared sensors situated within a casing such that a column of liquid located outside of the casing is in the field of view of the plurality of infrared sensors.
  • 15. A fluid flow sensing system comprising: a) a fluid collection device comprising a housing having an inlet located at a proximal end of the fluid collection device and an outlet located at a distal end of the fluid collection device, the interior of the housing comprising: a reservoir, a plurality of channel dividers defining a plurality of fluid channels, and a liquid collection region; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing;b) a canister comprising an inlet and an outlet, the inlet of the canister configured to be in fluid communication with the outlet of the fluid collection device housing via a detection conduit; andc) a sensing device comprising: a casing having an inlet, a source of negative pressure and a plurality of sensors; the inlet of the sensing device casing configured to be in fluid communication with the outlet of the canister via a negative pressure conduit.
  • 16. The fluid flow sensing system of claim 15, wherein the inlet of fluid collection device is configured to be connected to a wound site of a patient via a wound conduit.
  • 17. The fluid flow sensing system of claim 15, wherein the detection conduit has an inner diameter of less than or equal to about 0.5 mm to about 5 mm.
  • 18. The fluid flow sensing system of claim 15, wherein the source of negative pressure comprises a diaphragm pump.
  • 19. The fluid flow sensing system of claim 17, wherein the detection conduit comprises a material transmissive of infrared at a wavenumber between about 3000 cm·1 to about 4000 cm·1.
  • 20. The fluid flow sensing system of claim 15, further comprising a pressure sensor.
  • 21. A method for sensing fluid flow, the method comprising: a) providing: i) a fluid collection device comprising a housing having an inlet located at a proximal end of the fluid collection device and an outlet located at a distal end of the fluid collection device, the interior of the housing comprising: a reservoir, a plurality of channel dividers defining a plurality of fluid channels, and a liquid collection region; wherein the housing comprises one or more fluid passageways connecting the inlet and the outlet through the interior of the housing; and wherein the reservoir, the plurality of channels, and the liquid collection region are in fluid communication within the one or more fluid passageways in the housing;ii) a canister comprising an inlet and an outlet, the inlet of the canister in fluid communication with the outlet of the fluid collection device housing via a detection conduit; andiii) a sensing device comprising: a casing having an inlet, a source of negative pressure and a plurality of sensors; the inlet of the sensing device casing in fluid communication with the outlet of the canister via a negative pressure conduit;b) applying a negative pressure from the source of negative pressure to the fluid collection device via the canister to draw a fluid mixture of liquid and air through the inlet of the fluid collection device and along the one or more fluid passageways of the fluid collection device housing; wherein the liquid of the fluid mixture accumulates at the plurality of flow channels while the air of the fluid mixture passes through flow channels until the plurality of flow channels have accumulated liquid of the fluid mixture;c) drawing the accumulated fluid into the liquid collection region as a slug of liquid when the plurality of flow channels become blocked with the accumulated fluid;d) drawing the slug from the liquid collection region, through the outlet of the fluid collection housing, and through the detection conduit; ande) detecting passage of the slug through the detection conduit with the plurality of sensors.
  • 22. The method of claim 21, wherein the time it takes for the beginning of the slug to reach each of the plurality of sensors is detected successively; and wherein the time it takes for the end of the slug to reach each of the plurality of sensors is detected successively.
  • 23. The method of claim 22, further comprising comparing the time delay between the beginning and the end of the liquid slug passing the plurality of sensors to calculate the speed and length of the slug.
  • 24. The method of claim 23, further comprising calculating the rate of the flow of the mixture from the fluid collection device.
  • 25. The method of any claim 21, wherein the inlet of fluid collection device is connected to a wound site of a patient via a wound conduit, and the fluid mixture drawn through the inlet of the fluid collection device is fluid drawn from the wound site of the patient.
  • 26. The method of claim 25, wherein the fluid collection device is connected to the wound site of the patient in an orientation-independent manner.
