The present invention relates to pumps and more particularly, relates to a fluid pump, particularly suited to sterile fluids, that uses an electromagnetic linear motor.
Fluid pumps have been used in the medical industry, for example, to pump blood and other types of sterile fluids. Some existing fluid pumps are driven pneumatically. Other existing fluid pumps use stepping motors or screw type motors. These existing fluid pumps are often expensive, unreliable, too noisy, can damage blood and blood products, and/or unable to accurately control the fluid flow. Proper control of the pump and the fluid flow is particularly important when the fluid pump is used, for example, in a ventricular assist device (VAD), to pump blood which is susceptible to clotting.
Accordingly, there is a need for a fluid pump driven by a reliable linear motor that is capable of accurately controlling the pumping. There is also a need for an inexpensive fluid pump that is capable of providing the desired flow of fluid, for example, to prevent clotting in blood.
In accordance with one aspect of the present invention, a pumping system is provided. The pumping system comprises at least one linear electromagnetic motor including a core defining an air gap, at least one coil wrapped around at least a portion of the core proximate the air gap, and a magnet member, comprised of one or more magnets, located in the air gap and movable in a linear direction. Additionally, one or more magnets can be stationary and the wire coil can move through the air gap. At least one pump drive head is coupled to the moving member such that the pump drive head is movable in the linear direction. The pumping system further comprises at least one fluid housing defining a fluid chamber for containing a fluid. The fluid housing has a movable wall and one or more ports. The pump drive head contacts and moves the flexible membrane to drive the fluid through the port(s).
According to another aspect of the present invention, a fluid pump is provided. The fluid pump comprises a fluid housing defining a fluid chamber for containing a fluid. Inlet and outlet ports extend from the fluid housing and include or are coupled to valves, for example passive valves such ball valves, which allow fluid to flow in only one direction through the inlet and outlet ports. The fluid pump preferably includes a flexible membrane with a pump drive head molded therein.
According to a further aspect of the present invention, the fluid pump having the valves, as defined above, can be used in the pumping system with the linear motor establishing a physiologically pulsatile flow of fluid (sometimes termed counterpulsation).
These and other features and advantages of the present invention will be better understood by reading the following detailed description, taken together with the drawings wherein:
A linear motor fluid pumping system 10,
The linear motor fluid pumping system 10 includes a linear motor 12 and a pump 16. The linear motor 12 is preferably a linear electromagnetic motor, such as the type disclosed in greater detail in U.S. Pat. No. 5,216,723, which is fully incorporated herein by reference. This linear motor 12 preferably provides relatively quiet, high torque, low speed linear motion. The linear motor 12 includes a core 20 defining an air gap 22. One or more coils 24 are wrapped around a portion of the core 20 proximate the air gap 22. A magnet member 26 is positioned in the air gap 22 and is movable in a linear direction as indicated generally by arrow 28.
A magnet member support 30 is preferably coupled between the magnet member 26 and the core 20. The magnet member support 30 is flexible and supports the magnet member 26 in the air gap 22 while allowing linear movement of the magnet member 26. The magnet member support 30 preferably includes a linear bearing or other similar guidance system. A power cord 40 is connected to the core 20 to provide an electrical current to the coil(s) 24 for driving the linear motor 12, as will be described in greater detail below.
Although the exemplary embodiment shows one configuration for the linear motor 12, other configurations, as described for example in U.S. Pat. No. 5,216,723 and incorporated herein by reference, are also within the scope of the present invention.
In one embodiment, a pump drive head 50 is coupled to the magnet member 26. The pump head is mechanically coupled to the moving magnet, such that the magnet can apply a force to the pump head in two directions, producing alternating pressure and vacuum in the pump chamber. The magnet member 26 thereby moves the pump drive head 50 in the linear direction shown generally by arrow 28, to directly engage the pump 16. Although this embodiment shows the pump drive head 50 having a dome shape, other shapes and configurations are within the scope of the present invention.
The pump 16 includes a fluid housing 52 defining a fluid chamber 54 containing the fluid to be pumped. The fluid housing 52 preferably includes a movable wall 56 on at least one side. The pump drive head 50 contacts and moves the movable wall 56 to contract and/or expand the fluid chamber 54, thereby forcing the fluid out of and/or drawing the fluid into the fluid chamber 54.
In one preferred embodiment, the housing 52 is made of a plastic material and the movable wall 56 is a flexible membrane made of an elastomer. By using the flexible membrane as the movable wall 56, the movable wall 56 returns to its original position when the pump drive head 50 retracts. Although the exemplary embodiment shows a generally dome-shaped housing 52, other shapes are within the scope of the present invention.
