Embodiments of the subject matter described herein relate generally to fluid infusion devices for delivering a medication fluid to the body of a user. More particularly, embodiments of the subject matter relate to a sealing element that provides a fluid seal between a fluid delivery needle and a removable fluid reservoir.
Certain diseases or conditions may be treated, according to modern medical techniques, by delivering a medication or other substance to the body of a patient, either in a continuous manner or at particular times or time intervals within an overall time period. For example, diabetes is commonly treated by delivering defined amounts of insulin to the patient at appropriate times. Some common modes of providing insulin therapy to a patient include delivery of insulin through manually operated syringes and insulin pens. Other modern systems employ programmable fluid infusion devices (e.g., insulin pumps) to deliver controlled amounts of insulin to a patient.
A fluid infusion device suitable for use as an insulin pump may be realized as an external device or an implantable device, which is surgically implanted into the body of the patient. External fluid infusion devices include devices designed for use in a generally stationary location (for example, in a hospital or clinic), and devices configured for ambulatory or portable use (to be carried by a patient). External fluid infusion devices may establish a fluid flow path from a fluid reservoir to the patient via, for example, a suitable hollow tubing. The hollow tubing may be connected to a hollow fluid delivery needle that is designed to pierce the patient's skin to deliver an infusion medium to the body. Alternatively, the hollow tubing may be connected directly to the patient's body through a cannula or set of micro-needles.
The fluid reservoir of an external fluid infusion device may be realized as a single-use prefilled disposable unit, a patient-filled unit, a refillable unit, or the like. The fluid reservoir for a typical fluid infusion device is implemented as a removable and replaceable component. To this end, the fluid infusion device includes structure, features, and/or elements that are designed to establish the fluid flow path with the fluid reservoir. For example, a fluid seal between the fluid reservoir and a hollow fluid delivery needle may be established when the fluid reservoir is properly installed in the fluid infusion device. When the fluid reservoir is removed (for purposes of replacement, to allow certain activities such as swimming or bathing, or the like), the fluid delivery needle should be protected against contamination.
Accordingly, it is desirable to implement a sealing element that creates a seal between a removable fluid reservoir and a delivery needle of a fluid infusion device. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
Various embodiments of a fluid infusion device, along with related fluid reservoirs and sealing elements for fluid reservoirs, are provided here. For example, an embodiment of a sealing element for a fluid infusion device is provided. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, and a needle cavity formed in the retractable body section. The needle cavity continues through the base section to define a needle opening in the base section, and the needle cavity is sized to receive the hollow fluid delivery needle. The sealing element also includes a self-sealing slit formed in the tip section to accommodate the hollow fluid delivery needle when the sealing element is in a retracted position.
Another embodiment of a sealing element for a fluid infusion device is also provided. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, and a needle cavity formed in the retractable body section and continuing through the base section to define a needle opening in the base section. The needle cavity is sized to receive the hollow fluid delivery needle, and the needle cavity defines internal relief features of the retractable body section. The internal relief features cause the sealing element to deform and retract over the hollow fluid delivery needle in response to a longitudinal force applied to the tip section. In addition, the internal relief features cause the sealing element to regain a nominal shape, extend over the hollow fluid delivery needle, and enclose the hollow fluid delivery needle in response to removal of the longitudinal force.
An embodiment of a sealing assembly for a fluid infusion device is also provided. The fluid infusion device cooperates with a fluid reservoir having a fluid delivery port. The sealing assembly includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path from the fluid reservoir to a user of the fluid infusion device, and a sealing element coupled to the base plate and overlying at least a portion of the hollow fluid delivery needle. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, a needle cavity formed in the retractable body section and continuing through the base section to define a needle opening in the base section, and a self-sealing slit formed in the tip section. The needle cavity is sized to receive the hollow fluid delivery needle, and the self-sealing slit accommodates the hollow fluid delivery needle when the sealing element is in a retracted position.
Another embodiment of a sealing assembly for a fluid infusion device is also provided. The sealing assembly includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path from the fluid reservoir to a user of the fluid infusion device, and a sealing element coupled to the base plate and overlying at least a portion of the hollow fluid delivery needle. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, and a needle cavity formed in the retractable body section and continuing through the base section to define a needle opening in the base section. The needle cavity is sized to receive the hollow fluid delivery needle, and the needle cavity defines internal relief features of the retractable body section. The internal relief features promote deformation of the sealing element and retraction of the sealing element over the hollow fluid delivery needle in response to a longitudinal force applied to the tip section of the sealing element. Moreover, the internal relief features cause the sealing element to automatically extend over the hollow fluid delivery needle into a nominal state in response to removal of the longitudinal force.
Also presented here is an embodiment of a fluid infusion device to deliver a fluid to a user. The fluid infusion device includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path from the fluid infusion device to the user, and a sealing element coupled to the base plate and overlying at least a portion of the hollow fluid delivery needle. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, a needle cavity formed in the retractable body section and continuing through the base section to define a needle opening in the base section, the needle cavity sized to receive the hollow fluid delivery needle, and a self-sealing slit formed in the tip section. The fluid infusion device also includes a removable fluid reservoir having a fluid delivery port to receive a tip of the hollow fluid delivery needle. When the removable fluid reservoir is removed from the hollow fluid delivery needle, the retractable body section extends such that the hollow fluid delivery needle is enclosed by the sealing element and such that the self-sealing slit forms a fluid seal to inhibit fluid ingress into the needle cavity. When the removable fluid reservoir is installed on the hollow fluid delivery needle, the tip of the hollow fluid delivery needle extends from the tip section and into the fluid reservoir, and the retractable body section deforms to create a radial seal with an interior of the fluid delivery port.
Another embodiment of a fluid infusion device is also presented here. The fluid infusion device includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path from the fluid infusion device to the user, and a sealing element coupled to the base plate and overlying at least a portion of the hollow fluid delivery needle. The sealing element includes a base section, a tip section extending from the base section, a retractable body section between the base section and the tip section, and a needle cavity formed in the retractable body section and continuing through the base section to define a needle opening in the base section. The needle cavity is sized to receive the hollow fluid delivery needle, and the needle cavity defines internal relief features of the retractable body section. The fluid infusion device also includes a removable fluid reservoir comprising a fluid delivery port to receive a tip of the hollow fluid delivery needle. The internal relief features promote deformation of the sealing element and retraction of the sealing element over the hollow fluid delivery needle when the removable fluid reservoir is engaged with the sealing element and the hollow fluid delivery needle. The internal relief features also cause the sealing element to automatically extend over the hollow fluid delivery needle, and cause the sealing element to assume a nominal state when the removable fluid reservoir is removed from the sealing element and the hollow fluid delivery needle.
Yet another embodiment of a fluid infusion device is also provided here. The fluid infusion device includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path for the medication fluid, and a sealing element coupled to the base plate and overlying at least a portion of the hollow fluid delivery needle. The sealing element includes a base section, a tip section extending from the base section, and a retractable body section between the base section and the tip section. The fluid infusion device also includes a fluid reservoir having a fluid chamber, a fluid delivery port coupled to the fluid chamber, and at least one vent hole formed in the fluid delivery port. The at least one vent hole provides a venting conduit from inside the fluid chamber to outside the fluid chamber. The fluid delivery port engages and cooperates with the sealing element and the hollow fluid delivery needle such that the tip section of the sealing element is urged against the fluid delivery port to seal the at least one vent hole.