CROSS-REFERENCE

This application is a U.S. National Phase of International Application No. PCT/US2017/041216, filed on Jul. 7, 2017, which claims the benefit of U.S. Provisional Application No. 62/360,248, filed Jul. 8, 2016, both of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/041216 7/7/2017 WO
Publishing Document Publishing Date Country Kind
WO2018/009879 1/11/2018 WO A
US Referenced Citations (606)
Number Name Date Kind
4441215 Kaster Apr 1984 A
5358492 Feibus Oct 1994 A
6695823 Lina et al. Feb 2004 B1
8083712 Biggie et al. Dec 2011 B2
8308714 Weston et al. Nov 2012 B2
8439894 Miller May 2013 B1
8521979 Laberge et al. Aug 2013 B2
8814840 Evans et al. Aug 2014 B2
8858516 Hu et al. Oct 2014 B2
9205183 Hartwell et al. Dec 2015 B2
10016537 Menon et al. Jul 2018 B2
10046096 Askem et al. Aug 2018 B2
10076447 Barta et al. Sep 2018 B2
10076587 Locke et al. Sep 2018 B2
10143784 Walton et al. Dec 2018 B2
10207031 Toth Feb 2019 B2
10426670 von Blucher et al. Oct 2019 B2
10426747 Johnson Oct 2019 B2
10426874 Chien et al. Oct 2019 B2
10426875 Blott et al. Oct 2019 B2
10426938 Locke et al. Oct 2019 B2
10434015 Taylor et al. Oct 2019 B2
10434142 Niazi et al. Oct 2019 B2
10434210 Olson et al. Oct 2019 B2
10434284 Hanson et al. Oct 2019 B2
10449094 Donda et al. Oct 2019 B2
D866756 Allen et al. Nov 2019 S
10463760 Karthikeyan et al. Nov 2019 B2
10463773 Haggstrom et al. Nov 2019 B2
10470933 Riesinger Nov 2019 B2
10470936 Wohlgemuth et al. Nov 2019 B2
10471122 Shi et al. Nov 2019 B2
10471190 Locke et al. Nov 2019 B2
10478345 Barta et al. Nov 2019 B2
10478346 Knutson Nov 2019 B2
10478394 Yu Nov 2019 B2
10485707 Sexton Nov 2019 B2
10485891 Andrews et al. Nov 2019 B2
10485892 Hands et al. Nov 2019 B2
10485906 Freedman et al. Nov 2019 B2
10486135 Yang et al. Nov 2019 B2
10492956 Zamierowski Dec 2019 B2
10493178 Marchant et al. Dec 2019 B2
10493184 Collinson et al. Dec 2019 B2
10493185 Stokes et al. Dec 2019 B2
10500099 Hung et al. Dec 2019 B2
10500103 Croizat et al. Dec 2019 B2
10500104 Sookraj Dec 2019 B2
10500173 Yang et al. Dec 2019 B2
10500235 Wardell Dec 2019 B2
10500300 Dybe et al. Dec 2019 B2
10500301 Laurensou Dec 2019 B2
10500302 Holm et al. Dec 2019 B2
10501487 Andrews et al. Dec 2019 B2
10506928 Locke et al. Dec 2019 B2
10507141 Allen et al. Dec 2019 B2
10507259 Cree et al. Dec 2019 B2
10512707 Whalen, III et al. Dec 2019 B2
10525170 Havenstrite et al. Jan 2020 B2
10532137 Pratt et al. Jan 2020 B2
10532194 Locke et al. Jan 2020 B2
10537657 Phillips et al. Jan 2020 B2
10542936 Goldberg et al. Jan 2020 B2
10543133 Shaw et al. Jan 2020 B2
10543293 Suschek Jan 2020 B2
10548777 Locke et al. Feb 2020 B2
10549008 Yoo Feb 2020 B2
10549016 Bushko et al. Feb 2020 B2
10549017 Hsiao et al. Feb 2020 B2
10555838 Wu et al. Feb 2020 B2
10555839 Hartwell Feb 2020 B2
10556044 Robinson et al. Feb 2020 B2
10561533 Hoggarth et al. Feb 2020 B2
10561536 Holm et al. Feb 2020 B2
10568767 Addison et al. Feb 2020 B2
10568768 Long et al. Feb 2020 B2
10568770 Robinson et al. Feb 2020 B2
10568771 MacDonald et al. Feb 2020 B2
10568773 Tuck et al. Feb 2020 B2
10568983 Gerdes et al. Feb 2020 B2
10575991 Dunn Mar 2020 B2
10575992 Sarangapani et al. Mar 2020 B2
10576037 Harrell Mar 2020 B2
10576189 Locke et al. Mar 2020 B2
10583042 Sarangapani et al. Mar 2020 B2
10583228 Shuler et al. Mar 2020 B2
10589007 Coulthard et al. Mar 2020 B2
10590184 Kuo Mar 2020 B2
10610414 Hartwell et al. Apr 2020 B2
10610415 Griffey et al. Apr 2020 B2
10610623 Robinson et al. Apr 2020 B2
10617569 Bonn Apr 2020 B2
10617608 Shin et al. Apr 2020 B2
10617769 Huang Apr 2020 B2
10617784 Yu et al. Apr 2020 B2
10617786 Kluge et al. Apr 2020 B2
10618266 Wright et al. Apr 2020 B2
10624984 Courage et al. Apr 2020 B2