One or more ports 60, 62 extend from the fluid housing 52 to allow the fluid to pass into and/or out of the fluid housing 52. In one embodiment, a separate inlet port 60 and outlet port 62 extend from the fluid housing 52. An inlet tube 64 and an outlet tube 66 are coupled to the respective inlet port 60 and outlet port 62 to direct the fluid to the desired location, as will be described in greater detail below.
The inlet port 60 and outlet port 62 preferably include check valves to allow the fluid to flow in only one direction through the ports 60, 62. According to one preferred embodiment, the ports 60, 62 include ball valves 70, 72. The ball valve 70 allows the fluid to flow only into the fluid housing 52 and the ball valve 72 allows the fluid to flow only out of the housing 52. Alternatively, the ports 60, 62 may contain any other valve designs known to those skilled in the art such as, but not limited to, active and passive valves, for example, gate valves, pinch valves, magnetic valves, bi-leaflet valves, butterfly valves, solenoids, or the like to control or regulate the flow in and out of ports 60, 62 and fluid housing 52. Further, the ports 60 may be sized (length and/or volume) to achieve a desired amount of pulsatile flow also termed counterpulsation.
One preferred embodiment of the ball valves 70, 72 includes three molded parts including a valve retainer region 69, a valve seat 73 and an occluder ball 71. When there is a positive pressure differential in the direction of flow, the occluder ball 71 is forced against the valve retainer 69, and flow is allowed to move annular to and generally around the occluder ball 71. When this pressure differential is reversed, the occluder ball 71 is forced against the valve seat 73 and flow is stopped, but not before causing some “reversal” in the flow of the fluid being pumped and thereby establishing a “pulsatile” or counterpulsation fluid flow which is analogous to the normal physiological forward and slight reversal flow created by a beating heart. The use of the ball valves 70, 72 allows a substantially continuous, one-way pulsatile flow of fluid through the pump 16. The amount of “reversal” can be adjusted by varying the distance between the valve retainer 69 and the valve seat 73 which the occluder ball 71 travels and/or the volume of the ports 60, 62.
When used to pump blood, this substantially continuous physiologically pulsatile flow avoids clotting caused by low blood flow and thus lowers the risk of thrombosis and reduces the need for anti-coagulation medication. Further, it has been found that the pulsatile flow provided by the present invention actually causes a slight “reversal” in the flow of the fluid. This reversal of the fluid flow serves to “break up” boundary layers within the blood, improving circulation and preventing the formation of any blood clots that may form in those areas where such formation is common. Peak flow pressures open the smallest capillaries resulting in improved end organ perfusion. Physiologically pulsatile flow provided by the pump mimics the natural physiologically pulsatile flow generated by a normal human heart, which is understood to be better.
When current is applied to the linear motor 12, the magnet member 26 moves the drive head 50 against the movable wall 56 of the fluid housing 52. The movement of the movable wall 56 causes fluid to be pumped to and/or from the fluid chamber 54. Because the linear motor 12 is directly coupled to the fluid pump 16 without unnecessary mechanical linkages, there is a direct correlation between the current applied to the linear motor 12 and the fluid pressure. Varying the current applied to the linear motor 12 varies the stroke rate and force of the magnet member 26. Thus, the flow rate and pressure of the fluid medium can be dynamically controlled by simply controlling the electrical current provided to the linear motor 12. In other words, the flow and pressure can be varied during the stroke.
Other advantages of the linear motor fluid pumping system 10 include the ability to reliably determine the force applied by the linear motor, the pressure or vacuum drawn by the pump, and the position of the movable wall 56. Ultrasonic flow transducers can be used to measure the pressure and flow into and/or out of the fluid pump 16.
In one application, the linear motor 12 is driven, for example, with a sine wave having a frequency of about 1 Hz. The sinusoidal current results in the consistent reciprocating motion of the magnet member 26. The sine wave can be generated, for example, using a function generator (not shown).
The linear motor pumping system 10 can also provide a programmable flow profile. The force generated by the motor, and therefore the pressure generated within the pump, is directly related to the applied current. If a specific pressure waveform is required for a given application, it can be directly produced by generating a specific current waveform from a source controlling the current such as a microprocessor and/or a programmable function generator.
An alternative embodiment of the fluid pump 16′,
When the pump drive head 50 engages the movable wall of the first fluid housing 80, the actuation fluid is forced out of the first housing 80 and through the tube 84. The actuation fluid causes the second fluid housing 82 to force the fluid through the outlet port. This embodiment allows the linear motor 12 and first fluid housing 80 to be located in a remote location (e.g., in a console) while the second fluid housing 82 is located proximate a patient.