An alternative embodiment of a fluid reservoir is also presented here. The fluid reservoir includes a main body section that defines a fluid chamber for the medication fluid, a fluid delivery port coupled to and extending from the main body section, the fluid delivery port having a fluid conduit and a pressure vent defined therein, and a septum located in the fluid delivery port and having a nominal non-pierced state forming a fluid seal within the fluid conduit. The pressure vent provides a venting conduit from inside the fluid chamber to outside the fluid chamber, and the pressure vent terminates at an exterior surface of the fluid delivery port. The exterior surface is contoured to mate with a resilient sealing element of the fluid infusion device to seal the pressure vent.
Also disclosed here is an embodiment of a sealing assembly for a fluid infusion device having a hollow fluid delivery needle, a retractable sealing element surrounding the hollow fluid delivery needle, and a fluid reservoir. The sealing assembly includes a fluid delivery port for the fluid reservoir, the fluid delivery port comprising a first sealing surface, a pressure vent formed in the fluid delivery port to provide a venting conduit for a fluid chamber of the fluid reservoir, the pressure vent terminating at the first sealing surface, and a tip section for the retractable sealing element. The tip section has a second sealing surface to mate with the first sealing surface, wherein the first sealing surface and the second sealing surface are urged together to form a fluid seal for the pressure vent when the fluid reservoir is engaged with the hollow fluid delivery needle and the sealing element.
Another alternative embodiment of a fluid reservoir is presented here. The fluid reservoir includes a main body section that defines a fluid chamber for the medication fluid, and a fluid delivery port coupled to and extending from the main body section. The fluid delivery port includes a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at a port opening. The fluid reservoir also includes a septum movably coupled to the fluid delivery port. The septum is movable between a sealed position where the septum forms a circumferential seal around the port opening, and a vented position that permits fluid to flow out of the fluid delivery port via the port opening.
Yet another alternative embodiment of a fluid reservoir is presented here. The fluid reservoir includes a main body section that defines a fluid chamber for the medication fluid, and a fluid delivery port coupled to and extending from the main body section. The fluid delivery port has a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at a port opening. The fluid reservoir also includes a valve sleeve movably coupled to the fluid delivery port, wherein the fluid delivery port and the valve sleeve cooperate to accommodate translational movement of the valve sleeve relative to the fluid delivery port. A septum is located within the valve sleeve and is movable in concert with the valve sleeve between a sealed position and a vented position.
Also provided here is another alternative embodiment of a fluid infusion device that delivers a medication fluid to a body. The fluid infusion device includes a base plate, a hollow fluid delivery needle coupled to the base plate to provide a fluid flow path for the medication fluid, and a fluid reservoir. The fluid reservoir includes a main body section that defines a fluid chamber for the medication fluid, a fluid delivery port coupled to and extending from the main body section, and a septum coupled to the fluid delivery port. The fluid delivery port has a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at a port opening. The septum translates relative to the port opening and is movable between a sealed position and a vented position. In the sealed position, the hollow fluid delivery needle engages the septum and urges the septum against the port opening to form a circumferential seal around the port opening. In the vented position, the hollow fluid delivery needle is disengaged from the septum.
Yet another embodiment of a fluid infusion device is also provided here. The fluid infusion device includes a fluid reservoir having a main body section that defines a fluid chamber for the medication fluid, and also having a fluid delivery port coupled to and extending from the main body section. The fluid delivery port has a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at an unsealed port opening. The fluid infusion device also includes a self-sealing reservoir port receptacle for the fluid delivery port. The port receptacle has an inlet to receive the fluid delivery port, a valve chamber in fluid communication with the inlet, a valve element located in the valve chamber, and an outlet in fluid communication with the valve chamber. The valve element is biased toward the inlet into a sealed position to form a fluid seal between the valve element and the inlet, and the outlet provides a fluid flow path for the medication fluid. Engagement of the fluid delivery port with the inlet causes an end of the fluid delivery port to move the valve element from the sealed position to an opened position to accommodate flow of the medication fluid into the valve chamber.
An alternative embodiment of a sealing assembly for a fluid infusion device is also presented here. The sealing assembly includes a reservoir port receptacle, an inlet formed in the reservoir port receptacle to receive a fluid delivery port of a fluid reservoir that contains the medication fluid, and a valve chamber formed in the reservoir port receptacle and in fluid communication with the inlet, a valve element located in the valve chamber, a resilient compression element located in the valve chamber to bias the valve element toward the inlet, and an outlet formed in the reservoir port receptacle to provide a fluid flow path for the medication fluid.
Another embodiment of a fluid infusion device is also presented here. The fluid infusion device includes a base plate, a delivery conduit coupled to the base plate, wherein the delivery conduit provides the medication fluid to the body, and a self-sealing reservoir port receptacle located on the base plate. The self-sealing reservoir port receptacle includes an inlet to receive a fluid delivery port of a fluid reservoir, a valve chamber in fluid communication with the inlet, a valve element located in the valve chamber, and an outlet between the valve chamber and the delivery conduit. When the fluid delivery port is disengaged from the self-sealing reservoir port receptacle, the valve element is biased toward the inlet into a sealed position to form a fluid seal between the valve element and the inlet. The outlet provides a fluid flow path for the medication fluid. When the fluid delivery port is engaged with the self-sealing reservoir port receptacle, an end of the fluid delivery port moves the valve element from the sealed position to an opened position to accommodate flow of the medication fluid from the fluid reservoir into the valve chamber.
Also presented here is an alternative embodiment of a fluid reservoir for a fluid infusion device that delivers a medication fluid to a body. The fluid reservoir includes a main body section that defines a fluid chamber for the medication fluid, a hollow needle extending from the main body section and defining a fluid conduit that communicates with the fluid chamber, the hollow needle terminating at a needle end, and a needle hood extending from the main body section and at least partially surrounding the hollow needle. The needle hood terminates at a lip that extends further from the main body section than the needle end.
Yet another alternative embodiment of a fluid infusion device is also provided here. The fluid infusion device includes a base plate, a delivery conduit coupled to the base plate, wherein the delivery conduit provides the medication fluid to the body, and a fluid reservoir. The fluid reservoir has a main body section that defines a fluid chamber for the medication fluid, a hollow needle extending from the main body section and in fluid communication with the fluid chamber, and a needle hood extending from the main body section and at least partially surrounding the hollow needle. The fluid infusion device also includes a reservoir port receptacle located on the base plate and comprising mating structure to engage and mate with the needle hood, a sealing element to receive the hollow needle and form a seal around an exterior surface of the hollow needle, and an outlet conduit at least partially defined by the sealing element, wherein the outlet conduit is coupled to the delivery conduit.
