Field of the Invention
The field of the invention is data processing, or, more specifically, methods, apparatus, and products for flush avoidance in a load store unit.
Description of Related Art
The development of the EDVAC computer system of 1948 is often cited as the beginning of the computer era. Since that time, computer systems have evolved into extremely complicated devices. Today's computers are much more sophisticated than early systems such as the EDVAC. Computer systems typically include a combination of hardware and software components, application programs, operating systems, processors, buses, memory, input/output devices, and so on. As advances in semiconductor processing and computer architecture push the performance of the computer higher and higher, more sophisticated computer software has evolved to take advantage of the higher performance of the hardware, resulting in computer systems today that are much more powerful than just a few years ago.
One area of computer system technology that has advanced is computer processors. As the number of computer systems in data centers and the number of mobile computing devices has increased, the need for more efficient computer processors has also increased. Speed of operation and power consumption are just two areas of computer processor technology that affect efficiency of computer processors.
Methods and apparatus for flush avoidance in a load store unit are disclosed in this specification. Flush avoidance in a load store unit includes launching a load instruction targeting an effective address; encountering a set predict hit and an effective-to-real address translator (ERAT) miss for the effective address, wherein the set predict hit comprises a cache address of a cache entry; sending a data valid message for the load instruction to an instruction sequencing unit; and verifying the data valid message, wherein verifying the data valid message comprises: tracking the cache entry during an ERAT update; and upon completion of the ERAT update, encountering an ERAT hit for the effective address in response to relaunching the load instruction.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the invention.
Exemplary methods and apparatus for flush avoidance in a load store unit in accordance with the present invention are described with reference to the accompanying drawings, beginning with
The computer (152) of
The example computer processor (156) of
The example multi-slice processor (156) of
Although the multi-slice processor (156) in the example of
Stored in RAM (168) in the example computer (152) is a data processing application (102), a module of computer program instructions that when executed by the multi-slice processor (156) may provide any number of data processing tasks. Examples of such data processing applications may include a word processing application, a spreadsheet application, a database management application, a media library application, a web server application, and so on as will occur to readers of skill in the art. Also stored in RAM (168) is an operating system (154). Operating systems useful in computers configured for operation of a multi-slice processor according to embodiments of the present invention include UNIX™, Linux™, Microsoft Windows™, AIX™, IBM's z/OS™, and others as will occur to those of skill in the art. The operating system (154) and data processing application (102) in the example of
The computer (152) of
The example computer (152) of
The exemplary computer (152) of
The arrangement of computers and other devices making up the exemplary system illustrated in
For further explanation,
The multi-slice processor in the example of
The general purpose registers (206) are configured to store the youngest instruction targeting a particular logical register and the result of the execution of the instruction. A logical register is an abstraction of a physical register that enables out-of-order execution of instructions that target the same physical register.
When a younger instruction targeting the same particular logical register is received, the entry in the general purpose register is moved to the history buffer, and the entry in the general purpose register is replaced by the younger instruction. The history buffer (208) may be configured to store many instructions targeting the same logical register. That is, the general purpose register is generally configured to store a single, youngest instruction for each logical register while the history buffer may store many, non-youngest instructions for each logical register.
Each execution slice (204) of the multi-slice processor of
The arithmetic logic unit (212) depicted in the example of
The results bus (220) may be configured in a variety of manners and be of composed in a variety of sizes. In some instances, each execution slice may be configured to provide results on a single bus line of the results bus (220). In a similar manner, each load/store slice may be configured to provide results on a single bus line of the results bus (220). In such a configuration, a multi-slice processor with four processor slices may have a results bus with eight bus lines—four bus lines assigned to each of the four load/store slices and four bus lines assigned to each of the four execution slices. Each of the execution slices may be configured to snoop results on any of the bus lines of the results bus. In some embodiments, any instruction may be dispatched to a particular execution unit and then by issued to any other slice for performance. As such, any of the execution slices may be coupled to all of the bus lines to receive results from any other slice. Further, each load/store slice may be coupled to each bus line in order to receive an issue load/store instruction from any of the execution slices. Readers of skill in the art will recognize that many different configurations of the results bus may be implemented.
The multi-slice processor in the example of
The example multi-slice processor of
During the flush and recovery operation, in prior art processors, the dispatcher was configured to halt dispatch of new instructions to an execution slice. Such instructions may be considered either target or source instructions. A target instruction is an instruction that targets a logical register for storage of result data. A source instruction by contrast has, as its source, a logical register. A target instruction, when executed, will result in data stored in an entry of a register file while a source instruction utilizes such data as a source for executing the instruction. A source instruction, while utilizing one logical register as its source, may also target another logical register for storage of the results of instruction. That is, with respect to one logical register, an instruction may be considered a source instruction and with respect to another logical register, the same instruction may be considered a target instruction.
The multi-slice processor in the example of
In some cases, a load/store unit receiving an issued instruction, such as a load/store slice, may not yet be able to handle the instruction, and the instruction sequencing unit (240) may keep the instruction queued until such time as the load/store slice may handle the instruction. After the instruction is issued, the instruction sequencing unit (240) may track progress of the instruction based at least in part on signals received from a load/store slice.
