1. Field of the Invention
The present invention relates to apparatus, systems, and techniques for processing a Raman scattering signal and, in particular, to distinguishing Raman spectra from fluorescence in Raman spectroscopy, including when the Raman spectra and fluorescence is generated by and detected at an instrument at standoff distances from a target material.
2. Problems in the Art
When applying Raman spectroscopy to the detection of explosives or toxic substances at standoff ranges (e.g. meters to tens of meters, and perhaps one hundred meters and possibly more), a chief drawback is the obscuring of the Raman scattering signal by fluorescence.[1,2] Fluorescence is generally excited whenever a laser in the ultraviolet (UV), visible, or near-visible portion of the electromagnetic spectrum is used for Raman spectroscopy. The fluorescence quantum yields of most materials are generally orders of magnitudes greater than the scattering through the Raman effect. [3] In addition, the Raman signal is largest for UV wavelengths, which also induces the largest excitation of fluorescence. Consequently, the fluorescence can saturate a detector to the point that the Raman scattering is too insignificant to detect, especially in the UV.
Because of the desire to use UV wavelengths for Raman detection, several strategies to avoid fluorescence have been proposed. Using a laser with a wavelength (λ) less than 250 nm allows the Raman spectrum of most materials to be collected in the spectral region between the laser wavelength and the Stokes shifted fluorescence of almost all known materials. [4] Although this strategy improves the Raman signal intensity greatly and avoids most of the fluorescence from the sample and background in the useful Raman spectrum, it introduces the possibility of photodegrading the sample.[5,6] In addition, powerful UV lasers with λ<250 nm for applications such as standoff detection are limited to excimer sources, which are less than ideal. Collection of UV Raman spectra at different wavelengths and subtracting the spectra to remove fluorescence contributions (i.e. Shifted-Excitation Raman Differential Spectroscopy or SERDS) [7] is alternative method to mitigating fluorescence, but it requires at least some ability to tune the laser source. Finally, software approaches to remove potential baselines [8] can also be used provided that the fluorescence does not completely mask the Raman signal, which is a real possibility when UV wavelengths are used.
Another strategy for rejecting fluorescence as well as improving identification in Raman spectroscopy is similar to SERDS but uses polarization rather than wavelength shifts of the source. Raman scattering is known to depend on the linear polarization of the collected spectrum relative to the linear polarization of the excitation source.[10] Molecular vibrations that are highly symmetric tend to return more light of the same polarization as the excitation source (denoted I∥) whereas asymmetric vibrations are less likely to do so, as monitored by filtering perpendicular to the source (denoted Î).[10] However, the fluorescence has virtually no dependence on the polarization of the source, except in a few cases that are generally applicable for viscous liquids.[11] Using this fact, “depolarization” spectra can be obtained, [12] as in
As can be seen, there are different approaches to using Raman information for identification of constituent elements in an unknown sample. It can also be seen that there are a number of factors, some of which are antagonistic to one another, that are involved. The inventor has identified there is room for improvement in this technical field.
Although the polarization dependence of Raman has been known for some time, and a recent technique subtracting the two polarized Raman spectra has been proposed, the present invention applies it in a different way. By subtracting rather than ratioing the UV Raman scattering at polarizations parallel and perpendicular to the excitation source, a UV Raman spectrum can be generated that is almost entirely free of fluorescence, with only a small loss in signal—at most a factor of 4 in theory—for UV Raman transitions. Le Ru et al. [3] have applied the technique for the extraction of Raman cross-sections, but not using UV wavelengths. Their demonstration of the method involved visible wavelengths for excitation where the fluorescence is generally worse for Raman. Moreover, their analysis of a visible dye with this method showed how powerful it can be at rejecting the fluorescence in favor of the Raman spectrum. It should be noted however that this technique works best for Raman transitions that are highly symmetric,[13] as the parallel component polarization will be strongest.
One major advantage of the use of this polarization technique as well as depolarization ratios is that UV Raman spectroscopy could be acquired using wavelength sources such as Nd3+:YAG lasers that are cheaper, easier to maintain, and more rugged. Inherently-polarized Q-switched Nd3+:YAG lasers at 266 nm and 355 nm with high power (>50 mJ/pulse) and/or high repetition rates are desirable for Raman. Polarization methods have already been used to extract UV Raman spectra using these types of lasers under conditions of high fluorescence in flames where acquiring the Raman spectra at different polarizations allowed for discrimination of the signal from the highly-emissive background.[14] However, they have not been applied for detection of such things as explosives.