Also presented here is another embodiment of a fluid infusion device that delivers a medication fluid to a body. The fluid infusion device includes a fluid reservoir having a main body section that defines a fluid chamber for the medication fluid, and having a hollow needle extending from the main body section and in fluid communication with the fluid chamber. The fluid infusion device also includes a reservoir port receptacle having a sealing element, and having mating structure to engage the fluid reservoir in an aligned orientation for introducing the hollow needle into the sealing element to form a seal around an exterior surface of the hollow needle.
Another embodiment of a fluid infusion device that delivers a medication fluid to a body is provided. The fluid infusion device includes a fluid reservoir comprising a main body section that defines a fluid chamber for the medication fluid, and comprising a fluid delivery port coupled to and extending from the main body section. The fluid delivery port comprises a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at an unsealed port opening. The fluid infusion device includes a self-sealing reservoir port receptacle for the fluid delivery port. The self-sealing reservoir port receptacle comprises an inlet to receive the fluid delivery port, and a valve chamber in fluid communication with the inlet. A valve element is located in the valve chamber, and the valve element biased toward the inlet to form a fluid seal between the valve element and the inlet. The self-sealing reservoir port receptacle includes an outlet in fluid communication with the valve chamber to provide a fluid flow path for the medication fluid. The fluid infusion device includes a sealing element disposed in the inlet to form a seal with an outer surface of the fluid delivery port. The sealing element is positioned between the inlet and the valve chamber. Engagement of the fluid delivery port with the inlet moves the valve element from a sealed position at the inlet into an opened position to accommodate flow of the medication fluid into the valve chamber.
Also provided is a fluid infusion device that delivers a medication fluid to a body. The fluid infusion device includes a fluid reservoir comprising a main body section that defines a fluid chamber for the medication fluid. The fluid reservoir comprises a fluid delivery port coupled to and extending from the main body section. The fluid delivery port comprises a fluid conduit that communicates with the fluid chamber, and the fluid delivery port terminates at an unsealed port opening. The port opening includes a plurality of flow paths that allow the medication fluid to flow from the fluid conduit. The fluid infusion device includes a self-sealing reservoir port receptacle for the fluid delivery port. The self-sealing reservoir port receptacle comprising an inlet to receive the fluid delivery port and a valve chamber in fluid communication with the inlet. A valve element is located in the valve chamber, and the valve element biased toward the inlet to form a fluid seal between the valve element and the inlet. The self-sealing reservoir port receptacle including an outlet in fluid communication with the valve chamber to provide a fluid flow path for the medication fluid. The fluid infusion device comprises a sealing element disposed in the inlet to form a seal with an outer surface of the fluid delivery port. Engagement of the fluid delivery port with the inlet moves the valve element from a sealed position at the inlet to an opened position to accommodate flow of the medication fluid into the valve chamber, and the medication fluid flows from the fluid conduit through the plurality of flow paths and into the valve chamber.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” could be used to refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” could be used to describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second”, and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
Various embodiments presented here are related to a sealing element suitable for use with a fluid reservoir and a fluid delivery needle of the type found in fluid infusion systems. In certain embodiments, the sealing element includes at least one slit formed in its tip to accommodate a hollow needle. When a fluid reservoir is introduced and coupled to the needle, the port of the fluid reservoir and/or another structural feature of the reservoir urges the sealing element to retract over the needle such that the end of the needle penetrates the slit, protrudes from the tip of the sealing element, and enters the fluid reservoir. Upon fluid connection in this manner, the needle penetrates the tip of the sealing element, which in turn outwardly expands the material (e.g., silicone) of the sealing element near the tip. The reservoir port that receives the sealing element is sized and configured such that expansion of the sealing element forms a radial seal between the inner surface of the reservoir port and the sealing element. Further and complete installation of the reservoir onto the needle also creates a secondary backup face seal between the opening of the reservoir port and the sealing element.
Additional embodiments of various fluid reservoir configurations, needle sealing arrangements, and fluid interface designs are also presented here. For example, a number of vented fluid reservoir embodiments are described below, where a pressure vent is incorporated into the fluid reservoir to facilitate the equalization of pressure that may otherwise be present inside of the fluid reservoir and, therefore, to reduce the likelihood of accidental fluid delivery caused by the build-up of internal pressure.
In addition, a “needleless” embodiment is presented here. In lieu of a fluid delivery needle, a fluid reservoir is suitably configured to interact with a sealing component or feature of a base plate of the fluid infusion device. The sealing component includes a valve member (e.g., a ball valve) that opens to accommodate fluid delivery from the fluid reservoir when the reservoir is introduced to the base plate. When the reservoir is removed, the valve member automatically seals the flow path.
Various embodiments of a fluid reservoir having a “hooded” or shielded needle or needle-like structure are also provided. The reservoir needle is designed to deliver the medication fluid to a corresponding fluid receptacle of the fluid infusion device. The fluid receptacle includes a sealing element that receives the reservoir needle and creates a fluid seal with the reservoir.
The following description relates to a fluid infusion device of the type used to treat a medical condition of a patient. The infusion device is used for infusing fluid into the body of a user. The non-limiting examples described below relate to a medical device used to treat diabetes (more specifically, an insulin pump), although embodiments of the disclosed subject matter are not so limited. Accordingly, the infused medication fluid is insulin in certain embodiments. In alternative embodiments, however, many other fluids may be administered through infusion such as, but not limited to, disease treatments, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like. For the sake of brevity, conventional features and characteristics related to infusion system operation, insulin pump and/or infusion set operation, fluid reservoirs, and fluid syringes may not be described in detail here. Examples of infusion pumps and/or related pump drive systems used to administer insulin and other medications may be of the type described in, but not limited to: United States patent application number 2009/0299290 A1; United States patent application number 2008/0269687; U.S. Pat. Nos. 7,828,764; and 7,905,868 (the entire content of these patent documents is incorporated by reference herein).
Retractable Needle Sealing Element
The base plate 104 is designed to be temporarily adhered to the skin of the patient using, for example, an adhesive layer of material. After the base plate is affixed to the skin of the patient, a suitably configured insertion device or apparatus may be used to insert a fluid delivery needle or cannula 112 (see
The durable housing 102 and the base plate 104 are cooperatively configured to accommodate removable coupling of the durable housing 102 to the base plate 104. The removable nature of the durable housing 102 enables the patient to replace the fluid reservoir 106 as needed. Moreover, the durable housing 102 can be removed (while leaving the base plate 104 adhered to the patient) to allow the patient to swim, shower, bathe, and participate in other activities that might otherwise damage or contaminate the durable housing 102. When the durable housing 102 is removed from the base plate 104, the fluid reservoir 106 is disengaged from the reservoir port receptacle 108, the fluid flow path is broken, and the base plate 104 will appear as shown in
The fluid reservoir 106 includes a fluid delivery port 114 that cooperates with the reservoir port receptacle 108.
