The invention relates to a system for moving and fixing a test carriage within a fluoroscopy unit and to a fluoroscopy unit having an X-ray source and a detector which has such a system for moving and fixing the test carriage.
Fluoroscopy units such as are shown in
The object of the invention is therefore to present a system for moving and fixing a test carriage of a fluoroscopy unit or a complete fluoroscopy unit which has a simpler mechanical structure but meets the requirements of high accuracy in the area near to the tubes.
The object is achieved by a system for moving and fixing a test carriage of a fluoroscopy unit with the features of claim 1 and a corresponding fluoroscopy unit with such a system with the features of claim 9. According to the invention, the test carriage is moved along and fixed to a guide element. The guide element is rotatable about a rotational axis. The test carriage thus moves in a radial direction along the guide element and performs a rotational movement when the guide element rotates about the rotational axis. This could also be called a “polar formation” of the system instead of the Cartesian arrangement known from the state of the art. The test object is fixed to the test carriage in a known way. The device according to the invention has the advantage that in the vicinity of the X-ray tubes the required high degree of accuracy obtains in the case of short strokes without the need to build in a very expensive long-stroke, highly accurate positioning unit known from the state of the art.
An advantageous development of the invention provides that the rotational axis is formed at one end of the guide element. In the normal application case, movement beyond the rotational axis is not necessary, with the result that for the sake of simplicity the “projecting” part of the guide element, which would only lead to a greater design outlay, can be dispensed with.
A further advantageous development of the invention provides that there is a first motor for the radial movement and a second motor for the rotational movement. By using one motor each for the radial movement and for the rotational movement, a complete decoupling of the two movements from each other is achieved. The use of separate motors obviates the need for an expensive transmission system.
Particularly preferably, the guide element is formed as a linear unit. The test carriage can be moved and fixed particularly easily on a linear unit. Such linear units are known to be very reliable and attractively priced from the state of the art. A linear unit is a “ready-to-install” assembly which has a support, a guide, a drive element and a seat for the carriage.
A further advantageous development of the invention provides that the rotational movement is performed via a transverse guide which cooperates with the guide element. In this case, it is particularly preferred that the transverse guide has a linear unit, in particular a straight guide rail, in which a connecting element movable in radial direction and attached to the guide element engages. It is thereby possible to also perform the rotational movement by means of a straight, linear movement. This makes for great mechanical simplicity.
Particularly preferably, the connecting element in this case is formed as a tilt-resistant rotational connection. The axis of rotation of the turntable is thereby exactly perpendicular to the ray fan in every position, since the axes are prevented from tilting towards each other by this rotational connection.
An advantageous development of the fluoroscopy unit according to the invention provides that the rotational axis is arranged on the centre axis between the focal spot and the centre of the detector. A symmetrical structure and a symmetrical movement of the test carriage in the fluoroscopy unit are thereby made possible, which clearly reduces the extent of the mechanism and thus the outlay.
A further advantageous development of the fluoroscopy unit according to the invention provides that the position of the rotational axis along the centre axis can be altered, in particular can be shifted along and fixed to it. It is thereby possible to fix the rotational axis in respect of the focal spot of the X-ray tube at different positions, depending on which possible use with the respective magnification and mapping geometries starting from it is needed. A very flexible fluoroscopy unit is thus obtained which can be adapted to a wide range of different applications. Particularly preferably, the rotational axis is arranged at the site of the focal spot.
A further advantageous development of the fluoroscopy unit according to the invention provides that the position of the transverse guide along the centre axis of the unit can be altered, in particular can be shifted along and fixed to it. The accuracy of the movement, its speed and the cross-stroke achievable overall can be influenced via the position of the transverse guide. Particularly preferably, the transverse guide is attached close to the detector.
A further advantageous development of the fluoroscopy unit according to the invention provides that the transverse guide is perpendicular to the centre axis between the focal spot and the centre of the detector. Such a design also aids the symmetry of the fluoroscopy unit in respect of the centre axis which extends from the focal spot to the centre of the detector. In addition, only a small outlay on control means is needed.
An alternative advantageous development of the fluoroscopy unit according to the invention provides that the transverse guide is not perpendicular to the centre axis between the focal spot and the detector. A dead point is thereby avoided in the central position for the radial connection, with a reduction in the risk of tilting and a possible interaction caused by the reversal of the direction of movement. This reversal point is displaced from the centre position by a non-perpendicular arrangement. It preferably lies at the edge of the range of movement, wherein the transverse guide is perpendicular to one of the two boundaries of the ray fan.
