The disclosure relates to micro-fluid ejection heads, and in particular to improved fluid storage containers for micro-fluid ejection heads.
Micro-fluid ejection heads are useful for ejecting a variety of fluids including inks, cooling fluids, pharmaceuticals, lubricants and the like. A widely used micro-fluid ejection head is in an ink jet printer. Ink jet printers continue to be improved as the technology for making the micro-fluid ejection heads continues to advance. New techniques are constantly being developed to provide low cost, highly reliable printers which approach the speed and quality of laser printers. An added benefit of ink jet printers is that color images can be produced at a fraction of the cost of laser printers with as good or better quality than laser printers. All of the foregoing benefits exhibited by ink jet printers have also increased the competitiveness of suppliers to provide comparable printers and supplies for such printers in a more cost efficient manner than their competitors.
Micro-fluid ejection devices may be provided with permanent, semi-permanent, or replaceable ejection heads. Since the ejection heads require unique and relatively costly manufacturing techniques, some ejection devices are provided with permanent or semi-permanent ejection heads. Such ejection heads are connected to removable fluid supply cartridges that that contain the fluid or fluids being ejected. In order to control ejection of the fluids, the cartridges may be provided with a negative pressure inducing device within a fluid cavity of the cartridge. Such negative pressure inducing devices include, but are not limited to, felt blocks, foam blocks, and other porous materials that may be saturated with the fluid and have capillaries or pores that induce a negative pressure in the cavity. The permanent or semi-permanent ejection head may also include a wicking projection that contacts the negative pressure inducing device. However, as described in more detail below, such a projection in combination with a conventional negative pressure inducing device may produce air gaps in the fluid supply cartridge that may result in poor fluid supply performance.
In view of the foregoing, exemplary embodiments of the disclosure provide a fluid supply cartridge and a method for improving fluid supply characteristics of the fluid supply cartridge. The fluid supply cartridge includes a negative pressure inducing cavity. A negative pressure inducing device is disposed in the cavity. The negative pressure inducing device having a width, a length, and a height. At least one slit is disposed in the negative pressure inducing device transverse to the length and across the width thereof. The at least one slit has a depth that is sufficient to regulate and/or stabilize a connection force used to attached the fluid supply cartridge to an ejection head structure.
Another exemplary embodiment of the disclosure provides a method for improving a fluid supply performance of a fluid supply cartridge containing a negative pressure inducing device disposed in the cartridge. The method includes slitting the negative pressure inducing device to provide at least one slit across a width thereof, to a predetermined depth, and in a location of the negative pressure inducing device sufficient to reduce the pore size, and increase the capillary pressure of the negative pressure inducing device adjacent a fluid outlet wick. The negative pressure inducing device is disposed in a cavity of the fluid supply cartridge so that the at least one slit is adjacent an outlet port of the fluid supply cartridge.
Further features and advantages of the disclosed embodiments may become apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale, wherein like reference numbers indicate like elements through the several views, and wherein:
For the purposes of this disclosure, a wide variety of negative pressure inducing devices may be used provided the device is in intimate contact with a fluid outlet wick when a fluid supply cartridge is attached to a micro-fluid ejection head structure. Such negative pressure inducing devices include, but are not limited to, open cell foams, capillary containing materials, absorbent materials, and the like.
As used herein, the terms “foam” and “felt” will be understood to refer generally to reticulated or open cell foams having interconnected void spaces, i.e., porosity and permeability, of desired configuration which enable a fluid to be retained within the foam or felt and to flow therethrough at a desired rate for delivery to a micro-fluid ejection head. Foams and felts of this type are well known in the art. A commercially available example of a suitable foam is a felted open cell foam which is a polyurethane material made by the polymerization of a polyol and toluene diisocyanate. The resulting foam is a compressed, reticulated flexible polyester foam made by compressing a foam with both pressure and heat to specified thickness.
With reference to
A bottom perspective view of the fluid reservoir 10 is provided in
The rigid body 12 and cover 14 may be made of a variety of materials including, but not limited to, metals, plastics, ceramics, and the like, provided they are made of materials compatible with the fluids they contain. In that regard, a polymeric material that may be used to provide the body 12 and cover 14 may be selected from the group consisting of an amorphous thermoplastic polyetherimide available from G.E. Plastics of Huntersville, N.C., a glass filled thermoplastic polyethylene terephthalate resin available from E. I. du Pont de Nemours and Company of Wilmington, Del., a syndiotactic polystyrene containing glass fiber available from Dow Chemical Company of Midland, Mich., a polyphenylene oxide/high impact polystyrene resin blend available from G.E. Plastics, and a polyamide/polyphenylene ether resin available from G.E. Plastics.
A cross-sectional view of the fluid reservoir 10 and an ejection head structure 18 are illustrated in
However, as shown in
In order to improve the fluid flow characteristics between the negative pressure inducing device 24 and the ejection head structure 18, an improved negative pressure inducing device, such as device 40 (
With reference now to
An advantage of at least some of the embodiments described herein is that a zone of compression of the negative pressure inducing device 40 is directly over the wick 28 thereby providing enhanced fluid flow characteristics between the negative pressure inducing device 40 and the wick 28. Remaining areas of the negative pressure inducing device 40 are substantially uncompressed and thus remain adjacent to the outlet wall 36 of the cartridge 10.
Graphical representations of connection forces versus deflection of the wick 28 and/or devices 32 and 40 are illustrated in
By contrast,
Having described various aspects and embodiments of the disclosure and several advantages thereof, it will be recognized by those of ordinary skills that the embodiments are susceptible to various modifications, substitutions and revisions within the spirit and scope of the appended claims.