The sealing element 110 forms part of a sealing assembly 130 for the fluid infusion device 100. The sealing assembly 130 as referred to here may also include the base plate 104 (or a portion thereof) and/or other structure or elements that cooperate with the sealing element 110. These additional components will be described with reference to
The sealing assembly 130 may be formed by coupling the sealing element 110 and the hollow fluid delivery needle 134 to the mounting cap 132. In turn, the mounting cap 132 may be secured to the base plate 104 (see
The sealing element 110 includes a base section 150, a tip section 152 extending from the base section 150, and a retractable body section 154 between the base section 150 and the tip section 152. In practice, the sealing element 110 is a one-piece component and, accordingly, the base section 150, the tip section 152, and the retractable body section 154 are integrally formed and continuous with one another. Referring to
The base section 150 generally corresponds to the portion of the sealing element 110 that is coupled to the base plate 104 (by way of the mounting cap 132). Notably, the mounting cap 132 and the hollow fluid delivery needle 134 are coupled to the base plate 104 in a substantially fixed and rigid manner such that the hollow fluid delivery needle 134 protrudes from the mounting cap 132 and extends within the reservoir port receptacle 108 (see
The tip section 152 may be mushroom or barb shaped in various embodiments, as shown in
Referring to
The self-sealing slit 160 expands to accommodate passage of the hollow fluid delivery needle 134, and it automatically returns to a “closed” and sealed state when the fluid reservoir 106 is removed from the base plate 104. The sealed state is depicted in
The illustrated embodiment of the sealing element 110 also includes an integral guide channel 162 formed in the tip section 152. The guide channel 162 is in communication with the needle cavity 155 and the self-sealing slit 160, as best shown in
Referring to
The internal relief features 164 allow the sealing element 110 to compress and deform easily when the fluid reservoir 106 is introduced. Moreover, the internal relief features 164 function as a spring when under compression. In this regard, the internal relief features 164 urge the tip section 152 outward and beyond the end of the hollow fluid delivery needle 134 when the fluid reservoir 106 is withdrawn. The specific configuration of the internal relief features 164 may vary from one embodiment to another, and the exemplary arrangement depicted in
The mechanical characteristics, sealing characteristics, and functional aspects of the sealing element 110 will now be described with primary reference to
The sealing element 110 has a nominal state, which is depicted in
In contrast, the sealing element 110 is urged into its retracted state when the fluid infusion device 100 is in the connected state. The transition from the intermediate state to the connected state is associated with the application of longitudinal force (imparted by the fluid delivery port 114) to the tip section 152 of the sealing element 110. The longitudinal force is imparted to the tip section 152 when the durable housing 102 is coupled to the base plate 104—the action of coupling the durable housing 102 to the base plate 104 causes the fluid delivery port 114 to move toward the mounting cap 132, which in turn reduces the distance between the interior 116 of the fluid delivery port 114 and the mounting cap 132. In response to this reduction in distance, the sealing element 110 is deformed and crushed such that it retracts over the hollow fluid delivery needle 134. Notably, the internal relief features 164 promote the deformation and retraction of the sealing element 110 over the hollow fluid delivery needle 134 in response to force applied to the tip section 152, which is caused by forward movement of the fluid reservoir 106. Retraction of the sealing element 110 causes the tip 172 of the hollow fluid delivery needle 134 to be led through the guide channel 162 and into the self-sealing slit 160, such that the tip 172 protrudes from the tip section 152 (see
The sealing element 110 interacts with the fluid delivery port 114 to establish a fluid seal. Referring to
The internal relief features 164 facilitate compression of the sealing element 110 into the retracted state shown in
In certain embodiments, the circumferential compression element 306 is realized as a physically distinct and separate component that is attached to the material that forms the bulk of the sealing element 300. For example, the circumferential compression element 306 could be affixed to the tip section 304 using an adhesive, a bonding agent, or the like. Alternatively, the circumferential compression element 306 could be coupled to the tip section 304 by way of a compression fit and/or by way of structural features that secure the circumferential compression element 306 to the tip section 304 (e.g., keyway features, tabs, ridges, or the like). In accordance with one exemplary embodiment, the circumferential compression element 306 is realized as a resilient band that resists deformation more than the material that forms the tip section 304.
It should be appreciated that the specific features and characteristics shown and described above for the various exemplary embodiments are neither exclusive nor required for any given embodiment. For example, any of the exemplary sealing elements described above could be provided with or without a circumferential compression element for the tip section. As another example, the specific shape and configuration of the tip section may vary from one embodiment to another. Thus, the individual features and elements shown and described may be implemented and deployed in an embodiment of a fluid infusion device as desired to suit the needs of the particular application.
Vented Fluid Reservoirs
An open or vented fluid reservoir may be utilized to reduce or eliminate excess pressure that might otherwise be introduced into the fluid chamber of the reservoir during a filling operation. In this regard, a vented fluid reservoir allows the pressure to equalize before the reservoir is coupled to the fluid infusion device and, therefore, reduces or eliminates the likelihood of unintended fluid delivery. To this end, one embodiment described here includes a vented port or funnel to relieve the pressure in the reservoir. Another embodiment described below employs a movable septum that functions as a pressure relief valve for the fluid reservoir.
Referring to
The fluid reservoir 600 generally includes, without limitation: a main body section 620; a filling port 621; a fluid delivery port 622; a funnel element 623; and a septum 624. The main body section defines a fluid chamber 626 for the medication fluid that is to be delivered by the fluid infusion device. The filling port 621 is in fluid communication with the fluid chamber 626 to accommodate filling of the fluid chamber 626 with the desired medication fluid (using a syringe or fill needle, as is well understood). The fluid delivery port 622 is coupled to, and extends from, the main body section 620. The fluid delivery port 622 is in fluid communication with the fluid chamber 626 to provide a fluid flow path from inside the fluid chamber 626 to the hollow fluid delivery needle 602 (this fluid flow path is established and maintained when the fluid reservoir 600 is engaged with the base plate of the fluid infusion device).