For further explanation,
In previous systems, if a load/store unit received an instruction from an instruction sequencing unit, and the load/store unit was unable to handle the instruction for some reason, then the load/store unit would notify the instruction sequencing unit that the instruction was being rejected and the load/store unit would discard information related to the rejected instruction. In which case, the instruction sequencing unit would continue maintaining information to track and maintain the rejected instruction until the instruction is resent to the load/store unit. An instruction may be rejected for a variety of reasons, including an address miss in an address translation cache, a set prediction miss, data cache banking collisions, an overload of the load miss queue (308), among other possible rejection conditions.
The load/store slice (222a), by contrast to the above previous system, is configured to determine a rejection condition for an instruction received from an instruction sequencing unit, however, the load/store slice (222a), instead of sending a reject signal to the instruction sequencing unit, maintains tracking and handling of the instruction—including information usable to relaunch or reissue the instruction—until the rejection condition is resolved. Further, an entry in the load reorder queue (304) or the store reorder queue (306) may be configured to maintain information for tracking an instruction that would otherwise have been rejected and removed from the load reorder queue (304). For example, if the load/store slice (222a) determines that a rejection condition exists for a given load or store instruction, then logic within the load/store slice may notify the load reorder queue (304) or the store reorder queue (306) to place the instruction in a sleep state for a given number of cycles, or to place the instruction in a sleep state until notified to awaken, or to immediately reissue the instruction, among other notifications to perform other operations.
In this way, the load/store slice (222a) may save cycles that would otherwise be lost if the instruction were rejected to the instruction sequencing unit because the load/store slice (222a) may more efficiently and quickly reissue the instruction when the rejection condition is resolved in addition to more quickly detecting resolution of a rejection condition than an instruction sequencing unit. For example, if the load/store slice (222a) determines that an instruction that is in a sleep state may be reissued in response to determining that one or more rejection conditions have been resolved preventing the instruction from completing, then the load/store store slice may notify the load reorder queue (304) or the store reorder queue (306) to relaunch or reissue the instruction immediately or after some number of cycles. The number of cycles may depend upon a type of rejection condition or upon other factors affecting reissue or relaunch of the instruction. In this example, the load reorder queue (304) or the store reorder queue (306) may reissue or relaunch an instruction by providing the load/store access queue (224) with information to reissue the instruction, where the load reorder queue (304) or the store reorder queue (306) may communicate with the load/store access queue (224) along line (314) and may provide data for reissuing or relaunching the instruction along line (313).
Another improvement that results from the load/store slice (222a) maintaining an instruction if a rejection condition is determined is that the load/store slice (222a) uses fewer resources, such as logic and circuitry for latches and other components, to maintain the instruction than an instruction sequencing unit. In other words, given that the instruction sequencing unit may rely on the load/store slice (222a) in handling the instruction to completion, the instruction sequencing unit may free resources once the instruction is provided to the load/store slice (222a).
Further, the instruction sequencing unit (240), based at least in part on communications with the load/store slice (222a), may determine when and whether to wake instructions that may be dependent on a current instruction being handled by the load/store slice (222a). Therefore, if the load/store slice (222a) determines that a rejection condition exists, the load/store slice (222a) delays a notification to the instruction sequencing unit (240) to awaken dependent instructions to prevent the instruction sequencing unit (240) from issuing dependent instructions that are subsequently unable to finish due to lack of availability of results from a current instruction. In this way, the instruction sequencing unit (240) may avoid wasting execution cycles reissuing dependent instructions that are unable to finish.
For example, the load/store slice (222a) may communicate with the instruction sequencing unit (240) through the generation of signals indicating, at different points in handling a load instruction, that a load instruction is to be reissued or that data for a load instruction is valid. In some cases, in response to the instruction sequencing unit (240) receiving a signal from the load/store slice (222a) that a given instruction is to be reissued, the instruction sequencing unit (240) may awaken instructions dependent upon the given instruction with the expectation that the given instruction, after being reissued, is going to finish and provide valid data.
The load/store slice (222a) may also retrieve data from any tier of a memory hierarchy, beginning with a local data cache (232), and extending as far down in the hierarchy as needed to find requested data. The requested data, when received, may be provided to general purpose registers, virtual registers, or to some other destination. The received data may also be stored in a data cache (232) for subsequent access. The load/store slice (222a) may also manage translations of effective addresses to real addresses to communicate with different levels of memory hierarchy.
A store reorder queue (306) may include entries for tracking the cache operations for sequential consistency and may reissue operations into the load/store pipeline for execution independent of an execution slice.
A load miss queue (308) may issue requests for data to one or more data storage devices of a multi-tiered memory hierarchy, where a request for data may correspond to a load instruction for the data.
Responsive to the data being returned along the line (302) to the load/store slice (222a), the data may be delivered to a destination such as the results bus (220 of
A load reorder queue (304) may track execution of cache operations issued to the load/store slice (222a) and includes entries for tracking cache operations for sequential consistency, among other attributes. The load reorder queue (304) may also reissue operations into the load/store pipeline for execution, which provides operation that is independent of the execution slices.