10625002 Locke et al. Apr 2020 B2
10632019 Vitaris Apr 2020 B2
10632224 Hardy et al. Apr 2020 B2
10639206 Hu et al. May 2020 B2
10639350 Arber et al. May 2020 B2
10639404 Lichtenstein May 2020 B2
10646614 Grinstaff et al. May 2020 B2
10653562 Robinson et al. May 2020 B2
10653782 Ameer et al. May 2020 B2
10653810 Datt et al. May 2020 B2
10653821 Nichols May 2020 B2
10653823 Bharti et al. May 2020 B2
10660799 Wu et al. May 2020 B2
10660851 Millis et al. May 2020 B2
10660992 Canner et al. May 2020 B2
10660994 Askem et al. May 2020 B2
10667955 Allen et al. Jun 2020 B2
10667956 Van Holten et al. Jun 2020 B2
10682257 Lu Jun 2020 B2
10682258 Manwaring et al. Jun 2020 B2
10682259 Hunt et al. Jun 2020 B2
10682318 Twomey et al. Jun 2020 B2
10682386 Ellis-Behnke et al. Jun 2020 B2
10682446 Askem et al. Jun 2020 B2
10687983 Dahlberg et al. Jun 2020 B2
10687985 Lee et al. Jun 2020 B2
10688215 Munro et al. Jun 2020 B2
10688217 Hanson et al. Jun 2020 B2
RE48117 Albert et al. Jul 2020 E
10702419 Locke et al. Jul 2020 B2
10702420 Hammond et al. Jul 2020 B2
10703942 Tunius Jul 2020 B2
10709760 Gronberg et al. Jul 2020 B2
10709807 Kshirsagar Jul 2020 B2
10709883 Spector Jul 2020 B2
10716711 Locke et al. Jul 2020 B2
10716874 Koyama et al. Jul 2020 B2
10729589 Dorian et al. Aug 2020 B2
10729590 Simmons et al. Aug 2020 B2
10729826 Lin Aug 2020 B2
10736787 Hannigan et al. Aug 2020 B2
10736788 Locke et al. Aug 2020 B2
10736985 Odermatt et al. Aug 2020 B2
10737003 Fujisaki Aug 2020 B2
10743900 Ingram et al. Aug 2020 B2
10744040 Kazala, Jr. et al. Aug 2020 B2
10744041 Hartwell Aug 2020 B2
10744225 Lindgren et al. Aug 2020 B2
10744237 Guidi et al. Aug 2020 B2
10744238 Guidi et al. Aug 2020 B2
10744239 Armstrong et al. Aug 2020 B2
10744240 Simmons et al. Aug 2020 B2
10751212 Raza et al. Aug 2020 B2
10751442 Bonnefin et al. Aug 2020 B2
10751452 Topaz Aug 2020 B2
10758423 Pigg et al. Sep 2020 B2
10758424 Blott et al. Sep 2020 B2
10758425 Blott et al. Sep 2020 B2
10758426 Eddy Sep 2020 B2
10758651 Blott et al. Sep 2020 B2
10765561 Lattimore et al. Sep 2020 B2
10765783 Locke et al. Sep 2020 B2
10772767 Bjork et al. Sep 2020 B2
10772999 Svensby Sep 2020 B2
10779993 Bishop et al. Sep 2020 B2
10780114 Udagawa et al. Sep 2020 B2
10780194 Flach et al. Sep 2020 B2
10780201 Lin Sep 2020 B2
10780202 Askem et al. Sep 2020 B2
10780203 Coulthard et al. Sep 2020 B2
10782238 Hicks et al. Sep 2020 B2
10792191 Robinson et al. Oct 2020 B2
10792192 Tout et al. Oct 2020 B2
10792337 Leung et al. Oct 2020 B2
10792404 Hu et al. Oct 2020 B2
10792482 Randolph et al. Oct 2020 B2
10800905 Delli-Santi et al. Oct 2020 B2
10806819 Shuler Oct 2020 B2
20060015019 Watt et al. Jan 2006 A1
20060155260 Blot et al. Jul 2006 A1
20060172000 Cullen et al. Aug 2006 A1
20060173253 Ganapathy Aug 2006 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070208300 Pravong et al. Sep 2007 A1
20070219512 Heaton et al. Sep 2007 A1
20070239078 Jaeb Oct 2007 A1
20080082059 Fink Apr 2008 A1
20090082731 Moreno Mar 2009 A1
20090234307 Vitaris Sep 2009 A1
20090259203 Hu et al. Oct 2009 A1
20090293887 Wilkes et al. Dec 2009 A1
20090299303 Seegert Dec 2009 A1
20100015208 Kershaw et al. Jan 2010 A1
20100030178 MacMeccan et al. Feb 2010 A1
20100036333 Schenk, III et al. Feb 2010 A1
20100069863 Olson Mar 2010 A1
20100125233 Edward et al. May 2010 A1
20100125258 Coulthard et al. May 2010 A1
20100137775 Hu et al. Jun 2010 A1
20100168719 Chen Jul 2010 A1
20100185163 Heagle Jul 2010 A1
20100298790 Guidi et al. Nov 2010 A1
20100318043 Malhi et al. Dec 2010 A1
20100324516 Braga et al. Dec 2010 A1
20110015595 Robinson et al. Jan 2011 A1
20110028918 Hartwell Feb 2011 A1
20110112457 Holm et al. May 2011 A1
20110152799 Kevin et al. Jun 2011 A1
20110172616 Hartwell et al. Jul 2011 A1