The funnel element 623 is coupled within the fluid delivery port 622. In certain embodiments, the main body section 620 and the fluid delivery port 622 are formed from a first material (such as plastic) and the funnel element 623 is formed from a second material (such as metal). The funnel element 623 may be implemented as an insert that can be seated within and coupled to the fluid delivery port 622 in any suitable manner such that the funnel element 623 remains in a fixed position. Notably, the funnel element 623 includes a tapered, conical, or convex interior surface 628. This interior surface 628 represents one surface of the receptacle that is defined by the funnel element 623. As schematically illustrated in
The septum 624 is located and held in place in the funnel element 623. The septum 624 may be formed from a soft, resilient, and pliable material that has certain self-sealing or self-restoring properties. For example, the septum 624 may be formed from a silicone rubber material in certain embodiments. Depending upon the embodiment, the septum 624 may be provided in a solid and continuous form, or it may be provided with a slit, a cut, or an equivalent feature that makes it easier to pierce while still maintaining at least a nominal seal. The septum 624 has a nominal non-pierced state (depicted in
In various embodiments, the fluid delivery port 622 and/or the funnel element 623 include a pressure vent formed therein. The pressure vent may take any suitable form or arrangement. For example, the pressure vent may be realized with one or more vent holes. As another example, the pressure vent may be realized with one or more slits or any other opening formed within the funnel element 623. The exemplary embodiments shown in
Each vent hole 640 provides a venting conduit from inside the fluid chamber 626 to outside the fluid chamber 626. More specifically, each vent hole 640 is realized as a fluid conduit that communicates at one end with the fluid chamber 626 and at the other end with the interior surface 628 of the funnel element 623. Thus, each vent hole 640 terminates at the interior surface 628. When the fluid reservoir 600 is disengaged from the fluid infusion device, the vent holes 640 may be visible from the top of the fluid reservoir 600, as shown in
In operation, the fluid delivery port 622 and the funnel element 623 engage and cooperate with the sealing element 604 and with the hollow fluid delivery needle 602 in the manner generally described above with reference to the fluid infusion device 100. When the fluid delivery port 622 is installed and pressed over the sealing element 604, the tip section 606 of the sealing element 604 is urged against the contoured interior surface 628 of the funnel element 623. This action causes the exterior surface 610 of the sealing element 604 to contact and mate with the interior surface 628 of the funnel element 623. In turn, the tip section 606 (which may deform or expand in response to the coupling) covers and seals the vent holes 640. As mentioned previously, the tip 608 of the hollow fluid delivery needle pierces the septum 624 when the fluid reservoir 600 is introduced. In certain embodiments, the fluid delivery port 622, the funnel element 623, the sealing element 604, and the hollow fluid delivery needle 602 are cooperatively configured such that the tip section 606 of the sealing element 604 seals the vent holes 640 before the hollow fluid delivery needle 602 pierces the septum 624. This reduces or eliminates leakage of the medication fluid. The vent holes 640 remain sealed in this manner during operation of the fluid infusion device, such that the medication fluid is forced from the fluid chamber 626 and through the hollow fluid delivery needle 602 in the intended manner.
Another embodiment of a vented fluid reservoir will now be described with reference to
The illustrated embodiment of the fluid reservoir 700 generally includes, without limitation: a main body section 702; a fluid delivery port 704; a valve sleeve 706; and a septum 708. The main body section 702 includes a fluid chamber 710 defined therein. The fluid chamber 710 accommodates the medication fluid to be delivered to the patient. The fluid delivery port 704 is coupled to and extends from the main body section 702. In certain embodiments, the fluid delivery port 704 is integrally formed with the main body section 702. For example, the fluid delivery port 704 and the main body section 702 may be fabricated from a molded plastic material. The fluid delivery port 704 includes or defines a fluid conduit 712 that communicates with the fluid chamber 710.
This particular embodiment of the fluid delivery port 704 has a generally cylindrical shape that resembles a neck region extending from the main body section 702. The fluid delivery port 704 terminates at a port opening 714. The port opening 714 is realized as a round rim or lip at the end of the fluid delivery port 704. As shown in
Although not always required, the illustrated embodiment of the fluid delivery port 704 includes a circumferential groove 716 formed therein (around the outer surface). The groove 716 may be defined as a region between a shoulder 718 of the main body section 702 and a barb portion 720 of the fluid delivery port 704. For this embodiment, the barb portion 720 is located at or near the port opening 714. In alternative embodiments, the groove 716 could be positioned anywhere along the length of the fluid delivery port 704. The groove 716 receives an interior ridge 724 of the valve sleeve 706, which is formed within an attachment receptacle of the valve sleeve 706. This attachment receptacle is generally defined by the interior region below the septum 708 in
Notably, the groove 716 allows the valve sleeve 706 to move toward the fluid chamber 710 until movement is inhibited by the shoulder 718 and/or by other structure of the fluid reservoir 700, or until movement is inhibited by engagement between the septum 708 and the port opening 714 (see
The septum 708 is located within a septum receptacle 728 defined within the valve sleeve 706. The septum receptacle 728 may be realized as an interior groove or channel formed in the inner wall of the valve sleeve 706. In the illustrated embodiment, the septum receptacle 728 is adjacent to the attachment receptacle, such that one surface of the septum 708 (i.e., the lower surface in
The valve sleeve 706 also includes a sleeve opening 730 that is adjacent to the septum receptacle 728. The sleeve opening 730 is arranged such that at least a portion of the septum 708 is accessible via the sleeve opening 730. As shown in
The valve sleeve 706 and the septum 708 are movable between a sealed position (shown in
When the fluid reservoir 700 is removed from the fluid infusion device and, therefore, is disengaged from the fluid delivery needle, the valve sleeve 706 and the septum 708 are free to move relative to the fluid delivery port 704. Accordingly, the valve sleeve 706 and the septum 708 are free to move into the vented position in response to a pressure differential condition where pressure in the fluid chamber 710 exceeds the ambient pressure. Under these conditions, the excess pressure inside the fluid chamber 710 can be released through the port opening 714 because the valve sleeve 706 and the septum 708 function as a pressure relief valve. When subjected to excess pressure in this manner, the septum 708 moves slightly upward, which creates a gap between the bottom surface of the septum 708 and the port opening 714. Consequently, the septum 708 permits fluid to flow out of the fluid delivery port 704 via the port opening 714 when the valve sleeve 706 is in the vented position. After the pressure is equalized, however, the valve sleeve 706 and the septum 708 might naturally return to the sealed position shown in
Needleless Fluid Reservoir Interface
The embodiments described above utilize a hollow needle that engages the fluid reservoir during operation of the fluid infusion device. An alternative needleless implementation will now be described with reference to
The fluid reservoir 800 may be intended to be a user-filled or refillable unit, or it could be designed to be a disposable pre-filled unit, depending upon the particular application. The fluid reservoir 800 includes a main body section 804 that defines an interior fluid chamber 806 for holding the desired fluid, e.g., a medication fluid such as insulin. The fluid reservoir 800 also includes a fluid delivery port 808 that is coupled to, and extends from, the main body section 804. The fluid delivery port 808 includes or otherwise defines a fluid conduit 810 that communicates with the fluid chamber 806. The fluid conduit 810 is used to deliver the fluid from the fluid chamber 806. In certain embodiments, the fluid conduit 810 may also be used as the fill port of the fluid reservoir 800.
Notably, the fluid reservoir 800 is “unsealed” in that the fluid delivery port 808 terminates at an unsealed port opening 812. In this regard, the fluid delivery port 808 does not include a septum or any equivalent form of fluid seal that remains in place during use of the fluid infusion device. That said, the fluid reservoir 800 could be manufactured and provided with a protective seal or film that is removed prior to use. For instance, a prefilled version of the fluid reservoir 800 may include a temporary cover, lid, or cap that can be removed prior to use. In the context of a user-filled unit, the unsealed nature of the fluid reservoir 800 allows the fluid chamber 806 to be filled in a manner that inherently equalizes the pressure. Consequently, the fluid chamber 806 will not be over-pressurized when the fluid reservoir 800 is introduced to the fluid infusion device.
The fluid delivery port 808 and the port opening 812 are shaped and sized in accordance with the dimensions of the self-sealing reservoir port receptacle 802. More specifically, the fluid delivery port 808 and the port opening 812 are shaped and dimensioned to facilitate mating and engagement with the self-sealing reservoir port receptacle 802. In this regard, the fluid delivery port 808 is inserted into the self-sealing reservoir port receptacle 802 to enable the fluid reservoir 800 to provide the medication fluid to the body of the patient via the self-sealing reservoir port receptacle 802.