Raman standoff detection of explosives would be one of the greatest beneficiaries by the application of these techniques with such laser sources. For example, using a polarized deep UV (DUV) laser at say 248 nm, and flipping between parallel and perpendicular at some rate (say 2 Hz) at a receiver, (see, e.g.,
In one aspect, the present invention comprises utilizing polarization as a scheme for fluorescence removal. In this scheme, a linearly polarized ultraviolet (UV) laser interacts with a material on a surface or in a container. The material generates Raman scattering and possibly fluorescence. The fluorescence is generally unpolarized, but the Raman scattering depends on the polarization of the laser and the symmetry of the normal modes in a material. By placing a polarized filter in front of a detector, it is possible to measure the components of the Raman scattering that are parallel and perpendicular to the polarization of the laser. Both these components will contain approximately equal amounts of the fluorescence generated by the laser target. By subtracting a scaled version of the perpendicular component from the parallel component, it is possible to generate a spectrum that is fluorescence free and contains the strongest features of the Raman scattered light. This technique can take on a number of embodiments when implemented in practice.
In one embodiment of this invention, the analyzed material is a solid, liquid, gas, or mixture of states.
In one embodiment, the analyzed material is a mixture of chemicals.
In one embodiment, the analyzed material is on a surface.
In another embodiment, the analyzed material is in a container.
In certain embodiments of this invention, the laser source is a UV laser with a wavelength between 220 and 400 nm.
In one embodiment, the laser source is a solid-state UV laser.
In one embodiment, the laser source is an excimer.
In one embodiment of this invention, the laser source is pulsed.
In one embodiment of this invention, the laser source is continuous wave (cw) or pseudo-cw.
In one embodiment of this invention, the laser polarization is switched using a polarization filter which is rotated to different orientations.
In one embodiment of this invention, the laser polarization is switched using a fixed polarization filter and a waveplate rotated to different orientations.
In one embodiment of this invention, the laser polarization is switched by inserting one or multiplicity of polarization selective optics.
In one embodiment of this invention, the receiver or collector is a telescope.
In another embodiment of this invention, the receiver is a collection of lenses, mirrors, and related focusing optics.
In one embodiment of this invention, the receiver polarization is switched using a polarization filter which is rotated to different orientations.
In another embodiment, the receiver polarization is switched using a fixed polarization filter and a waveplate rotated to different orientations.
In another embodiment, the receiver polarization is switched by inserting one or multiplicity of polarization selective optics.
In one embodiment, the received light is split into two signals using a beam splitter before passing each through a polarization filter. In one embodiment, the received light is split into parallel and perpendicular polarizations, each of which are simultaneously measured.
In one embodiment of this invention, the polarized Raman spectrum that is perpendicular to the polarization of the laser source is directly subtracted from the polarized Raman spectrum that is parallel to the polarization of the laser source.
In one embodiment of this invention, the polarized Raman spectrum that is perpendicular to the polarization of the laser source is scaled before being subtracted from the polarized Raman spectrum that is parallel to the polarization of the laser source.
In one embodiment of this invention, the polarized Raman spectra are preprocessed before performing spectral combination.
In another aspect of the invention, a hand-held instrument includes a polarized UV laser source to generate an interrogating laser beam to standoff distances, a collector of return light from the interrogation, and a polarizer of the return light that can be adjusted between different polarization states. Spectra of the return light—each polarized in a different polarization state—are produced in a portable spectrometer operatively connected to the hand-held instrument. Those spectra are quantified and compared in a portable computer. The comparison can be used to remove fluorescence and better distinguish Raman information to more accurately detect constituent chemicals in the return light. The hand-held instrument includes structure to allow quick and easy adjustment of the polarizing element between the two polarization states. It can utilize an intrinsically polarized laser or can include another polarizing element in the hand-held instrument and external of the laser source which can be set to one polarization state or optionally adjusted between at least two different polarization states. Utilizing UV laser sources and the adjustable polarization states allows a portable, cost-effective system for standoff distances, including meters to tens of meters for both indoors and outdoors.
For a better understanding of the invention, specific forms or embodiments it can take will now be described in detail. Frequent reference will be taken to the accompanying drawings, which are itemized above. Reference numerals will be used to indicate certain parts or locations in the drawings. The same reference numerals will indicate the same parts or locations unless otherwise indicated.