20110178451 Robinson et al. Jul 2011 A1
20110224593 Tunius Sep 2011 A1
20110224630 Simmons et al. Sep 2011 A1
20110230849 Coulthard et al. Sep 2011 A1
20110251566 Zimnitsky et al. Oct 2011 A1
20110257572 Locke et al. Oct 2011 A1
20110257573 Hong et al. Oct 2011 A1
20110275972 Rosenberg Nov 2011 A1
20110276016 Tsai Nov 2011 A1
20120016322 Coulthard et al. Jan 2012 A1
20120065602 Adams et al. Mar 2012 A1
20120071845 Hu et al. Mar 2012 A1
20120100538 Mikolajczyk et al. Apr 2012 A1
20120130332 Cotton et al. May 2012 A1
20120136325 Allen et al. May 2012 A1
20120209226 Simmons et al. Aug 2012 A1
20130053795 Coulthard et al. Feb 2013 A1
20130123728 Pratt et al. May 2013 A1
20130226063 Taylor et al. Aug 2013 A1
20130267918 Pan et al. Oct 2013 A1
20130296816 Greener Nov 2013 A1
20140005618 Locke et al. Jan 2014 A1
20140031771 Locke et al. Jan 2014 A1
20140074053 Locke et al. Mar 2014 A1
20140107599 Fink et al. Apr 2014 A1
20140188060 Robinson et al. Jul 2014 A1
20140194838 Wibaux et al. Jul 2014 A1
20140200532 Robinson et al. Jul 2014 A1
20140236112 Von Wolff et al. Aug 2014 A1
20140256925 Catchmark et al. Sep 2014 A1
20140276489 Robinson et al. Sep 2014 A1
20140276499 Locke et al. Sep 2014 A1
20140296804 Hicks et al. Oct 2014 A1
20140308338 Nierle et al. Oct 2014 A1
20140309574 Cotton Oct 2014 A1
20140336602 Karpowicz et al. Nov 2014 A1
20140343519 Weston Nov 2014 A1
20150018433 Leipzig et al. Jan 2015 A1
20150057624 Simmons et al. Feb 2015 A1
20150057625 Coulthard Feb 2015 A1
20150071985 Walker et al. Mar 2015 A1
20150073359 Hudspeth et al. Mar 2015 A1
20150079152 Wuollett et al. Mar 2015 A1
20150094674 Pratt et al. Apr 2015 A1
20150104486 Bonnefin et al. Apr 2015 A1
20150112311 Hammond et al. Apr 2015 A1
20150119831 Robinson et al. Apr 2015 A1
20150119834 Locke et al. Apr 2015 A1
20150141941 Allen et al. May 2015 A1
20150148785 Kleiner May 2015 A1
20150174304 Askem et al. Jun 2015 A1
20150182677 Collinson et al. Jul 2015 A1
20150245949 Locke et al. Sep 2015 A1
20150246164 Heaton et al. Sep 2015 A1
20150250979 Loske Sep 2015 A1
20150265741 Duncan et al. Sep 2015 A1
20150265743 Hanson et al. Sep 2015 A1
20150290364 Wall et al. Oct 2015 A1
20150320901 Chandrashekhar-Bhat et al. Nov 2015 A1
20150351970 Dagger et al. Dec 2015 A1
20160008293 Shi et al. Jan 2016 A1
20160038626 Locke et al. Feb 2016 A1
20160051724 Sahin et al. Feb 2016 A1
20160067107 Cotton Mar 2016 A1
20160100987 Hartwell et al. Apr 2016 A1
20160106878 Yang et al. Apr 2016 A1
20160106892 Hartwell Apr 2016 A1
20160151547 Hartwell et al. Jun 2016 A1
20160166422 Karim et al. Jun 2016 A1
20160193244 Ota et al. Jul 2016 A1
20160222548 Agboh Aug 2016 A1
20160271178 Hauser et al. Sep 2016 A1
20160287743 Andrews Oct 2016 A1
20160339158 Collinson et al. Nov 2016 A1
20160374847 Lachenbruch et al. Dec 2016 A1
20170014275 Schneider Jan 2017 A1
20170049111 Patton et al. Feb 2017 A1
20170072669 Sekido et al. Mar 2017 A1
20170128269 Coulthard et al. May 2017 A1
20170189237 Locke et al. Jul 2017 A1
20170189575 Lee et al. Jul 2017 A1
20170209615 Tornero Garcia et al. Jul 2017 A1
20170232161 Fewkes et al. Aug 2017 A1
20170258956 Flach et al. Sep 2017 A1
20170367895 Holm et al. Dec 2017 A1
20170368239 Askem et al. Dec 2017 A1
20180008742 Hoggarth et al. Jan 2018 A1
20180014974 Hoggarth et al. Jan 2018 A1
20180023217 Patton et al. Jan 2018 A1
20180030321 Tunius Feb 2018 A1
20180042789 Bradford et al. Feb 2018 A1
20180078423 Magin et al. Mar 2018 A1
20180086903 Zhang et al. Mar 2018 A1
20180118809 Mearns Spragg May 2018 A1
20180133066 Ahsani et al. May 2018 A1
20180140467 Hunt May 2018 A1
20180140822 Robinson et al. May 2018 A1
20180200414 Askem et al. Jul 2018 A1
20180221531 Bender et al. Aug 2018 A1