In certain embodiments, the port opening 812 includes at least one flow path 814 (see
In various embodiments, the self-sealing reservoir port receptacle 802 is coupled to, provided with, or incorporated into a base plate of the fluid infusion device (see, for example, a similar arrangement depicted in
The illustrated embodiment of the self-sealing reservoir port receptacle 802 is implemented as a needleless component. In other words, a delivery needle is not utilized with either the self-sealing reservoir port receptacle 802 or the fluid reservoir 800. Rather, the self-sealing reservoir port receptacle 802 incorporates a biased valve element 830 that is nominally closed in its natural state, but is opened in response to engagement of the fluid reservoir 800. Referring to
The inlet 832 is suitably configured, shaped, and sized to receive the fluid delivery port 808 of the fluid reservoir 800. For this embodiment, the inlet 832 includes an interior 838 that is sized to receive the fluid delivery port 808. In alternative embodiments, the inlet 832 may be sized to fit inside the fluid conduit 810. The inlet 832 may also include or cooperate with a sealing element 840 that forms a seal with the outer surface of the fluid delivery port 808 when the fluid delivery port 808 is engaged with the inlet 832. In various embodiments, the sealing element 840 is realized as a resilient gasket, o-ring, washer, or the like. Moreover, although the depicted embodiment has the sealing element 840 incorporated into the inlet 832, the sealing element 840 may alternatively (or additionally) be incorporated into the fluid delivery port 808. When the fluid delivery port 808 is engaged with the inlet 832, the sealing element 840 inhibits leakage of fluid from the port opening 812 and from the valve chamber 834.
The valve chamber 834 is in fluid communication with the inlet 832. For this particular embodiment, the downstream end of the inlet 832 corresponds to the upstream end of the valve chamber 834, as shown in
The self-sealing reservoir port receptacle 802 also includes a resilient compression element 846 located in the valve chamber 834. The resilient compression element 846 can be positioned between the valve element 830 and the downstream end of the valve chamber 834. The resilient compression element 846 is sized and configured to bias the valve element 830 toward the inlet 832 (as shown in
The valve element 830 may be shaped and sized as appropriate for the particular embodiment.
The downstream end of the valve chamber 834 is in fluid communication with the outlet 836 such that medication fluid can pass through the valve chamber 834 and into the outlet 836. The outlet 836 provides a fluid flow path 848 for the medication fluid. In this regard, the fluid flow path 848 may be routed through the base plate and/or through other structure of the fluid infusion device, and to the delivery conduit that leads to the body of the user, as described previously. In other words, the outlet 836 can be positioned between the valve chamber 834 and the delivery conduit.
Engagement of the fluid delivery port 808 with the inlet 832 causes the end of the fluid delivery port 808 to contact the valve element 830. Further engagement and complete coupling of the fluid delivery port 808 within the inlet 832 causes the end of the fluid delivery port 808 to move the valve element 830 from the sealed position (shown in
Needled Fluid Reservoir For A Fluid Infusion Device
Most of the embodiments described previously employ a hollow fluid delivery needle that is provided with a base plate of a fluid infusion device (see, for example,
Alternatively, the embodiments presented in this section utilize a needled fluid reservoir, i.e., a fluid reservoir having a hollow fluid delivery needle incorporated therein. The hollow needle engages a suitably configured reservoir port receptacle, which may be located on the base plate of the fluid infusion device. The reservoir port receptacle includes a fluid conduit that is used to deliver the medication fluid to the body of the patient. In certain embodiments, the reservoir needle is unsealed and, therefore, open to ambient pressure. Accordingly, the fluid infusion device includes an appropriate sealing arrangement to establish a fluid seal with the hollow needle when the fluid reservoir is engaged with the reservoir port receptacle.
Referring to
As best shown in
Various embodiments of the fluid reservoir 900 include a needle hood 916 that at least partially covers the hollow needle 908. The needle hood 916 extends from the main body section 904 to at least partially surround the hollow needle 908, while still providing access to the hollow needle 908 from the end, as best shown in
The fluid reservoir 900 may also include an alignment structure that mates with cooperating structure of the reservoir port receptacle of the fluid infusion device (see
The reservoir port receptacle 924 includes suitably designed mating structure 928 that is intended to engage and mate with the needle hood 916 and, more particularly, to engage with the alignment structure of the needle hood 916. For this particular embodiment, the mating structure 928 is realized as two shoulders or channels that cooperate with the guide rails 920 when the fluid reservoir 900 is coupled to the reservoir port receptacle 924. Moreover, the overall outer shape and contour of the reservoir port receptacle 924 can be shaped and sized to match the interior space defined by the needle hood 916. These features cooperate to orient, align, and guide the needle hood 916 over the reservoir port receptacle 924. Accordingly, the alignment structure of the fluid reservoir 900 cooperates with the mating structure 928 to align and orient the hollow needle 908 relative to the reservoir port receptacle 924. This facilitates proper introduction and insertion of the hollow needle 908 into a sealing element 930 of the reservoir port receptacle 924.
The sealing and conduit component 926 may be realized as an insert or a plug that is received within the section 922, as shown in
As shown in
It should be appreciated that the needle hood 916 and/or the alignment structure of the fluid reservoir 900 may also be designed to mate and cooperate with corresponding structure of a reservoir filling apparatus. In this regard, the alignment structure could also serve to align and orient the hollow needle 908 relative to the reservoir filling apparatus to facilitate insertion of the hollow needle 908 into a sealing element or entry port of the reservoir filling apparatus. This dual-purpose nature of the needle hood 916 and alignment structure may be desirable for embodiments of the fluid reservoir 900 that use the same hollow needle 908 for both filling and delivery of the medication fluid.