According to further embodiments shown in
The two pumps 16a, 16b can also be used with two separate linear motors 12a, 12b, as shown in
According to one preferred embodiment, the pump drive head 90,
One embodiment of a blood pump 100 used in a VAD (ventricular assist device), according to the present invention, is shown in greater detail in
According to various configurations, the blood pump 100 can provide two-chamber continuous flow with proper valve sequencing or can provide pulsatile flow. If two pumps are used in parallel, and they are controlled 180° out of phase, the output is a near constant flow. No active valving sequence would be required, again only the control and sequencing of the pump motors.
In an alternative method of controlling the VAD, a controller 121,
Thus, the controller 121 is capable of generating a physiological pulsatile flow as described above which mimics the normal flow generated by a beating heart. However, the controller 121 is also capable of generating any sort of pressure or flow dynamic or pattern by varying the current waveform and plunger stroke (volume) of the pump. As a result, the controller 121 is capable of generating arbitrary, programmable, or super-physiological waveforms wherein a higher (or lower) frequency waveform is generated in addition to, or over, the standard physiological waveform.
While the controller 121 is capable of generating these complex waveforms, the pump 16 of the pumping system 10 must also be capable of responding quickly enough to actually generate the desired flow patterns. The use of the linear motor 12, in combination with the pump drive head 50 molded into the movable wall 92 of the fluid housing 52 described hereinabove, allows the pump 16 to respond or accelerate quickly enough to generate the desired flow dynamics or patterns created by the controller 121. The controller 121 may also be combined, however, with any other pumping system capable of generating the desired flow dynamics or patterns.
When any pumping system is being used to support both the left and right ventricles, such as with a BiVAD or artificial heart, the two pumps must remain in balance with each other. This balance does not necessarily translate to equivalent flow rates. Instead, it should correlate to equivalent atrial pressures. Since the controller in the present invention is sensitive to atrial pressures, the pumps will adjust as atrial pressure change, allowing for the left and right atrial pressures to be maintained.
According to another embodiment, the present invention includes a minimally invasive extracorporeal VAD system 110,
During native heart systole, the pump 112 fills fluid chamber 114. This filling slightly reduces the pressure in the patient's arterial system 124, decreasing afterload and increasing cardiac output. During native heart diastole, the pump 112 empties fluid chamber 114, increasing the pressure of the patient's 112 arterial system 124. By increasing cardiac output and the pressure of arterial system 124, sufficient cardiac support is provided to stabilize the patient 118 and prepare the patient 118 for proper intervention, surgery or otherwise.
In yet another embodiment, the present invention includes an integrated cardiopulmonary bypass (CPB) system 130,
The integrated cardiopulmonary bypass (CPB) system 130 is setup similar to a conventional CPB. Cannulation can be made in the traditional manner (not shown). Venous blood is preferably drained by gravity into a venous reservoir in a traditional manner (not shown). The venous reservoir monitors the volume and alarms if it is too low or too high. Blood is pulled from the venous reservoir through tube 140 by applying a vacuum to the proximal pump chamber 142 using the motor and the pump head (not shown). When pressure is applied to the proximal pump chamber 142, blood is forced out the outlet port 146′ through a heat exchanger 148 and oxygenator 150. The heat exchanger 148 and oxygenator 150 are preferably connected to a temperature controlled water bath (not shown) and oxygen source (not shown), respectively, in the traditional manner. From the oxygenator 150, blood is pulled into the distal pump 134 through inlet port 144″ in the same manner described hereinabove. When pressure is applied to the distal pump 134, blood is forced out the outlet port 146″, through an arterial filter 152 and returned to the patient's arterial system through tube 154.
A portion of the arterial blood is shunted over to the cardioplegia blood pump 136 through tubes 161, 167 and ports 144′″, 146′″ and is then preferably mixed at junction 156 with a cardioplegia solution. The cardioplegia solution is metered by cardioplegia pump 138 and is drawn from a reservoir (not shown) through tubes 163, 165 and ports 144″″, 146″″ to junction 156. The blood and cardioplegia are then temperature controlled at the cardioplegia heat exchanger 158 and are pumped to the patient's myocardium through tube 160 to provide myocardial protection.
The proximal and distal pumps 132, 134 can be coupled so that they are always operating 180° out of phase. This will allow for filling of the distal pump 134 while the proximal pump 132 is emptying. That way, no compliance is required between the two. The proximal pump 132 can be run at low pressure since it is only pushing through the oxygenator 150 and heat exchanger 148, increasing the efficiency. The distal pump 134 preferably operates at a higher pressure, with the waveform programmed as such to deliver physiological pulsatile flow to the patient in any manner described herein without passing through the oxygenator 150 or heat exchanger 148 which could dampen the pulse. The cardioplegia pumps 136, 138 can be set to provide precise pressure to the antegrate or retrograde cardioplegia cannulae. As described hereinabove, the use of the ports 144, 146 having the ball valve configuration described above results in a slight “reversal” in the flow of the blood (fluids). This reversal of the fluid flow serves to “break up” boundary layers within the blood, improving circulation and preventing the formation of any blood clots that may form in those areas where such formation is common.