20180236124 Young et al. Aug 2018 A1
20180243463 Chatterjee et al. Aug 2018 A1
20180243464 Hwang et al. Aug 2018 A1
20180244857 Lee et al. Aug 2018 A1
20180272052 Locke et al. Sep 2018 A1
20180296397 Askem et al. Oct 2018 A1
20180303873 Been et al. Oct 2018 A1
20180311419 Locke et al. Nov 2018 A1
20180333522 Pratt et al. Nov 2018 A1
20180344533 Rovaniemi Dec 2018 A1
20180353334 Locke et al. Dec 2018 A1
20180353337 Locke Dec 2018 A1
20180353339 Locke et al. Dec 2018 A1
20180353340 Robinson et al. Dec 2018 A1
20180353344 Locke et al. Dec 2018 A1
20180353662 Locke et al. Dec 2018 A1
20180353663 Locke et al. Dec 2018 A1
20180360667 Droche Dec 2018 A1
20190000677 Munro Jan 2019 A1
20190015258 Gowans et al. Jan 2019 A1
20190015468 Yadav et al. Jan 2019 A1
20190030223 Lin Jan 2019 A1
20190046682 Choi et al. Feb 2019 A1
20190060127 Locke et al. Feb 2019 A1
20190083752 Howell et al. Mar 2019 A1
20190117465 Osborne et al. Apr 2019 A1
20190117466 Kazala, Jr. et al. Apr 2019 A1
20190117861 Locke et al. Apr 2019 A1
20190125590 Rehbein et al. May 2019 A1
20190133830 Bishop et al. May 2019 A1
20190151155 Bonn May 2019 A1
20190151159 Gowans et al. May 2019 A1
20190151495 Helary et al. May 2019 A1
20190184052 Ilan et al. Jun 2019 A1
20190231600 Locke et al. Aug 2019 A1
20190231602 Locke et al. Aug 2019 A1
20190231943 Robinson et al. Aug 2019 A1
20190274889 Steward et al. Sep 2019 A1
20190282728 Kellar et al. Sep 2019 A1
20190290799 Arshi et al. Sep 2019 A1
20190298249 Bates et al. Oct 2019 A1
20190298577 Locke et al. Oct 2019 A1
20190298578 Shulman et al. Oct 2019 A1
20190298579 Moore et al. Oct 2019 A1
20190298580 Hall et al. Oct 2019 A1
20190298582 Addison et al. Oct 2019 A1
20190298881 Ramjit et al. Oct 2019 A1
20190298882 Nelson Oct 2019 A1
20190298895 Selby et al. Oct 2019 A1
20190307611 Askem et al. Oct 2019 A1
20190307612 Hartwell et al. Oct 2019 A1
20190307934 Allen et al. Oct 2019 A1
20190307935 Simmons et al. Oct 2019 A1
20190314187 Emslander et al. Oct 2019 A1
20190314209 Ha et al. Oct 2019 A1
20190314544 Filho et al. Oct 2019 A1
20190321232 Jardret et al. Oct 2019 A1
20190321509 Chakravarthy et al. Oct 2019 A1
20190321526 Robinson et al. Oct 2019 A1
20190322795 Kubo et al. Oct 2019 A1
20190328580 Emslander et al. Oct 2019 A1
20190336343 Etchells et al. Nov 2019 A1
20190336344 Locke Nov 2019 A1
20190336345 Bannwart Nov 2019 A1
20190336346 Locke et al. Nov 2019 A1
20190336640 Vismara et al. Nov 2019 A1
20190336641 Nisbet Nov 2019 A1
20190336643 Luukko et al. Nov 2019 A1
20190336658 Heaton et al. Nov 2019 A1
20190336739 Locke et al. Nov 2019 A1
20190343687 Locke et al. Nov 2019 A1
20190343889 Luukko et al. Nov 2019 A1
20190343979 Kearney et al. Nov 2019 A1
20190343993 Weston Nov 2019 A1
20190343994 Greener Nov 2019 A1
20190344242 Kim et al. Nov 2019 A1
20190350763 Pratt et al. Nov 2019 A1
20190350764 Zochowski et al. Nov 2019 A1
20190350765 Heagle et al. Nov 2019 A1
20190350775 Biasutti et al. Nov 2019 A1
20190350970 Saphier et al. Nov 2019 A1
20190351092 Silver et al. Nov 2019 A1
20190351093 Stein et al. Nov 2019 A1
20190351094 Maher et al. Nov 2019 A1
20190351095 Maher et al. Nov 2019 A1
20190351111 Locke et al. Nov 2019 A1
20190358088 Lavocah et al. Nov 2019 A1
20190358361 McInnes et al. Nov 2019 A1
20190358372 Askem et al. Nov 2019 A1
20190365948 Deegan et al. Dec 2019 A1
20190365962 Lee et al. Dec 2019 A1
20190374408 Robles et al. Dec 2019 A1
20190374673 Hoefinghoff et al. Dec 2019 A1
20190380878 Edwards et al. Dec 2019 A1
20190380881 Albert et al. Dec 2019 A1
20190380882 Taylor et al. Dec 2019 A1
20190380883 Macphee et al. Dec 2019 A1
20190381222 Locke et al. Dec 2019 A9
20190388577 Chandrashekhar-Bhat et al. Dec 2019 A1
20190388579 Macphee et al. Dec 2019 A1