For further explanation,
The method of
A load instruction is an instruction that reads data from memory (such as data cache (232)) and stores that data in a register. The load instruction may be an internal operation decoded from a processor instruction. The load instruction may include an address, such as an effective address, of the data to be loaded into the register.
The method of
Set predict hits are verified by a directory mechanism. The directory mechanism definitively determines whether the data stored at the effective address is currently stored in the data cache (232). The directory mechanism has a higher latency, and may not complete before the LSS (222) begins reading data from the data cache (232). In the event that the directory mechanism determines that the set predict mechanism provided an inaccurate hit (i.e., the data for an effective address is not currently stored in the data cache (232)), then a flush indication is sent to the instruction sequencing unit (240), indicating that the results of the load instruction and each instruction following or dependent upon the load instruction, should be invalidated and the load instruction should be reissued.
An ERAT is a data structure that contains effective addresses and corresponding real addresses previously translated by the directory mechanism. An ERAT may include a content addressable memory with effective address entries, and a random access memory with real address entries. The size of the ERAT may be limited. Accordingly, the ERAT may have a high turn-over rate in that entries in the ERAT are frequently replaced. ERAT entries may be replaced based on any number of algorithms, such as least recently used.
An ERAT hit indicates that the provided effective address has a real address entry in the ERAT. The ERAT miss may indicate that the provided effective address does not have a real address entry in the ERAT. An ERAT miss may be encountered because the data for the effective address is not stored in the data cache (232). Alternatively, an ERAT miss may be encountered because the entry for the effective address is no longer in the ERAT, even though the data for the effective address is currently stored in a cache entry in the data cache (232). The number of entries in the ERAT may be less than the number of cache entries in the data cache (232). Consequently, the ERAT may not include an entry for each cache entry in the data cache (232).
The method of
The data valid message may be sent based on a reliance on the accuracy of the set predict hit, despite having received the ERAT miss. The data valid message may be sent even though the directory mechanism may later determine that the data read by the load instruction was not the intended data (i.e., the set predict mechanism provided a cache address that did not store the data for the effective address). In such a case, a flush indication is sent after the directory mechanism determines that the data read by the load instruction was not the intended data.
The method of
Verifying (408) the data valid message may be carried out by tracking (410) the cache entry during an ERAT update; and upon completion of the ERAT update, encountering (412) an ERAT hit for the effective address in response to relaunching the load instruction. Tracking (410) the cache entry during an ERAT update may be carried out by placing a tracker in an ERAT miss queue to monitor the cache entry; and determining that the cache entry is unchanged upon completion of the ERAT update.
The ERAT update process is a process by which one or more entries for an effective address are added to the ERAT. The added entries in the ERAT may be entries already in a lookaside buffer, and may replace other entries in the ERAT, such as the least recently used entries. The added entries may be for effective addresses that refer to data that is currently stored in the data cache (232). The ERAT update process may take multiple cycles to complete.
Encountering (412) an ERAT hit for the effective address in response to relaunching the load instruction may be carried out by relaunching the load instruction from the LRQ for the purposes of determining whether the load instruction encounters an ERAT hit or an ERAT miss. Relaunching the load instruction may not initiate a reading of the cacheline from the cache entry identified by the cache address. Encountering the ERAT hit upon relaunching the load instruction indicates that the data for the effective address is stored in the data cache (232) and was correctly read by the initial launching of the load instruction.
For further explanation,
The method of
Placing (502) a tracker in an ERAT miss queue to monitor the cache entry may be carried out by storing or initializing an element within an entry in the ERAT miss queue. The ERAT miss queue contains the effective addresses and other information for instructions that encounter an ERAT miss while the address translation process by the directory mechanism is in progress. The ERAT miss queue is configured to receive various control signals from an address translation unit portion of the LSS (222).
The ERAT miss queue is also configured to include a tracker to monitor a cache entry. The tracker within the ERAT miss queue has a corresponding tracker in the LRQ entry for the load instruction. Further, more than one LRQ entry may include corresponding trackers for the ERAT miss queue entry, if those LRQ entries store load instructions targeting the same cacheline (identified by an effective address) and have encountered a set predict hit and an ERAT miss. The trackers in the ERAT miss queue and the LRQ function to monitor the cache entry in order to detect any changes made to the cache entry during the ERAT update.
Determining (504) that the cache entry is unchanged upon completion of the ERAT update may be carried out by monitoring the cache entry during the ERAT update and once the ERAT update has completed, verifying that no changes were made to the cache entry. Determining (504) that the cache entry is unchanged upon completion of the ERAT update may include determining (506) that no store instruction targeting the cache entry has executed. Determining (506) that no store instruction targeting the cache entry has executed may be carried out by monitoring instructions targeting the cache entry and, once the ERAT update has completed, determining that no data was stored in the cache entry using the cache address. Determining (504) that the cache entry is unchanged upon completion of the ERAT update may also include determining that data has not been removed from the cache entry (e.g., by a snoop process) and/or determining that the cacheline stored in the cache entry has not been replaced with another cacheline.