These embodiments will focus upon stand-off distance detection of chemical substances with a portable detection system. However, it is to be understood that individual aspects could be implemented in different ways, at different distances, and for different applications.
The examples given are neither inclusive nor exclusive of all the forms and embodiments that aspects of the invention can take.
In one aspect or embodiment, the present invention seeks to remove fluorescence from a Raman spectrum collected at a standoff distance (see, e.g., diagrammatically illustrated distance DSO in
A benefit of this technique is that it allows Raman spectroscopy to use ultraviolet (UV) sources longer than 250 nm without fluorescence contamination. Typical UV Raman spectra utilizing light sources with wavelengths longer than 250 nm show considerable contamination from fluorescence when either an interrogated material, the surface it is on, or the container it is in has a high fluorescence quantum yield. Lasers with wavelengths below 250 nm are generally used because they avoid this problem, since the majority of the Raman spectrum occurs completely within a region outside the fluorescence interference. However, wavelengths less than 250 nm are often strongly absorbed and induce photodegradation leading to reduced Raman signals, though this is not always the case. In addition, wavelengths shorter than 250 nm are also harder to produce with currently available laser technology and only limited sources are available, many of which are not suitable for Raman because of long pulse lengths, broad line widths, use of toxic gases, low power output, poor efficiency, or wavelengths that are shorter than 230 nm that make it difficult to acquire optics for robust systems. Although the technique described herein can be used for laser wavelengths less than 250 nm, using longer-wavelength lasers with fluorescence removal from the Raman spectrum enables instrument designs that are more rugged; cheaper; and easier to design, produce, and maintain. Such instruments can also be more compact for a given power requirement as longer-wavelength lasers generally have higher wall-plug efficiencies.
This aspect of the invention also adds improved detection capabilities for a material of interest. The symmetric stretches in the Raman spectra of chemicals tend to be strong, but their intensity depends on the polarization of the light source relative to the polarization of the detector. For a given chemical, the higher the spectral intensity of a feature in a non-resonant Raman spectrum utilizing unpolarized sources, the more that feature's intensity will be subject to polarization effects. By observing which components in a Raman spectrum change as a function of the polarization of the detector relative to the light source, the origin of features can be ascertained. If this behavior for a material of interest is known at the time of obtaining an unknown Raman spectrum, then some features arising from the target material and the substrate or container of the material can be distinguished. Features not belonging to the material of interest may be ignored in subsequent detection algorithms for that material thereby removing algorithm confusion from spectral interference.
The methodology of
Standoff ranges, typically of at least a meter, can be two or more meters, and even tens of meters. It is envisioned that the method of the invention can work (to at least some reasonable degree), up to distances of on the order of 100 meters. This would, of course, depend on a number of factors, including but not necessarily limited to, type and power of laser source, environmental conditions, the material under interrogation, the type of chemicals being monitored, the spectrograph and camera resolution, and throughput of the optic train. Therefore, it could work at even larger distances if conditions are right.
An apparatus for fluorescence removal in Raman spectra via collection and processing of polarized components is shown in
In this embodiment, hand-held device 12 has a somewhat pistol-shaped overall body or housing 20 with a main internal chamber 22, a pistol-grip 24, a front end with light transmissive window 26, and a back end with a cable race or passage 28. Housing 20 can be made of a variety of materials, including but not limited to plastics, metals, composites, wood, and combinations of materials. It can be beneficial that they be durable, including for a wide range of outdoors environments, including rain, humidity, heat, sand, dust, dirt, and wind. By “hand-held” it is meant that apparatus 12 could be held and operated with a single hand of a typical person, such that size and weight do not preclude this. For example, the overall outside dimensions of apparatus 12 could be in the range of less than one foot between front and back ends, and much less than one foot in width and height. Weight could be less than 30 pounds. It is to be understood, however, that these would not necessarily be required.
The hand-held apparatus 12 includes a transmission source (e.g., laser 30), polarizing filters (e.g., filter 50), and a detector (e.g. spectrometer 60). The detector and laser are collocated to enable detection at standoff ranges. In this embodiment, the collocation is by configuring all components of system 10 to be portable, including by a single person.