20190388589 Macphee et al. Dec 2019 A1
20200000640 Mondal et al. Jan 2020 A1
20200000642 Waite Jan 2020 A1
20200000643 Locke Jan 2020 A1
20200000955 Andrews et al. Jan 2020 A1
20200000956 Huang et al. Jan 2020 A1
20200000960 Kellar et al. Jan 2020 A1
20200000985 Seddon et al. Jan 2020 A1
20200008981 Wheldrake Jan 2020 A1
20200009289 Torabinejad et al. Jan 2020 A1
20200009400 Ribeiro et al. Jan 2020 A1
20200017650 Young et al. Jan 2020 A1
20200022844 Blott et al. Jan 2020 A1
20200023102 Powell Jan 2020 A1
20200023103 Joshi et al. Jan 2020 A1
20200023104 Eriksson et al. Jan 2020 A1
20200023105 Long et al. Jan 2020 A1
20200023106 Carroll et al. Jan 2020 A1
20200030153 Johannison et al. Jan 2020 A1
20200030480 Choi Jan 2020 A1
20200030499 Menon et al. Jan 2020 A1
20200038023 Dunn Feb 2020 A1
20200038249 Pratt et al. Feb 2020 A1
20200038250 Edwards et al. Feb 2020 A1
20200038251 Locke et al. Feb 2020 A1
20200038252 Spiro Feb 2020 A1
20200038283 Hall et al. Feb 2020 A1
20200038470 Datt et al. Feb 2020 A1
20200038544 Grover et al. Feb 2020 A1
20200038546 Dizio et al. Feb 2020 A1
20200038639 Patel et al. Feb 2020 A1
20200046565 Barta et al. Feb 2020 A1
20200046566 Carey et al. Feb 2020 A1
20200046567 Carroll et al. Feb 2020 A1
20200046568 Sexton Feb 2020 A1
20200046663 Murdock et al. Feb 2020 A1
20200046876 Liu Feb 2020 A1
20200046887 Runquist et al. Feb 2020 A1
20200054491 Hentrich et al. Feb 2020 A1
20200054781 Weiser et al. Feb 2020 A1
20200060879 Edwards et al. Feb 2020 A1
20200061253 Long et al. Feb 2020 A1
20200061254 Joshi et al. Feb 2020 A1
20200061379 Bogie et al. Feb 2020 A1
20200069183 Rice et al. Mar 2020 A1
20200069476 Randolph et al. Mar 2020 A1
20200069477 Holm et al. Mar 2020 A1
20200069478 Jabbarzadeh et al. Mar 2020 A1
20200069479 Buan et al. Mar 2020 A1
20200069835 Hissink et al. Mar 2020 A1
20200069850 Beadle et al. Mar 2020 A1
20200069851 Blott et al. Mar 2020 A1
20200069853 Hall et al. Mar 2020 A1
20200078223 Locke et al. Mar 2020 A1
20200078224 Carroll et al. Mar 2020 A1
20200078225 Grillitsch et al. Mar 2020 A1
20200078305 Auvinen et al. Mar 2020 A1
20200078330 Gay Mar 2020 A1
20200078482 Yoon et al. Mar 2020 A1
20200078499 Gadde et al. Mar 2020 A1
20200085625 Bellini et al. Mar 2020 A1
20200085626 Braga et al. Mar 2020 A1
20200085629 Locke et al. Mar 2020 A1
20200085630 Robinson et al. Mar 2020 A1
20200085632 Locke et al. Mar 2020 A1
20200085991 Coomber Mar 2020 A1
20200085992 Locke et al. Mar 2020 A1
20200086014 Locke et al. Mar 2020 A1
20200086017 Jardret et al. Mar 2020 A1
20200086049 Park et al. Mar 2020 A1
20200093646 Locke et al. Mar 2020 A1
20200093756 Sabacinski Mar 2020 A1
20200093953 Kim et al. Mar 2020 A1
20200093954 Leise, III Mar 2020 A1
20200093970 Hunt et al. Mar 2020 A1
20200095421 Kettel Mar 2020 A1
20200100945 Albert et al. Apr 2020 A1
20200101192 Folwarzny Apr 2020 A1
20200107964 Locke et al. Apr 2020 A1
20200107965 Greener Apr 2020 A1
20200107966 Francis Apr 2020 A1
20200107967 Holm et al. Apr 2020 A1
20200108169 Hu et al. Apr 2020 A1
20200113741 Rehbein et al. Apr 2020 A1
20200114039 Wang et al. Apr 2020 A1
20200114040 Waite et al. Apr 2020 A1
20200114049 Wall Apr 2020 A1
20200121509 Locke et al. Apr 2020 A1
20200121510 Hartwell et al. Apr 2020 A1
20200121513 Townsend et al. Apr 2020 A1
20200121521 Daniel et al. Apr 2020 A1
20200121833 Askem et al. Apr 2020 A9
20200129338 Gardiner et al. Apr 2020 A1
20200129341 Coulthard et al. Apr 2020 A1
20200129648 Drury et al. Apr 2020 A1
20200129654 Bouvier et al. Apr 2020 A1
20200129655 Gardiner et al. Apr 2020 A1
20200129675 Robinson et al. Apr 2020 A1
20200138754 Johnson May 2020 A1
20200139002 Dudnyk et al. May 2020 A1
20200139023 Haggstrom et al. May 2020 A1
20200139025 Robinson et al. May 2020 A1
