This application claims priority to EP Patent Application No. 08012065 filed Jul. 3, 2008, the contents of which is incorporated herein by reference in its entirety.
The invention relates to a fluid injector assembly comprising a fluid injector and a fluid injector cup.
Fluid injector assemblies are in widespread use, in particular as fuel injector assemblies for combustion engines. Fuel can be supplied to a combustion engine by the fuel injector assembly that includes a fuel injector and a fuel injector cup. Fuel injectors can be coupled to fuel injector cups in different manners. In order to keep pressure fluctuations during the operation of the combustion engine at a very low level, combustion engines are supplied with a fuel accumulator to which the fuel injectors are connected and which has a relatively large volume. Such a fuel accumulator is often referred to as a fuel rail. Known fuel rails comprise a hollow body with recesses in the form of fuel injector cups, where the fuel injectors are arranged.
In order to enhance the combustion process in view of the creation of unwanted emissions, a respective fuel injector may be suited to dose fuel under very high pressures. In case of a gasoline engine the pressure may be, for example, in the range of up to 200 bar. The sealing of the coupling between the fuel injectors and the fuel injector cups has to withstand such high pressures. Such a sealing can be made of rubber.
In a low temperature environment a sealing made of rubber can become brittle if the surrounding temperature falls below the glass transition temperature of rubber. In order to prevent fluid leakage the operating pressure of fuel injector assemblies is reduced in low temperature environments. The reduction of the operating pressure can have an unwanted influence on emissions of the combustion engine.
According to various embodiments, a fluid injector assembly can be created which is simply to be manufactured and which facilitates a reliable and precise connection between the fluid injector and the fluid injector cup, especially after a start of a combustion engine.
According to an embodiment, a fluid injector assembly may comprise a fluid injector with a fluid inlet portion, a fluid injector cup with an inner surface, an outer surface and a heating device, wherein the fluid inlet portion of the fluid injector comprising a sealing ring being arranged and designed to sealingly engage the inner surface of the fluid injector cup, the fluid injector cup being designed to couple the heating device thermally to the sealing ring of the inlet portion and to couple the fluid inlet portion mechanically.
According to a further embodiment, the heating device may be an electrical heater. According to a further embodiment, the heating device can be arranged on the outer surface of the fluid injector cup.
Exemplary embodiments are explained in the following with the aid of schematic drawings. These are as follows:
Elements of the same design and function that occur in different illustrations are identified by the same reference characters.
According to various embodiments, a fluid injector assembly may comprise a fluid injector with a fluid inlet portion and a fluid injector cup with an inner surface, an outer surface and a heating device. The fluid inlet portion of the fluid injector comprises a sealing ring being arranged and designed to sealingly engage the inner surface of the fluid injector cup, the fluid injector cup being designed to couple the heating device thermally to the sealing ring of the inlet portion and to couple the fluid inlet portion mechanically. This allows to reliably seal the coupling of the fluid injector with the fluid injector cup of a fluid rail. More specifically, a reliable sealing can be ensured close to the start of the combustion engine in a low temperature environment in which the external temperature falls below the glass temperature of the sealing material. This enables to operate the fluid injector assembly under high pressures also at low temperatures.
In an embodiment the heating device is an electrical heater. This allows a simple construction of the heating device. A further advantage is that the energy can simply be provided by an electrical power source.
In a further embodiment the heating device is arranged on the outer surface of the fluid injector cup. This allows an easy assembly of the fluid injector cup and the fluid injector with regard to the thermo-coupling of the injector cup to the sealing ring.
A fluid inlet portion 16 of the fluid injector 14 is coupled to a fluid injector cup 18 of the fluid rail 12. The fluid inlet portion 16 has an outer surface 20 which comprises two opposing projections 22 in radial direction with respect to the central longitudinal axis L. Each of the projections 22 has a groove 24. The fluid inlet portion 16 further comprises a sealing ring 26.
The fluid injector cup 18 has an outer surface 28, an inner surface 30 and comprises a heating device 32 for heating the sealing ring 26 and a coupling section 34. The coupling section 34 comprises two opposing protrusions 36 in radial direction with respect to the central longitudinal axis L. Each of the protrusions 36 has a final section 38 with an edge 40. As can be seen in
The fluid injector cup 18 is preferably made out of stainless steel. This allows a good conductivity of the heat being emitted by the heating device 32. Furthermore, this allows an elastic deformation of the protrusions 36 formed in the shape of a semi-circular arc and additionally stainless steel can reduce the corrosion of the fluid injector assembly.
The sealing ring 26 of the fluid inlet portion 16 is arranged between the fluid injector 14 and the fluid injector cup 18 to establish a hydraulic sealing. The surface of the sealing ring 26 is forming a part of the outer surface 20 of the fluid injector 14. The inner surface 30 of the fluid injector cup 18 sealingly engages the outer surface 20 of the fluid injector 14 in the section ring 26.
The heating device 32 at the outer surface 28 of the fluid injector cup 18 is arranged in the section where the inner surface 30 of the fluid injector cup 18 sealingly engages the outer surface 20 of the fluid injector 14. A thermal coupling between the heating device 32 and the sealing ring 26 is established by the fluid injector cup 18.
In a preferred embodiment the heating device 32 is an electrical heater. As can be seen in a section of
The sealing ring 26 can, for example, be made of rubber. Like other amorphous solids, rubber becomes brittle when it is cooled below a material-specific temperature, the so-called glass transition temperature TG. In a cold environment the temperature of the sealing ring 26 can fall below the glass transition temperature TG of the material of the sealing ring 26. This can especially be the case after the start of the combustion engine 4. The heat which is emitted by the heating device 32 and conducted by the fluid injector cup 18 is transmitted to the sealing ring 26 and ensures the temperature of the sealing ring 26 to remain above a given threshold. This avoids the material of the sealing ring 26, for example rubber, to become brittle when the threshold is at least the glass transition temperature TG of rubber.
Number | Date | Country | Kind |
---|---|---|---|
08012065 | Jul 2008 | EP | regional |