The laser source of the apparatus, along with the polarizing filters for the laser source are shown in
Intrinsically polarized laser sources are well-known and commercially available, including at the wavelengths of this embodiment. One commercially available example is Model QUV-355-150 from CrystaLaser of Reno, Nev. (USA). As indicated in
One example of allowing these two states is by simply adding a receiver along beam path 16 into which filter 32 can be mounted. The receiver would allow manual rotation between the two polarization states while holding filter 32 in beam path 16. Receiver and/or filter 32 could have either structural features or markings to help the user index the rotational position of filter 32 to the desired polarization state. Another example would be an electro-mechanical solution. Filter 32 could be held in beam 16 in a mount. Either the mount or filter 32 could be rotated by an electrically-powered actuator (actually a filter wheel) between states. One example would be a Nautilus Motorized Filter Wheel (Model OR-5526) from Orion, Watsonville, Calif. (USA). An external (or internal) switch or control could be manually activated by the user to select between polarization states. Alternatively, the system 10 could be calibrated to know or sense the states and automatically select between them. Other ways to affect polarization of beam 16 are possible; including but not limited to Brewster windows, optical surfaces, liquid-crystal polarizing filters, and fiber optic polarizing filters.
In this example, the fluorescence and Raman signals from the target 19 are radiated over 4π steradians. As mentioned, the Raman spectra have a dependence on the polarization of the laser light whereas the fluorescence contribution does not. A small portion of these signals make their way back to the instrument 12; the actual amount returned depends inversely on the square of the distance DSO from the target to the instrument 12.
At the instrument 12, one or more optical configurations receive the fluorescence and Raman scattered light and pass it into one or more spectrometers 60 as in
As indicated in
As indicated, one configuration for such a mount is simply a receiver or holder that allows a user to manually rotate filter 50 relative the optical axis of the collected light between polarization states (perpendicular or parallel). Alternatively, there could be an electro-mechanical or other technique, such as discussed regarding filter 32 earlier. In any case, this allows presentation of different polarization states, and thus different polarizations, to the collected light.
Focusing chamber 48 can include a focusing lens 52 (and/or other optical components) to focus the light to an optical coupler 56 mounted at back end 54 of focusing chamber 48, to optical cable 58 (e.g. fiber optic).
Optical cable 58 extends through rear port 28 of housing 20 to external components 14. Spectrometer(s) 60 (there could be one or more) receive the collected light from hand-held unit 12 through optical cable 58 and, through conventional techniques well known in the art, produce spectra from such light.
As will be appreciated by those skilled in the art, the specific components and relationship of components to generate the polarized laser beam 16 and collect and focus return light can vary according to need and desire. In this embodiment, they are packaged in a portable, substantially self-contained housing for convenient use in the field. As also can be appreciated, the laser source and the other components can be relatively economical and easy to assemble into the housing, at least as compared with such laser sources as excimer lasers. Laser sources of the type discussed with respect to this embodiment (e.g. YAG) are commercially available, relatively small in size and weight, economical, and robust, and can generate the needed wavelength laser light for system 10. One example of such a laser source is Model QUV-355-150 commercially available from CrystaLaser of Reno, Nev. (USA).
As will be further appreciated, the ability to use either an intrinsically polarized laser source or add a polarizing component external of the source, provides flexibility. Still further, the technique of being able to adjust polarization of the beam such as with a polarizing component external of the source allows further flexibility.
Housing 20 can have appropriate doors or access to internal components, such as if manual adjustment of either polarizing element 32 or 50 is allowed, or calibration, adjustment, replacement, or maintenance is needed or desired for internal contents.
A detector (e.g. image intensified charge coupled device (iCCD) camera 62) attached to the spectrometer 60 records the fluorescence-contaminated Raman spectrum and sends it to a computer or digital processer (e.g. computer 68) where signal processing and decisions about the Raman spectrum occurs. Each component of the Raman spectrum is read separately and stored in memory on a computer 68. The components are then possibly preprocessed and run through a spectral recombination algorithm that directly subtracts I⊥ from I∥ or subtracts a scaled version of I⊥ from I∥ to form a new spectrum that contains the most symmetric normal mode features as in
As can be appreciated by those skilled in the art, the software programming for the above-discussed processing can vary according to need or desire. Likewise can the spectrometer, detector, and computer; commercially available examples of which are a Shamrock 303i from Andor Technology Ltd of Belfast BT12 7AL, UK; an Andor iStar DH334T-18F-03 intensified CCD array from Andor Technology Ltd of Belfast BT12 7AL, UK; and a Model Gb-bxi3h-4010 from Giga-Byte Technology Co., LTD of New Taipei City 231, Taiwan; respectively. Optical components can be selected from commercially available sources also. The spectrometer can have, in one example, 2400 grooves per mm. The computer can have a PC104 form factor and be a single board computer.