20200141031 Kosan et al. May 2020 A1
20200146894 Long et al. May 2020 A1
20200146896 Rice et al. May 2020 A1
20200146897 Locke et al. May 2020 A1
20200146899 Pratt et al. May 2020 A1
20200155355 Hill et al. May 2020 A1
20200155358 Wheldrake May 2020 A1
20200155359 Carroll et al. May 2020 A1
20200155361 Pigg et al. May 2020 A1
20200155379 Shaw et al. May 2020 A1
20200163802 Hunt et al. May 2020 A1
20200163803 Pigg et al. May 2020 A1
20200164112 Kato et al. May 2020 A1
20200164120 Jaecklein et al. May 2020 A1
20200170841 Waite et al. Jun 2020 A1
20200170842 Locke Jun 2020 A1
20200170843 Collinson et al. Jun 2020 A1
20200171197 Hubbell et al. Jun 2020 A1
20200179300 Urban et al. Jun 2020 A1
20200179558 Munro et al. Jun 2020 A1
20200179673 Wan Jun 2020 A1
20200188179 Bugedo-Albizuri et al. Jun 2020 A1
20200188180 Akbari et al. Jun 2020 A1
20200188182 Sanders et al. Jun 2020 A1
20200188183 Hamerslagh et al. Jun 2020 A1
20200188550 Dagger et al. Jun 2020 A1
20200188564 Dunn Jun 2020 A1
20200190310 Meyer Jun 2020 A1
20200197227 Locke et al. Jun 2020 A1
20200197228 Hartwell Jun 2020 A1
20200197559 Bourdillon et al. Jun 2020 A1
20200197580 Kilpadi et al. Jun 2020 A1
20200206035 Kantor et al. Jul 2020 A1
20200206036 Robinson et al. Jul 2020 A1
20200214637 Brownhill et al. Jul 2020 A1
20200214897 Long et al. Jul 2020 A1
20200214898 Waite et al. Jul 2020 A1
20200214899 Locke et al. Jul 2020 A1
20200215220 Schomburg et al. Jul 2020 A1
20200215226 Kitagawa et al. Jul 2020 A1
20200222469 Cotton Jul 2020 A1
20200229983 Robinson et al. Jul 2020 A1
20200237564 Hammond et al. Jul 2020 A1
20200237816 Lait Jul 2020 A1
20200246195 Robinson et al. Aug 2020 A1
20200253785 Bernet et al. Aug 2020 A1
20200253786 Harrison et al. Aug 2020 A1
20200254139 Phillips et al. Aug 2020 A1
20200261275 Manwaring et al. Aug 2020 A1
20200261276 Lujan Hernandez et al. Aug 2020 A1
20200268560 Harrison et al. Aug 2020 A1
20200268561 Locke et al. Aug 2020 A1
20200270484 Lipscomb et al. Aug 2020 A1
20200276055 Randolph et al. Sep 2020 A1
20200276058 Locke et al. Sep 2020 A1
20200277450 Silverstein et al. Sep 2020 A1
20200281519 Gowans et al. Sep 2020 A1
20200281529 Grubb et al. Sep 2020 A1
20200281678 Long et al. Sep 2020 A1
20200281775 Kushnir et al. Sep 2020 A1
20200282100 Gil et al. Sep 2020 A1
20200282114 Long et al. Sep 2020 A1
20200282115 Gardner et al. Sep 2020 A1
20200289328 Luckemeyer et al. Sep 2020 A1
20200289347 Gowans et al. Sep 2020 A1
20200289701 Hall et al. Sep 2020 A1
20200289712 Jiang et al. Sep 2020 A1
20200289723 Gregory et al. Sep 2020 A1
20200289726 Locke et al. Sep 2020 A1
20200289727 Locke Sep 2020 A1
20200289806 Locke et al. Sep 2020 A1
20200297541 Hartwell et al. Sep 2020 A1
20200297543 Rodzewicz et al. Sep 2020 A1
20200297544 Moine et al. Sep 2020 A1
20200297892 Silcock Sep 2020 A1
20200297893 Ericson Sep 2020 A1
20200297894 Koyama et al. Sep 2020 A1
20200299865 Bonnefin et al. Sep 2020 A1
20200306089 Delury et al. Oct 2020 A1
20200306091 Lee et al. Oct 2020 A1
20200306094 Kushnir et al. Oct 2020 A1
20200315853 Waite Oct 2020 A1
20200315854 Simmons et al. Oct 2020 A1
20200316271 Lin Oct 2020 A1
20200323692 Locke et al. Oct 2020 A1
20200324015 Kettel et al. Oct 2020 A1
20200330283 Locke et al. Oct 2020 A1
20200330284 Locke et al. Oct 2020 A1
20200330285 Rehbein et al. Oct 2020 A1
20200330658 Fujisaki Oct 2020 A1
20200330660 Patel et al. Oct 2020 A1
20200337719 Ingram et al. Oct 2020 A1
20200337904 Waite Oct 2020 A1
20200337905 Earl et al. Oct 2020 A1
20200337906 Long et al. Oct 2020 A1
20200337908 Long et al. Oct 2020 A1
20200338228 Kharkar et al. Oct 2020 A1
20200338243 Harrison et al. Oct 2020 A1
Foreign Referenced Citations (112)
Number Date Country
101176688 May 2008 CN