The fluid reservoir 940 is very similar to the fluid reservoir 900, except for its use of a hollow needle 942 terminating at a sharp tip 944 (rather than a blunt or rounded tip). Likewise, the sealing and conduit component 946 shown in
The fluid reservoir 960 is very similar to the fluid reservoir 900, except for its use of an integrated hollow needle 962 rather than a physically distinct and separate needle component. In this regard, the hollow needle 962 is integrated and contiguous with the main body section 964 of the fluid reservoir 960. In certain embodiments, the hollow needle 962 and the main body section 964 are molded together from the same material (e.g., a plastic material) to create a unitary single component. The integrated nature of the hollow needle 962 is depicted in
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
This application is a continuation of U.S. patent application Ser. No. 13/399,874, filed on Feb. 17, 2012. U.S. patent application Ser. No. 13/399,874 claims the benefit of U.S. Provisional Patent Application Ser. No. 61/445,393, filed Feb. 22, 2011. The entire content of each of the above applications is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3631847 | Hobbs, II | Jan 1972 | A |
4212738 | Henne | Jul 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4373527 | Fischell | Feb 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4433072 | Pusineri et al. | Feb 1984 | A |
4443218 | DeCant, Jr. et al. | Apr 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4512766 | Vailancourt | Apr 1985 | A |
4542532 | McQuilkin | Sep 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4671288 | Gough | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731051 | Fischell | Mar 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4781798 | Gough | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4809697 | Causey, III et al. | Mar 1989 | A |
4826810 | Aoki | May 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
5003298 | Havel | Mar 1991 | A |
5011468 | Lundquist et al. | Apr 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5080653 | Voss et al. | Jan 1992 | A |
5097122 | Colman et al. | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108819 | Heller et al. | Apr 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5284140 | Allen et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5339821 | Fujimoto | Aug 1994 | A |
5341291 | Roizen et al. | Aug 1994 | A |
5350411 | Ryan et al. | Sep 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5403700 | Heller et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5520665 | Fleetwood | May 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5549566 | Elias et al. | Aug 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5573506 | Vasko | Nov 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594638 | Iliff | Jan 1997 | A |
5609060 | Dent | Mar 1997 | A |
5626144 | Tacklind et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5660176 | Iliff | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5704366 | Tacklind et al. | Jan 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764159 | Neftel | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5840063 | Flaherty | Nov 1998 | A |
5861018 | Feierbach et al. | Jan 1999 | A |
5868669 | Iliff | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5904708 | Goedeke | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5956501 | Brown | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5978236 | Faberman et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6009339 | Bentsen et al. | Dec 1999 | A |
6032119 | Brown et al. | Feb 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6183412 | Benkowski et al. | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6408330 | DeLaHuerga | Jun 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6544173 | West et al. | Apr 2003 | B2 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560741 | Gerety et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607658 | Heller et al. | Aug 2003 | B1 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6689265 | Heller et al. | Feb 2004 | B2 |
6728576 | Thompson et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6747556 | Medema et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
7153263 | Carter et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7396330 | Banet et al. | Jul 2008 | B2 |
7828764 | Moberg et al. | Nov 2010 | B2 |
7905868 | Moberg et al. | Mar 2011 | B2 |
7981076 | Sullivan et al. | Jul 2011 | B2 |
8105314 | Fangrow, Jr. | Jan 2012 | B2 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20020013518 | West et al. | Jan 2002 | A1 |
20020055857 | Mault et al. | May 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020137997 | Mastrototaro et al. | Sep 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030060765 | Campbell et al. | Mar 2003 | A1 |
20030078560 | Miller et al. | Apr 2003 | A1 |
20030088166 | Say et al. | May 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030152823 | Heller | Aug 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030220552 | Reghabi et al. | Nov 2003 | A1 |
20040061232 | Shah et al. | Apr 2004 | A1 |
20040061234 | Shah et al. | Apr 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040064156 | Shah et al. | Apr 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040074785 | Holker et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040167465 | Mihai et al. | Aug 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20050038331 | Silaski et al. | Feb 2005 | A1 |
20050038680 | McMahon et al. | Feb 2005 | A1 |
20050087715 | Doyle | Apr 2005 | A1 |
20050101932 | Cote et al. | May 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050165365 | Newton et al. | Jul 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20060211990 | Fangrow, Jr. | Sep 2006 | A1 |
20060229694 | Schulman et al. | Oct 2006 | A1 |
20060238333 | Welch et al. | Oct 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070083162 | O'Reagan et al. | Apr 2007 | A1 |
20070088521 | Shmueli et al. | Apr 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20080154503 | Wittenber et al. | Jun 2008 | A1 |
20080269687 | Chong et al. | Oct 2008 | A1 |
20090081951 | Erdmann et al. | Mar 2009 | A1 |
20090082635 | Baldus et al. | Mar 2009 | A1 |
20090204077 | Hasted et al. | Aug 2009 | A1 |
20090254041 | Krag et al. | Oct 2009 | A1 |
20090299290 | Moberg | Dec 2009 | A1 |
20110036844 | Gyrn et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
4329229 | Mar 1995 | DE |
0319268 | Nov 1988 | EP |
0806738 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
1338295 | Aug 2003 | EP |
1631036 | Mar 2006 | EP |
2218831 | Nov 1989 | GB |
WO 9311828 | Jun 1993 | WO |
WO 9613301 | May 1996 | WO |
WO 9620745 | Jul 1996 | WO |
WO 9636389 | Nov 1996 | WO |
WO 9637246 | Nov 1996 | WO |
WO 9721456 | Jun 1997 | WO |
WO 9820439 | May 1998 | WO |
WO 9824358 | Jun 1998 | WO |
WO 9842407 | Oct 1998 | WO |
WO 9849659 | Nov 1998 | WO |
WO 9859487 | Dec 1998 | WO |
WO 9908183 | Feb 1999 | WO |
WO 9910801 | Mar 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9922236 | May 1999 | WO |
WO 0010628 | Mar 2000 | WO |
WO 0019887 | Apr 2000 | WO |
WO 0020070 | Apr 2000 | WO |
WO 0048112 | Aug 2000 | WO |
WO 02058537 | Aug 2002 | WO |
PCTUS0203299 | Oct 2002 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03094090 | Nov 2003 | WO |
WO 2005065538 | Jul 2005 | WO |
WO 2008064092 | May 2008 | WO |
WO2009102355 | Aug 2009 | WO |
Entry |
---|
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy. |
Bode B W, et al. (1996). Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes. Diabetes Care, vol. 19, No. 4, 324-327. |
Boland E (1998). Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition. |
Brackenridge B P (1992). Carbohydrate Gram Counting a Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy. Practical Diabetology, vol. 11, No. 2, pp. 22-28. |
Brackenridge, B P et al. (1995). Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc. |
Farkas-Hirsch R et al. (1994). Continuous Subcutaneous Insulin Infusion: A Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No. 2, pp. 80-84, 136-138. |
Hirsch I B et al. (1990). Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283. |
Kulkarni K et al. (1999). Carbohydrate Counting a Primer for Insulin Pump Users to Zero in on Good Control. MiniMed Inc. |
Marcus A O et al. (1996). Insulin Pump Therapy Acceptable Alternative to Injection Therapy. Postgraduate Medicine, vol. 99, No. 3, pp. 125-142. |
Reed J et al. (1996). Voice of the Diabetic, vol. 11, No. 3, pp. 1-38. |
Skyler J S (1989). Continuous Subcutaneous Insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems, Chapter 13, pp. 163-183. Futura Publishing Company. |
Skyler J S et al. (1995). The Insulin Pump Therapy Book Insights from the Experts. MiniMed•Technologies. |
Strowig S M (1993). Initiation and Management of Insulin Pump Therapy. The Diabetes Educator, vol. 19, No. 1, pp. 50-60. |