Finally, an example of an apparatus and overall system 10 capable of this technique according to aspects of the invention is diagrammed in
In one embodiment, the external components of system 10 (external of hand-held device 12) can be portable by one person as follows. A carrier, for example a backpack, could be configured to hold spectrometer 60 and iCCD camera 62. Computer 66 could be included. So to could a portable power source (e.g. battery 64). Appropriate connections (wired or unwired) would be configured as needed. Thus, overall system 10 could be efficiently and effectively carried and operated by a single person.
As can be appreciated by those skilled in the art, computer 66 could take many forms and embodiments. One example would be the Model Gb-bxi3h-4010 from Giga-Byte Technology Co., LTD of New Taipei City 231, Taiwan (under 3 lbs. and 1.69 in×4.24 in×4.5 in). Other portable, lunchbox, or luggable computers are possible. It may be possible to also use small laptops, tablets, notebooks, or even appropriately powerful smart phones as the mobile computing device 66. The computer can include a display 68.
The battery 64 can be selected to provide portable electrical power for one or more of computer(s) 60, detector 62, spectrometer(s) 60, and laser source 30. It could also supply power to any electrical or electromechanical actuator(s) such as might be used to rotate or adjust polarizing filter(s) 32 or 50, or other components. A commercially available example is Model PMD-CP12266 from PowerStream Technology of Orem, Utah (USA).
It can therefore be seen that the embodiments meet at least one aspect, feature, advantage, or object of the invention.
In one form, a hand-held instrument includes a polarized UV laser source to generate an interrogating laser beam to standoff distances. It can utilize an intrinsically polarized laser or can include another polarizing element in the hand-held instrument and external of the laser source which can be set to one polarization state or optionally adjusted between at least two different polarization states. The hand-held device allows “point and shoot” of the laser beam to the target (e.g. sample under interrogation). The laser beam is polarized to a pre-known polarization state.
A collector of return light from the interrogation is also at or built into the hand-held device. In one form it is basically a telescope which collects and focuses light in its field of view (which includes any light from the interrogation in that field of view). The optical manipulation of that gathered light is such that it can be effectively communicated to a spectrometer. In one form this is by conventional use of an optical coupler of the focused light into a fiber optic cable operatively connected to the spectrometer. Prior to communication to the fiber optic, the return light is intentionally polarized. A polarizer element is interposed in the optical path of the return light and can be adjusted between different polarization states. In one form this can be a simple rotation of a polarizer 90 degrees. Spectra of the return light are produced in a portable spectrometer operatively connected to the hand-held instrument, each polarized in a different polarization state produced by the adjustment of the polarizer element in the hand-held device. Those spectra are quantified and compared in a portable computer. The comparison can be used to remove fluorescence and better distinguish Raman information to more accurately detect constituent chemicals in the return light. The hand-held instrument includes structure to allow quick and easy adjustment of the polarizing element between the two polarization states. Utilizing UV laser sources and the adjustable polarization states allows a portable, outdoors field useable, relatively economical system for standoff distances, including meters to tens of meters.
Numerous modifications may be made to the apparatus or the invention, particularly to the detection algorithm, without departing from its scope as defined in appended claims. This is likewise for the apparatus components.
The foregoing descriptions are examples only of the forms and embodiments the invention may take. Variations obvious to those skilled in the art will be included within the invention. Several examples of variations have been discussed above.
One example is how the return light polarizer can be adjusted between polarization states. As mentioned previously, it could be simply rotating the element. This can be accomplished in a variety of ways. Just one example is illustrated at
The Sample or Material Under Interrogation
As indicated above, the analyzed material can take different forms. Non-limiting examples are solid, liquid, gas, or mixture of states; a mixture of chemicals in various states; an explosive; or a hazardous substance or a Raman interferent for a hazardous substance. The material can be isolated, on a surface; or in a container. Beneficial results can be best for liquids or thin layers.
The Hand-Held Housing and Other System Components
The system can be configured with a ruggedized laser source, housing, processor, power supply, and control system for indoor or out of doors use for chemical constituents including but not limited to toxic materials and explosives. This can include the hand-held housing and its contents, as well as the components external to it, such as spectrometer(s), camera(s), and computer.
The Computer
The computer can include a data storage component and display component to store and display information, including the determination made regarding the material under interrogation. A smartphone is considered one example of this type of computer.