Other embodiments of the linear motor pumping system are also within the scope of the present invention. These other embodiments include, but are not limited to, using the linear motor 12 to drive the reciprocating piston in an IV pump, using the linear motor 12 to drive a syringe pump (e.g., for anesthesia or insulin delivery), using the linear motor 12 in a dialysis machine, and using the linear motor 12 in other sterile fluid pumping applications, such as laparascopic, cardiothoracic, cardiopulmonary by-pass and arthroscopic surgery.
The linear motor 12 can also be used for valving. The linear motor can be used to make active valves by using the motor to selectively occlude or open a fluid pathway. This fluid pathway could be a tube or a combination of a rigid and flexible component.
Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
This application is a divisional of U.S. patent application Ser. No. 10/372,023 filed Feb. 21, 2003, now U.S. Pat. No. 7,238,165, which claims the benefit of U.S. Provisional Application No. 60/358,547 filed on Feb. 21, 2002 both fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3513486 | de Bennetot et al. | May 1970 | A |
3633217 | Lance | Jan 1972 | A |
3771173 | Lamb, Jr. | Nov 1973 | A |
3771899 | Brumfield | Nov 1973 | A |
3842440 | Karlson | Oct 1974 | A |
3874002 | Kurpanek | Apr 1975 | A |
3911897 | Leachman, Jr. | Oct 1975 | A |
4143425 | Runge | Mar 1979 | A |
4173796 | Jarvik | Nov 1979 | A |
4222127 | Donachy et al. | Sep 1980 | A |
4293961 | Rungo | Oct 1981 | A |
4541787 | DeLong | Sep 1985 | A |
4965864 | Roth et al. | Oct 1990 | A |
5011380 | Kovacs | Apr 1991 | A |
5064353 | Tsukahara | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5089016 | Millner et al. | Feb 1992 | A |
5089018 | Lapeyre et al. | Feb 1992 | A |
5171207 | Whalen | Dec 1992 | A |
5186431 | Tamari | Feb 1993 | A |
5216723 | Froeschle et al. | Jun 1993 | A |
5242384 | Robinson et al. | Sep 1993 | A |
5266265 | Raible | Nov 1993 | A |
5270005 | Raible | Dec 1993 | A |
5300015 | Runge | Apr 1994 | A |
5300111 | Panton et al. | Apr 1994 | A |
5411706 | Hubbard et al. | May 1995 | A |
5423738 | Robinson et al. | Jun 1995 | A |
5431626 | Bryant et al. | Jul 1995 | A |
5512042 | Montoya et al. | Apr 1996 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5743845 | Runge | Apr 1998 | A |
5770149 | Raible | Jun 1998 | A |
5785686 | Runge | Jul 1998 | A |
5820579 | Plotkin | Oct 1998 | A |
5823930 | Runge et al. | Oct 1998 | A |
5823986 | Peterson | Oct 1998 | A |
5827220 | Runge | Oct 1998 | A |
5916191 | Plunkett et al. | Jun 1999 | A |
5928179 | Plotkin | Jul 1999 | A |
5984960 | Vitale | Nov 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6123724 | Denker | Sep 2000 | A |
6190409 | Vitale | Feb 2001 | B1 |
6264601 | Jassawalla et al. | Jul 2001 | B1 |
6264890 | Boehringer et al. | Jul 2001 | B1 |
6267926 | Reed et al. | Jul 2001 | B1 |
6405599 | Patt | Jun 2002 | B1 |
6428747 | Dueri et al. | Aug 2002 | B1 |
6443922 | Roberts et al. | Sep 2002 | B1 |
6478774 | Balugani et al. | Nov 2002 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6576191 | Myrick et al. | Jun 2003 | B1 |
6632169 | Korakianitis et al. | Oct 2003 | B2 |
6969345 | Jassawalla et al. | Nov 2005 | B2 |
20020085952 | Ellingboe et al. | Jul 2002 | A1 |
20020087107 | Roberts et al. | Jul 2002 | A1 |
20020128587 | Aboul-Hosn et al. | Sep 2002 | A1 |
20020128597 | Grimes et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
1 9609281 | Aug 1997 | DE |
0601804 | Jun 1994 | EP |
0665713 | Aug 2002 | EP |
2309206 | Nov 1976 | FR |
WO 9406292 | Mar 1994 | WO |
WO 9740867 | Nov 1997 | WO |
WO 9836792 | Aug 1998 | WO |
WO 9949913 | Oct 1999 | WO |
WO 0072897 | Dec 2000 | WO |
WO 0143797 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070255089 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60358547 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10372023 | Feb 2003 | US |
Child | 11751954 | US |