103619366 Mar 2014 CN
1905465 Apr 2008 EP
2711034 Mar 2014 EP
2817038 Dec 2014 EP
3187204 Jul 2017 EP
3643328 Apr 2020 EP
3643330 Apr 2020 EP
3643331 Apr 2020 EP
3669838 Jun 2020 EP
3669843 Jun 2020 EP
3669844 Jun 2020 EP
2579211 Jun 2020 GB
2579368 Jun 2020 GB
200880137 Apr 2008 JP
201577464 Apr 2015 JP
2005018543 Mar 2005 WO
WO-2009106895 Sep 2009 WO
2010068502 Jun 2010 WO
2011121394 Oct 2011 WO
2011135284 Nov 2011 WO
2011144888 Nov 2011 WO
WO-2012057881 May 2012 WO
2012142473 Oct 2012 WO
2013015827 Jan 2013 WO
2013039623 Mar 2013 WO
2013126049 Aug 2013 WO
2014014842 Jan 2014 WO
WO-2015052219 Apr 2015 WO
2015145117 Oct 2015 WO
2015173546 Nov 2015 WO
2016141450 Sep 2016 WO
2017016974 Feb 2017 WO
WO-2017068364 Apr 2017 WO
2017125250 Jul 2017 WO
WO-2017196888 Nov 2017 WO
WO-2018009873 Jan 2018 WO
WO-2018009879 Jan 2018 WO
WO-2018009880 Jan 2018 WO
2018029231 Feb 2018 WO
2018094061 May 2018 WO
2018162613 Sep 2018 WO
2018163093 Sep 2018 WO
2018189265 Oct 2018 WO
2018226667 Dec 2018 WO
2018227144 Dec 2018 WO
2018231825 Dec 2018 WO
2018236648 Dec 2018 WO
2019002085 Jan 2019 WO
2019012068 Jan 2019 WO
2019012069 Jan 2019 WO
2019022493 Jan 2019 WO
2019027933 Feb 2019 WO
2019038548 Feb 2019 WO
2019038549 Feb 2019 WO
2019040656 Feb 2019 WO
2019050855 Mar 2019 WO
2019058373 Mar 2019 WO
2019073326 Apr 2019 WO
2019083563 May 2019 WO
2019083868 May 2019 WO
2019086911 May 2019 WO
2019091150 May 2019 WO
2019094147 May 2019 WO
2019096828 May 2019 WO
2019113275 Jun 2019 WO
2019113623 Jun 2019 WO
2019191590 Oct 2019 WO
2019193141 Oct 2019 WO
2019193333 Oct 2019 WO
2019199389 Oct 2019 WO
2019199596 Oct 2019 WO
2019199687 Oct 2019 WO
2019199798 Oct 2019 WO
2019199849 Oct 2019 WO
2019200035 Oct 2019 WO
2019215572 Nov 2019 WO
2019219613 Nov 2019 WO
2019234365 Dec 2019 WO
2020005062 Jan 2020 WO
2020005344 Jan 2020 WO
2020005536 Jan 2020 WO
2020005546 Jan 2020 WO
2020005577 Jan 2020 WO
2020007429 Jan 2020 WO
2020011691 Jan 2020 WO
2020014178 Jan 2020 WO
2020014310 Jan 2020 WO
2020018300 Jan 2020 WO
2020026061 Feb 2020 WO
2020026144 Feb 2020 WO
2020033351 Feb 2020 WO
2020035811 Feb 2020 WO
2020043665 Mar 2020 WO
2020044237 Mar 2020 WO
2020046443 Mar 2020 WO
2020047255 Mar 2020 WO
2020049038 Mar 2020 WO
2020055945 Mar 2020 WO
2020056014 Mar 2020 WO
2020056182 Mar 2020 WO
2020065531 Apr 2020 WO
2020070231 Apr 2020 WO
2020074512 Apr 2020 WO
2020078993 Apr 2020 WO
2020079009 Apr 2020 WO
2020079330 Apr 2020 WO
2020081259 Apr 2020 WO
2020081391 Apr 2020 WO
2020092598 May 2020 WO
2020136555 Jul 2020 WO
2020141059 Jul 2020 WO
Non-Patent Literature Citations (12)
Entry
Colombian Application No. NC2018/0005230 Office Action dated May 31, 2018.
Great Britain Application No. GB1608099.6 search report dated Oct. 11, 2016.
PCT/US2017/041221 International Search Report and Written Opinion dated Sep. 13, 2017.
PCT/GB2016/053295 International Preliminary Report on Patentability dated Apr. 24, 2018.
PCT/GB2016/053295 International Search Report and Written Opinion dated Jan. 17, 2017.
PCT/US2017/031817 International Search Report and Written Opinion dated Aug. 11, 2017.
PCT/US2017/031817 International Preliminary Report on Patentability dated Nov. 13, 2018.
PCT/US2017/041208 International Search Report and Written Opinion dated Sep. 8, 2017.
PCT/US2017/041216 International Search Report and Written Opinion dated Sep. 13, 2017.
PCT/US2017/041208 International Preliminary Report on Patentability dated Jan. 8, 2019.
PCT/US2017/041216 International Preliminary Report on Patentability dated Jan. 8, 2019.
PCT/US2017/041221 International Preliminary Report on Patentability dated Jan. 8, 2019.
Related Publications (1)
Number Date Country
20190151515 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62360248 Jul 2016 US