The software can comprise a signal processing algorithm whereby polarization is used to discriminate materials against a spectral background or against other materials of interest.
The Laser Source
The laser source can take different forms. Non-limiting examples are a UV laser, a UV laser with a wavelength between 220 and 400 nm: a solid-state UV laser; an excimer laser. Non-limiting examples of laser operation include pulsed or continuous wave (cw) or pseudo-cw.
Further non-limiting examples of the laser are a frequency-tripled or quadrupled Nd3+:YAG laser; a frequency-tripled or quadrupled Yb3+:YAG laser; a frequency-tripled or quadrupled Nd3+:YLF laser; a Tm3+:YALO laser operating at the 8th harmonic frequency; or any similar solid-state laser, such as a Ti3+:Sapphire, VCSEL, or VECSEL laser operating at a harmonic frequency in the UV region.
In embodiments discussed in earlier sections, the laser source was UV and above 250 nm wavelengths. Further non-limiting examples are:
Polarization of the Laser
The laser source can comprise an intrinsically linearly polarized ultraviolet (UV) laser. It is envisioned that fluorescence reduction can be achieved at a factor of 5 or greater for materials where fluorescence interferes with the Raman spectrum.
The laser source can comprise a UV laser and a polarization filter external to the laser cavity and is also envisioned to achieve fluorescence reduction by a factor of 5 or greater for materials where fluorescence interferes with the Raman spectrum.
Selecting the polarization of a laser source can vary. Non-limiting examples are the laser polarization is switched using a polarization filter which is rotated to different orientations; the laser polarization is switched using a fixed polarization filter and a waveplate rotated to different orientations; the laser polarization is switched by inserting one or multiplicity of polarization selective optics.
Polarizing the Received/Returned Light from the Interrogation
Receiving, or collecting and focusing, the return light from the interrogation can be done in different ways. Non-limiting examples are the receiver is a telescope; or the receiver is a collection of lenses, mirrors, and related focusing optics. Non-limiting examples of Raman scattering include Raman scattering which originates from the material, surface, or container, from atmosphere, or from some combination of them; some constituent of the material, the atmosphere, the surface, or the container fluoresces in the same region as the Raman scattering
Selecting between polarization states for polarizing the return light from the interrogation can vary. Non-limiting examples are, the receiver polarization is switched using a polarization filter which is rotated to different orientations; the receiver polarization is switched using a fixed polarization filter and a waveplate rotated to different orientations; the receiver polarization is switched by inserting one or multiplicity of polarization selective optics; or the received light is split into two signals using a beam splitter before passing each through a polarization filter.
Processing of the spectra from the spectrometer can vary. Non-limiting examples include the case where the polarized Raman spectrum that is perpendicular to the polarization of the laser source is directly subtracted from the polarized Raman spectrum that is parallel to the polarization of the laser source; the polarized Raman spectrum that is perpendicular to the polarization of the laser source is scaled before being subtracted from the polarized Raman spectrum that is parallel to the polarization of the laser source; or the polarized Raman spectra are preprocessed before performing spectral combination.
Still further additional features, aspects, options, and alternatives regarding handling of the collected radiation from the interrogation can include the following non-limiting examples:
I
sp
=I
∥
−I
⊥
I
sp
=I
∥
−cI
⊥
As can be appreciated, the references to I∥ or I⊥ could be changed to S∥ or S⊥.
Other Optics
As will be appreciated by those skilled in the art, other optical components may be used in the system. Non-limiting examples are as follows. A Rayleigh scattering rejection filter aka as a “laser line filter” could be used to reject Rayleigh scattering that shows up around a shift of 0 cm−1. The actual width of this scattering depends on the bandpass of the filter, and the scattering can spread out over a few hundred wavenumbers (cm−1), so this filter can be beneficial with aspects of the invention. A fluorescence rejection filter could be used if needed. It could be included to reject stray light from fluorescence outside the detector region that hits the detector. The detector senses any light that falls on it regardless of wavelength (or Raman shift). Normally, only Raman scattering and the fluorescence in the wavelength region set by the spectrometer hits the detector, but sometimes stray light (from fluorescence or just ambient stuff) makes it into the spectrometer and reflects inside it until the light strikes the detector, which necessitates this optic.
This application claims, under 35 U.S.C. §119 and/or §120, priority to and the benefit of provisional application U.S. Ser. No. 62/063,472 filed Oct. 14, 2014, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62063472 | Oct 2014 | US |