For further explanation,
The method of
For further explanation,
The method of
Sending (704) a flush indication to the instruction sequencing unit in response to determining that a cache entry targeted by the subsequent load instruction changed may be carried out by determining that a tracker in the ERAT miss queue for the cache entry has failed. The tracker for the subsequent load instruction may fail, for example, by determining that a store instruction targeting the cache entry has executed, determining that data has been removed from the cache entry (e.g., by a snoop process), and/or determining that the cacheline stored in the cache entry has been replaced with another cacheline.
Exemplary embodiments of the present invention are described largely in the context of a fully functional computer system for flush avoidance in a load store unit. Readers of skill in the art will recognize, however, that the present invention also may be embodied in a computer program product disposed upon computer readable storage media for use with any suitable data processing system. Such computer readable storage media may be any storage medium for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the exemplary embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are well within the scope of the present invention.
The present invention may be a system, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4858113 | Saccardi | Aug 1989 | A |
5055999 | Frank et al. | Oct 1991 | A |
5095424 | Woffinden et al. | Mar 1992 | A |
5353426 | Patel et al. | Oct 1994 | A |
5418922 | Liu | May 1995 | A |
5471593 | Branigin | Nov 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5553305 | Gregor et al. | Sep 1996 | A |
5630149 | Bluhm | May 1997 | A |
5664215 | Burgess et al. | Sep 1997 | A |
5680597 | Kumar et al. | Oct 1997 | A |
5724536 | Abramson et al. | Mar 1998 | A |
5809522 | Novak et al. | Sep 1998 | A |
5809530 | Samra | Sep 1998 | A |
5822602 | Thusoo | Oct 1998 | A |
5897651 | Cheong et al. | Apr 1999 | A |
5913048 | Cheong et al. | Jun 1999 | A |
5996068 | Dwyer, III et al. | Nov 1999 | A |
6021485 | Feiste et al. | Feb 2000 | A |
6026478 | Dowling | Feb 2000 | A |
6044448 | Agrawal et al. | Mar 2000 | A |
6073215 | Snyder | Jun 2000 | A |
6073231 | Bluhm et al. | Jun 2000 | A |
6092175 | Levy et al. | Jul 2000 | A |
6098166 | Leibholz et al. | Aug 2000 | A |
6108753 | Bossen | Aug 2000 | A |
6112019 | Chamdani et al. | Aug 2000 | A |
6119203 | Snyder et al. | Sep 2000 | A |
6138230 | Hervin et al. | Oct 2000 | A |
6145054 | Mehrotra et al. | Nov 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6269427 | Kuttanna et al. | Jan 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6237081 | Le | May 2001 | B1 |
6286027 | Dwyer, III et al. | Sep 2001 | B1 |
6311261 | Chamdani et al. | Oct 2001 | B1 |
6336168 | Frederick, Jr. et al. | Jan 2002 | B1 |
6336183 | Le et al. | Jan 2002 | B1 |
6356918 | Chuang et al. | Mar 2002 | B1 |
6381676 | Aglietti et al. | Apr 2002 | B2 |
6418513 | Arimilli et al. | Jul 2002 | B1 |
6418525 | Charney | Jul 2002 | B1 |
6425073 | Roussel et al. | Jul 2002 | B2 |
6463524 | Delaney et al. | Oct 2002 | B1 |
6487578 | Ranganathan | Nov 2002 | B2 |
6549930 | Chrysos et al. | Apr 2003 | B1 |
6553480 | Cheong | Apr 2003 | B1 |
6564315 | Keller et al. | May 2003 | B1 |
6654876 | Le et al. | Nov 2003 | B1 |
6728866 | Kahle et al. | Apr 2004 | B1 |
6732236 | Favor | May 2004 | B2 |
6839828 | Gschwind et al. | Jan 2005 | B2 |
6847578 | Ayukawa et al. | Jan 2005 | B2 |
6868491 | Moore | Mar 2005 | B1 |
6883107 | Rodgers et al. | Apr 2005 | B2 |
6944744 | Ahmed et al. | Sep 2005 | B2 |
6948051 | Rivers et al. | Sep 2005 | B2 |
6954846 | Leibholz et al. | Oct 2005 | B2 |
6978459 | Dennis et al. | Dec 2005 | B1 |
7020763 | Saulsbury et al. | Mar 2006 | B2 |
7024543 | Grisenthwaite et al. | Apr 2006 | B2 |