A further advantageous development of the fluoroscopy unit according to the invention provides that the transverse guide is attached asymmetrically to the centre axis. This results in unequal side-strokes, starting from the centre axis. It is thus possible for example to move the test object completely out of the beam path towards one side for calibration measurements.
Further details and advantages of the invention are explained in more detail using the embodiment example shown in
Unlike the state of the art according to
The schematic top view of the fluoroscopy unit according to the invention shows an X-ray source 1 with a focal spot 2. X-radiation in the form of a ray fan 3 emanates from the focal spot 2. This completely illuminates a one-dimensional detector 4. Instead of the ray fan 3, a ray cone can also be assumed which completely illuminates a two-dimensional detector 4. Starting from the focal spot 2, a centre axis 5 which is perpendicular to the detector 4 is drawn as a broken line. This centre axis 5 forms the centre of symmetry of the ray fan 3.
Of the system for moving and fixing a test object (not shown), only a guide element 7 in the form of a rectilinear rail is shown. The guide element 7 is formed rotatable about a rotational axis 8 formed perpendicular to the plane of projection. The rotational axis 8 is located on the centre axis 5 and outside the connection between focal spot 2 and detector 4. It could however equally be arranged at another point on the centre axis 5, in particular also directly in the focal spot 2 or between focal spot 2 and detector 4. It could thus also be arranged closer to the focal spot 2 or further away from the focal spot 2.
A rotational movement about the rotational axis 8 of the guide element 7 is performed by a rectilinear linear movement along a transverse guide 9. In the embodiment example, the transverse guide 9 is perpendicular to the centre axis 5, but can in principle be arranged at any angle. The connection between transverse guide 9 and guide element 7, in the form of a radial axis, is designed as a tilt-resistant rotational connection which can be freely displaced in radial direction R. A rotation about the rotational axis 8 with the value of the angle of rotation Φ is thus obtained through a simple movement of the centre of rotation 10 along the Cartesian coordinate x.
A test carriage (not shown), such as is known from the state of the art, is movably attached to the guide element 7. It can be fixed in different positions along the guide element 7. This is also known from the state of the art. Since the guide element 7 extends in radial direction R, it is thus possible to move and fix the test carriage in radial direction R in a desired position. Depending on the design and drive means of the test carriage, this can take place continuously—thus at any point in radial direction R—or at discrete points or in steps in radial direction R.
Both the movement of the test carriage in radial direction R along the guide element 7 and the movement of the guide element 7 along the angle of rotation Φ are performed by means of suitable drive devices. The test object is very easily fixed in radial direction R by locking the drive means at the desired point.
Due to the superpositioning of the movement of the test carriage in radial direction R and along the angle of rotation Φ a range of movement 6, in the shape of a slice of cake, is covered by the respective extreme points. In contrast, in the form known from the state of the art a rectangular range of movement 6 is known.
Essentially, the known Cartesian movement of the test carriage has thus been replaced according to the invention by a “polar” movement of the test carriage. A linear transverse track—thus parallel to the Cartesian coordinate x—of the test carriage is also possible without difficulty with the “polar” movement arrangement. This is calculated via the steering of the respective motors which are responsible for the radial movement and for the rotational movement by means of an algorithm designed therefor and adjusted to the geometric conditions of the overall system. For a totally equivalent linear track transverse to the Cartesian movement, such as is known from the state of the art, the test carriage is further provided with a turntable which performs a counter rotation in an object holder and thus of the test object, with the result that this also does not alter its position as regards the angle relative to the ray fan 3.
If the rotational axis 8 (unlike in the embodiment example shown) lies directly in the focal spot 2, the highest degree of accuracy is achieved in its immediate vicinity, but only a short cross-stroke is also achieved. If the rotational axis 8 is brought over the focal spot 2 (thus away from the detector 4) into the position shown in
A transmission ratio is defined via the distance between rotational axis 8 and transverse guide 9. A large distance between the transverse guide 9 and the rotational axis 8 produces a highly accurate movement of the test carriage near to the rotational axis 8 even when the degree of accuracy of the transverse movement along the Cartesian coordinate x is only moderate.
As a result, the possibility of performing a highly accurate positioning of the test object in the area near to the focal spot is thus obtained by the invention, with a simultaneous low outlay on design and thus lower costs than in the state of the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 004 365.3 | Jan 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/00120 | 1/9/2008 | WO | 00 | 7/27/2009 |