Walsh J, et al. (1989). Pumping Insulin: The Art of Using an Insulin Pump. Published by MiniMed•Technologies. |
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78. |
Disetronic My Choice™ D-TRON™ Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON® plus Quick Start Manual. (no date). |
Disetronic My Choice H-TRONplus Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON®plus Reference Manual. (no date). |
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054527/www.minimed.com/files/506—pic.htm. |
(MiniMed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234841/www.minimed.com/files/mmn075.htm. |
(MiniMed, 1996). FAQ: The Practical Things . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054546/www.minimed.com/files/faq—pract.htm. |
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234559/www.minimed.com/files/mmn002.htm. |
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide. |
(MiniMed Technologies, 1994). MiniMed™ Dosage Calculator Initial Meal Bolus Guidelines / MiniMed™ Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages. |
(MiniMed, 1996). MiniMed™ 507 Insulin Pump User's Guide. |
(MiniMed, 1997). MiniMed™ 507 Insulin Pump User's Guide. |
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide. |
(MiniMed International, 1998). MiniMed 507C Insulin Pump for those who appreciate the difference. |
(MiniMed Inc., 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy. |
(MiniMed Inc., 1999). Insulin Pump Comparison / Pump Therapy Will Change Your Life. |
(MiniMed, 2000). MiniMed® 508 User's Guide. |
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator / MiniMed® Now [I] Can Correction Bolus Calculator. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management. |
(Medtronic MiniMed, 2002). The 508 Insulin Pump a Tradition of Excellence. |
(Medtronic MiniMed, 2002). Medtronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version. |
Abel, P., et al., “Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell,” Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584. |
Bindra, Dilbir S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring,” American Chemistry Society, 1991, 63, pp. 1692-1696. |
Boguslavsky, Leonid, et al., “Applications of redox polymers in biosensors,” Sold State Ionics 60, 1993, pp. 189-197. |
Geise, Robert J., et al., “Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor,” Analytica Chimica Acta, 281, 1993, pp. 467-473. |
Gernet, S., et al., “A Planar Glucose Enzyme Electrode,” Sensors and Actuators, 17, 1989, pp. 537-540. |
Gernet, S., et al., “Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor,” Sensors and Actuators, 18, 1989, pp. 59-70. |
Gorton, L., et al., “Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases,” Analyst, Aug. 1991, vol. 117, pp. 1235-1241. |
Gorton, L., et al., “Amperometric Glucose Sensors Based on Immobilized Glucose-Oxidizing Enymes and Chemically Modified Electrodes,” Analytica Chimica Acta, 249, 1991, pp. 43-54. |
Gough, D. A., et al., “Two-Dimensional Enzyme Electrode Sensor for Glucose,” Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357. |
Gregg, Brian A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62, pp. 258-263. |
Gregg, Brian A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone,” The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975. |
Hashiguchi, Yasuhiro, MD, et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor With Microdialysis Sampling Method,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389. |
Heller, Adam, “Electrical Wiring of Redox Enzymes,” Acc. Chem. Res., vol. 23, No. 5, May 1990, pp. 128-134. |
Jobst, Gerhard, et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179. |
Johnson, K.W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors & Bioelectronics, 7, 1992, pp. 709-714. |
Jönsson, G., et al., “An Electromechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode,” Electroanalysis, 1989, pp. 465-468. |
Kanapieniene, J. J., et al., “Miniature Glucose Biosensor with Extended Linearity,” Sensors and Actuators, B. 10, 1992, pp. 37-40. |
Kawamori, Ryuzo, et al., “Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus With the Artificial Beta-Cell,” Diabetes vol. 29, Sep. 1980, pp. 762-765. |
Kimura, J., et al., “An Immobilized Enzyme Membrane Fabrication Method,” Biosensors 4, 1988, pp. 41-52. |
Koudelka, M., et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors & Bioelectronics 6, 1991, pp. 31-36. |
Koudelka, M., et al., “Planar Amperometric Enzyme-Based Glucose Microelectrode,” Sensors & Actuators, 18, 1989, pp. 157-165. |
Mastrototaro, John J., et al., “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors & Actuators, B. 5, 1991, pp. 139-144. |
Mastrototaro, John J., et al., “An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose,” 14th Annual International Diabetes Federation Congress, Washington D.C., Jun. 23-28, 1991. |
McKean, Brian D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7, Jul. 1988, pp. 526-532. |
Monroe, D., “Novel Implantable Glucose Sensors,” ACL, Dec. 1989, pp. 8-16. |
Morff, Robert J., et al., “Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors,” Annuaal International Conference of teh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-484. |
Moussy, Francis, et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077. |
Nakamoto, S., et al., “A Lift-Off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors,” Sensors and Actuators 13, 1988, pp. 165-172. |
Nishida, Kenro, et al., “Clinical applications of teh wearable artifical endocrine pancreas with the newly designed needle-type glucose sensor,” Elsevier Sciences B.V., 1994, pp. 353-358. |
Nishida, Kenro, et al., “Development of a ferrocene-mediated needle-type glucose sensor covereed with newly designd biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine -co-n-butyl nethacrylate,” Medical Progress Through Technology, vol. 21, 1995, pp. 91-103. |
Poitout, V., et al., “A glucose monitoring system for on line estimation oin man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue adn a wearable control unit,” Diabetologia, vol. 36, 1991, pp. 658-663. |
Reach, G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors 2, 1986, pp. 211-220. |
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics 6, 1991, pp. 401-406. |
Shichiri, M., “A Needle-Type Glucose Sensor—A Valuable Tool Not Only for a Self-Blood Glucose Monitoring but for a Wearable Artifiical Pancreas,” Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9. |
Shichiri, Motoaki, et al., “An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor,” Frontiers Med. Biol. Engng., 1991, vol. 3, No. 4, pp. 283-292. |
Shichiri, Motoaki, et al., “Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variations in Daily Insulin Requirements to Glycemic Response,” Diabetes, vol. 33, Dec. 1984, pp. 1200-1202. |
Shichiri, Motoaki, et al., “Glycaemic Control in a Pacreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor,” Diab. Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313. |
Shichiri, Motoaki, et al., “Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell,” Diabetes, vol. 28, Apr. 1979, pp. 272-275. |
Shichiri, Motoaki, et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301. |
Shichiri, Motoaki, et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, Nov. 20, 1982, pp. 1129-1131. |
Shichiri, Motoaki, et al., “The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes,” Acta Paediatr Jpn 1984, vol. 26, pp. 359-370. |
Shinkai, Seiji, “Molecular Recognitiion of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer,” J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041. |
Shults, Mark C., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942. |
Sternberg, Robert, et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40. |
Tamiya, E., et al., “Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Modified Electrode,” Sensors and Actuators, vol. 18, 1989, pp. 297-307. |
Tsukagoshi, Kazuhiko, et al., “Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism,” J. Org. Chem., vol. 56, 1991, pp. 4089-4091. |
Urban, G., et al., “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applciations,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739. |
Ubran, G., et al., “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Velho, G., et al., “In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics,” Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233. |
Wang, Joseph, et al., “Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin,” Analytical Chemistry, vol. 73, 2001, pp. 844-847. |
Yamasaki, Yoshimitsu, et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinics Chimica Acta, vol. 93, 1989, pp. 93-98. |
Yokoyama, K., “Integrated Biosensor for Glucose and Galactose,” Analytica Chimica Acta, vol. 218, 1989, pp. 137-142. |
Number | Date | Country | |
---|---|---|---|
20140378912 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61445393 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13399874 | Feb 2012 | US |
Child | 14479233 | US |