7086053 | Long et al. | Aug 2006 | B2 |
7093105 | Webb, Jr. et al. | Aug 2006 | B2 |
7100028 | McGrath et al. | Aug 2006 | B2 |
7114163 | Hardin et al. | Sep 2006 | B2 |
7124160 | Saulsbury et al. | Oct 2006 | B2 |
7155600 | Burky et al. | Dec 2006 | B2 |
7191320 | Hooker et al. | Mar 2007 | B2 |
7263624 | Marchand et al. | Aug 2007 | B2 |
7290261 | Burky et al. | Oct 2007 | B2 |
7302527 | Barrick et al. | Nov 2007 | B2 |
7350056 | Abernathy et al. | Mar 2008 | B2 |
7386704 | Schulz et al. | Jun 2008 | B2 |
7395419 | Gonion | Jul 2008 | B1 |
7398374 | Delano | Jul 2008 | B2 |
7401188 | Matthews | Jul 2008 | B2 |
7469318 | Chung et al. | Dec 2008 | B2 |
7478198 | Latorre et al. | Jan 2009 | B2 |
7478225 | Brooks et al. | Jan 2009 | B1 |
7490220 | Balasubramonian et al. | Feb 2009 | B2 |
7509484 | Golla et al. | Mar 2009 | B1 |
7512724 | Dennis et al. | Mar 2009 | B1 |
7565652 | Janssen et al. | Jul 2009 | B2 |
7600096 | Parthasarathy et al. | Oct 2009 | B2 |
7669035 | Young et al. | Feb 2010 | B2 |
7669036 | Brown et al. | Feb 2010 | B2 |
7685410 | Shen et al. | Mar 2010 | B2 |
7694112 | Barowski et al. | Apr 2010 | B2 |
7707390 | Ozer et al. | Apr 2010 | B2 |
7721069 | Ramchandran et al. | May 2010 | B2 |
7793278 | Du et al. | Sep 2010 | B2 |
7836317 | Marchand et al. | Nov 2010 | B2 |
7889204 | Hansen et al. | Feb 2011 | B2 |
7890735 | Tran | Feb 2011 | B2 |
7926023 | Okawa et al. | Apr 2011 | B2 |
7949859 | Kalla et al. | May 2011 | B2 |
7975134 | Gonion | Jul 2011 | B2 |
7987344 | Hansen et al. | Jul 2011 | B2 |
8041928 | Burky et al. | Oct 2011 | B2 |
8046566 | Abernathy et al. | Oct 2011 | B2 |
8074224 | Nordquist et al. | Dec 2011 | B1 |
8099556 | Ghosh et al. | Jan 2012 | B2 |
8103852 | Bishop et al. | Jan 2012 | B2 |
8108656 | Katragadda et al. | Jan 2012 | B2 |
8131942 | Harris et al. | Mar 2012 | B2 |
8131980 | Hall et al. | Mar 2012 | B2 |
8135942 | Abernathy et al. | Mar 2012 | B2 |
8140832 | Mejdrich et al. | Mar 2012 | B2 |
8141088 | Morishita et al. | Mar 2012 | B2 |
8151012 | Kim et al. | Apr 2012 | B2 |
8166282 | Madriles et al. | Apr 2012 | B2 |
8184686 | Wall et al. | May 2012 | B2 |
8219783 | Hara | Jul 2012 | B2 |
8219787 | Lien et al. | Jul 2012 | B2 |
8243866 | Huang et al. | Aug 2012 | B2 |
8250341 | Schulz et al. | Aug 2012 | B2 |
8271765 | Bose et al. | Sep 2012 | B2 |
8325793 | Zhong | Dec 2012 | B2 |
8335892 | Minkin et al. | Dec 2012 | B1 |
8386751 | Ramchandran et al. | Feb 2013 | B2 |
8402256 | Arakawa | Mar 2013 | B2 |
8412914 | Gonion | Apr 2013 | B2 |
8464025 | Yamaguchi et al. | Jun 2013 | B2 |
8489791 | Byrne et al. | Jul 2013 | B2 |
8521992 | Alexander et al. | Aug 2013 | B2 |
8555039 | Rychlik | Oct 2013 | B2 |
8578140 | Yokoi | Nov 2013 | B2 |
8654884 | Kerr | Feb 2014 | B2 |
8656401 | Venkataramanan et al. | Feb 2014 | B2 |
8683182 | Hansen et al. | Mar 2014 | B2 |
8713263 | Bryant | Apr 2014 | B2 |
8793435 | Ashcraft et al. | Jul 2014 | B1 |
8806135 | Ashcraft | Aug 2014 | B1 |
8850121 | Ashcraft et al. | Sep 2014 | B1 |
8929496 | Lee et al. | Jan 2015 | B2 |
8935513 | Guthrie et al. | Jan 2015 | B2 |
8966232 | Tran | Feb 2015 | B2 |
8984264 | Karlsson et al. | Mar 2015 | B2 |
9069563 | Konigsburg et al. | Jun 2015 | B2 |
9207995 | Boersma et al. | Dec 2015 | B2 |
9223709 | O'Bleness et al. | Dec 2015 | B1 |
9519484 | Stark | Dec 2016 | B1 |
9665372 | Eisen et al. | May 2017 | B2 |
9672043 | Eisen et al. | Jun 2017 | B2 |
9690585 | Eisen et al. | Jun 2017 | B2 |
9690586 | Eisen et al. | Jun 2017 | B2 |
9720696 | Chu et al. | Aug 2017 | B2 |
9740486 | Boersma et al. | Aug 2017 | B2 |
9760375 | Boersma et al. | Sep 2017 | B2 |
9934033 | Cordes et al. | Apr 2018 | B2 |
9940133 | Cordes et al. | Apr 2018 | B2 |
9983875 | Chadha et al. | May 2018 | B2 |
10037211 | Fernsler et al. | Jul 2018 | B2 |
10037229 | Fernsler et al. | Jul 2018 | B2 |
10042647 | Eickemeyer et al. | Aug 2018 | B2 |
10042770 | Chadha et al. | Aug 2018 | B2 |
20020078302 | Favor | Jun 2002 | A1 |
20020138700 | Holmberg | Sep 2002 | A1 |
20020194251 | Richter et al. | Dec 2002 | A1 |
20030120882 | Granston et al. | Jun 2003 | A1 |
20030163669 | Delano | Aug 2003 | A1 |
20030182537 | Le et al. | Sep 2003 | A1 |
20040111594 | Feiste et al. | Jun 2004 | A1 |
20040162966 | Webb, Jr. et al. | Aug 2004 | A1 |
20040172521 | Hooker et al. | Sep 2004 | A1 |
20040181652 | Ahmed et al. | Sep 2004 | A1 |
20040216101 | Burky et al. | Oct 2004 | A1 |
20050060518 | Augsburg et al. | Mar 2005 | A1 |
20050138290 | Hammarlund et al. | Jun 2005 | A1 |
20060095710 | Pires Dos Reis Moreira et al. | May 2006 | A1 |
20060106923 | Balasubramonian et al. | May 2006 | A1 |
20060143513 | Hillman | Jun 2006 | A1 |
20070022277 | Iwamura et al. | Jan 2007 | A1 |
20070079303 | Du et al. | Apr 2007 | A1 |
20070101102 | Dierks, Jr. et al. | May 2007 | A1 |
20070106874 | Pan | May 2007 | A1 |
20070180221 | Abernathy et al. | Aug 2007 | A1 |
20070204137 | Tran | Aug 2007 | A1 |
20080098260 | Okawa et al. | Apr 2008 | A1 |
20080104375 | Hansen et al. | May 2008 | A1 |
20080133885 | Glew | Jun 2008 | A1 |
20080162889 | Cascaval et al. | Jul 2008 | A1 |
20080162895 | Luick | Jul 2008 | A1 |
20080172548 | Caprioli et al. | Jul 2008 | A1 |
20080270749 | Ozer et al. | Oct 2008 | A1 |
20080307182 | Arimilli et al. | Dec 2008 | A1 |
20080313424 | Gschwind | Dec 2008 | A1 |
20090037698 | Nguyen | Feb 2009 | A1 |
20090113182 | Abernathy et al. | Apr 2009 | A1 |
20090198921 | Chen et al. | Aug 2009 | A1 |
20090210675 | Alexander et al. | Aug 2009 | A1 |
20090240929 | Hutton et al. | Sep 2009 | A1 |
20090265532 | Caprioli et al. | Oct 2009 | A1 |
20090282225 | Caprioli et al. | Nov 2009 | A1 |
20090300319 | Cohen et al. | Dec 2009 | A1 |
20100100685 | Kurosawa et al. | Apr 2010 | A1 |
20100161945 | Burky et al. | Jun 2010 | A1 |
20100191940 | Mejdrich et al. | Jul 2010 | A1 |
20100262781 | Hrusecky et al. | Oct 2010 | A1 |
20110078697 | Smittle | Mar 2011 | A1 |
20120060015 | Eichenberger et al. | Mar 2012 | A1 |
20120066482 | Gonion | Mar 2012 | A1 |
20120110271 | Boersma et al. | May 2012 | A1 |
20120110304 | Bryant et al. | May 2012 | A1 |
20120226865 | Choi | Sep 2012 | A1 |
20120246450 | Abdallah | Sep 2012 | A1 |
20130254488 | Kaxiras | Sep 2013 | A1 |
20130305022 | Eisen et al. | Nov 2013 | A1 |
20130339670 | Busaba | Dec 2013 | A1 |
20140025933 | Venkataramanan et al. | Jan 2014 | A1 |
20140040599 | Fleischer et al. | Feb 2014 | A1 |
20140075159 | Frigo et al. | Mar 2014 | A1 |
20140189243 | Cuesta et al. | Jul 2014 | A1 |
20140215189 | Airaud et al. | Jul 2014 | A1 |
20140223144 | Heil et al. | Aug 2014 | A1 |
20140244239 | Nicholson et al. | Aug 2014 | A1 |
20140281408 | Zeng | Sep 2014 | A1 |
20140282429 | Archer et al. | Sep 2014 | A1 |
20140325188 | Ogasawara | Oct 2014 | A1 |
20150046662 | Heinrich et al. | Feb 2015 | A1 |
20150121010 | Kaplan et al. | Apr 2015 | A1 |
20150121046 | Kunjan et al. | Apr 2015 | A1 |
20150134935 | Blasco | May 2015 | A1 |
20150199272 | Goel et al. | Jul 2015 | A1 |
20150324204 | Eisen et al. | Nov 2015 | A1 |
20150324205 | Eisen et al. | Nov 2015 | A1 |
20150324206 | Eisen et al. | Nov 2015 | A1 |
20150324207 | Eisen et al. | Nov 2015 | A1 |
20160070571 | Boersma et al. | Mar 2016 | A1 |
20160070574 | Boersma et al. | Mar 2016 | A1 |
20160092231 | Chu et al. | Mar 2016 | A1 |
20160092276 | Chu et al. | Mar 2016 | A1 |
20160103715 | Sethia et al. | Apr 2016 | A1 |
20160202986 | Ayub et al. | Jul 2016 | A1 |
20160202988 | Ayub et al. | Jul 2016 | A1 |
20160202989 | Eisen et al. | Jul 2016 | A1 |
20160202990 | Brownscheidle et al. | Jul 2016 | A1 |
20160202991 | Eisen et al. | Jul 2016 | A1 |
20160202992 | Brownscheidle et al. | Jul 2016 | A1 |
20160239307 | Alexander et al. | Aug 2016 | A1 |
20170168837 | Eisen et al. | Jun 2017 | A1 |
20170255465 | Chadha et al. | Sep 2017 | A1 |
20170277542 | Fernsler et al. | Sep 2017 | A1 |
20170277543 | McGlone et al. | Sep 2017 | A1 |
20170300328 | Cordes et al. | Oct 2017 | A1 |
20170329641 | Chadha et al. | Nov 2017 | A1 |
20170329713 | Chadha et al. | Nov 2017 | A1 |
20170351521 | Hrusecky | Dec 2017 | A1 |
20170357507 | Cordes et al. | Dec 2017 | A1 |
20170357508 | Cordes et al. | Dec 2017 | A1 |
20170371658 | Eickemeyer et al. | Dec 2017 | A1 |
20180067746 | Chu et al. | Mar 2018 | A1 |
20180260230 | Eickemeyer et al. | Sep 2018 | A1 |
20180276132 | Chadha et al. | Sep 2018 | A1 |
20180285161 | Chadha et al. | Oct 2018 | A1 |
20180293077 | Fernsler et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
101021778 | Aug 2007 | CN |
101676865 | Mar 2010 | CN |
101876892 | Nov 2010 | CN |
102004719 | Apr 2011 | CN |
1212680 | Jul 2007 | EP |
2356324 | May 2001 | GB |
2356324 | Oct 2001 | GB |
2009157887 | Jul 2009 | JP |
WO 2015067118 | May 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/152,257, to Sundeep Chadha et al., entitled, Operation of a Multi-Slice Processor Implementing a Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed May 11, 2016. |
U.S. Appl. No. 15/180,838, to Robert A. Cordes et al., entitled, Operation of a Multi-Slice Processor Implementing Simultaneous Two-Target Loads and Stores, assigned to International Business Machines Corporation, 37 pages, filed Jun. 13, 2016. |
U.S. Appl. No. 15/193,338, to Richard J. Eickemeyer et al., entitled, Managing a Divided Load Reorder Queue, assigned to International Business Machines Corporation, 35 pages, filed Jun. 27, 2016. |
U.S. Appl. No. 15/219,638, to Robert A. Cordes et al., entitled, Operation of a Multi-Slice Processor Implementing Simultaneous Two-Target Loads and Stores, assigned to International Business Machines Corporation, 37 pages, filed Jul. 26, 2016. |
U.S. Appl. No. 15/221,035, to Sundeep Chadha et al., entitled, Operation of a Multi-Slice Processor Implementing a Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jul. 27, 2016. |
Gebhart et al., A Hierarchical Thread Scheduler and Register File for Energy-efficient Throughput Processors, ACM Transactions on Computer Systems, Apr. 2012, pp. 8:1-8:38, vol. 30, No. 2, Article 8, ACM New York. |
Anonymous, Method and system for Implementing “Register Threads” in a Simultaneously-Multithreaded (SMT) Processor Core, An IP.com Prior Art Database Technical Disclosure, IP.com No. IPCOM000199825D IP.com Electronic Publication: Sep. 17, 2010 pp. 1-4 <http://ip.com/IPCOM/000199825>. |
Czajkowski et al., Resource Management for Extensible Internet Servers, Proceedings of the 8 ACM SIGOPS European Workshop on Support for Composing Distributed Applications Sep. 1998 pp. 33-39 ACM Portugal. |
Bridges et al., A CPU Utilization Limit for Massively Parallel MIMD Computers, Fourth Symposium on the Frontiers of Massively Parallel Computing Oct. 19-21, 1992 pp. 83-92 IEEE VA US. |
Pechanek et al., ManArray Processor Interconnection Network: An Introduction, Euro-Par' 99 Parallel Processing, Lecture Notes in Computer Science, 5th International Euro-Par Conference, Aug. 31-Sep. 3, 1999, Proceedings, pp. 761-765, vol. 1685, Spring Berlin Heidelberg, Toulouse, France. |
Pechanek et al., The ManArray Embedded Processor Architecture, Proceedings of the 26 Euromicro Conference, IEEE Computer Society, Sep. 5-7, 2000, pp. 348-355, vol. 1, Maastricht. |
Anonymous, Precise Merging Translation Queue in a Slice-Based Processor, An IP.com Prior Art Database Technical Disclosure, IP.com No. IPCOM000249317D IP.com Electronic Publication: Feb. 16, 2017, pp. 1-3. <https://priorart.ip.com/IPCOM/000249317 >. |
Appendix P; List of IBM Patent or Applications Treated as Related, Oct. 18, 2017, 2 pages. |
U.S. Appl. No. 15/173,078 to David A. Hrusecky et al., entitled, Fetched Data in an Ultra-Short Piped Load Store Unit, assigned to International Business Machines Corporation, 25 pages, filed Jun. 3, 2016. |
International Search Report and Written Opinion, PCT/IB2015/052741, dated Oct. 9, 2015. |
Roth, Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced Load/Store Optimization, Technical Reports (CIS), Paper 35, Jan. 2004, 23 pages, University of Pennsylvania Scholarly Commons (online), <https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1023&context=cis_reports>. |
Bobba et al., Safe and Efficient Supervised Memory Systems, 17th International Symposium on High Performance Computer Architecture (HPCA), Feb. 2011, 12 pages, IEEE xPlore Digital Library (online; IEEE.org), DOI: 10.1109/HPCA.2011.5749744. |
Anonymous, “A Novel Data Prefetch Method Under Heterogeneous Architecture”, IP.com Prior Art Database Technical Disclosure No. 000224167 (online), Dec. 2012, 14 pages, URL: http://ip.com/IPCOM/000224167. |
Anonymous, “Method and System for Predicting Performance Trade-Offs During Critical Path Execution in a Processor”, IP.com Prior Art Database Technical Disclosure No. 000223340 (online), Nov. 2012, 7 pages, URL: http://ip.com/IPCOM/000223340. |
IBM, “Using a mask to block the wakeup of dependents of already-issued instructions”, An IP.com Prior Art Database Technical Disclosure (online), IP.com No. 000193322, URL: http://ip.com/IPCOM/000193322, dated Feb. 18, 2010, 2 pages. |
Anonymous, “Fast wakeup of load dependent instructions by a select bypass”, An IP.com Prior Art Database Technical Disclosure (online), IP.com No. 000216900, URL: http://ip.com/IPCOM/000216900, dated Apr. 23, 2012, 2 pages. |
Kalla, et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor”, IEEE Micro, vol. 24, No. 2, Mar. 2004, pp. 40-47, IEEE Xplore Digital Library (online), DOI: 10.1109/MM.2004.1289290. |
Mathis et al., “Characterization of simultaneous multithreading (SMT) efficiency in POWER5”, IBM Journal of Research and Development, Jul. 2005, pp. 555-564, vol. 49, No. 4/5, International Business Machines Corporation, Armonk, NY. |
Appendix P; List of IBM Patent or Applications Treated as Related, Sep. 23, 2016, 2 pages. |
Slota et al., Complex Network Analysis using Parallel Approximate Motif Counting, 2014 IEEE 28th International Parallel & Distributed Processing Symposium, DOI: 10.1109/IPDPS.2014.50, Date Added to IEEE Xplore: Aug. 14, 2014, 10 pages. |
Gorentla et al., Exploring the All-to-All Collective Optimization Space with ConnectX CORE-Direct, IEEE, 2012 41st International Confererence on Parallel Processing, DOI: 10.1109/ICPP.2012.28, Date Added to IEEE Xplore: Oct. 25, 2012, 10 pages. |
Appendix P; List of IBM Patent or Applications Treated as Related, Aug. 28, 2018, 2 pages. |
U.S. Appl. No. 15/995,850, to Sundeep Chadha et al., entitled, Operation of a Multi-Slice Processor Implementing a Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jun. 1, 2018. |
U.S. Appl. No. 15/997,863, to Sundeep Chadha et al., entitled, Operation of a Multi-Slice Processor Implementing a Load/Store Unit Maintaining Rejected Instructions, assigned to International Business Machines Corporation, 37 pages, filed Jun. 5, 2018. |
U.S. Appl. No. 16/003,950, to Kimberly M. Fernsler et al., entitled, Operation of a Multi-Slice Processor With an Expanded Merge Fetching Queue, assigned to International Business Machines Corporation, 35 pages, filed Jun. 8, 2018. |
Sha et al., “Scalable Store-Load Forwarding via Store Queue Index Prediction”, Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05), dated Nov. 2005, 12 pages, http://repository.upenn.edu/cis_papers/262 (online), ISBN: 0-7695-2440-0; DOI: 10.1109/MICRO.2005.29, IEEE Computer Society, Washington, DC. |
Number | Date | Country | |
---|---|---|---|
20180039577 A1 | Feb 2018 | US |